4 research outputs found

    Transmission Line Synthesis Approach to Extending the Bandwidth of LEDs for Visible Light Communication

    Get PDF
    This paper proposes, for the first time, a transmission line synthesis approach to extending the bandwidth of light-emitting diodes (LEDs) in the context of high capacity visible light communications links. As opposed to the more traditional pre-distortion, amplitude equalisation or driver circuitry based approaches, the extension in bandwidth is achieved by incorporating the LED diffusion capacitance into a pseudo-artificial transmission line (p-ATL) cell with significantly improved transmission and cut-off properties. With the proposed technique, we show the possibility of achieving close to 400% improvement in bandwidth with studies based on a verified LED equivalent model. It is envisaged that the proposed approach will enable bespoke driver circuits based on the individual characteristics of LEDs, while combination with existing bandwidth extension schemes can lead to further improvement

    Mode division multiplexing in radio-over-free-space-optical system incorporating orthogonal frequency division multiplexing and photonic crystal fiber equalization

    Get PDF
    Radio over free space optics (Ro-FSO) is a revolutionary technology for seamlessly integrating radio and optical networks without expensive optical fiber cabling. RoFSO technology plays a crucial role in supporting broadband connectivity in rural and remote areas where current broadband infrastructure is not feasible due to geographical and economic inconvenience. Although the capacity of Ro-FSO can be increased by mode division multiplexing (MDM), the transmission distance and capacity is still limited by multipath fading and mode coupling losses due to atmospheric turbulences such as light fog, thin fog and heavy fog. The main intention of this thesis is to design MDM system for Ro-FSO for long and short haul communication. Orthogonal frequency division multiplexing (OFDM) is proposed for long haul communication to mitigate multipath fading and Photonic Crystal Fiber (PCF) is proposed for short haul communication to reduce mode coupling losses. The reported results of the proposed scheme for long haul communication show a significant 47% power improvement in deep fades from multipath propagation with the use of OFDM in MDM-Ro-FSO systems as compared to without OFDM. The results of the proposed scheme for short haul communication show 90.6% improvement in power in the dominant mode with the use of PCF in MDM-Ro-FSO as compared to without PCF. The reported results in the thesis show significant improvement in Ro-FSO systems as compared to previous systems in terms of capacity and transmission distance under clear weather conditions as well as under varying levels of fog. The contributions of this thesis are expected to provide seamless broadband services in remote areas

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined
    corecore