180 research outputs found

    Interconnexions et consommation: oĂą en sommes nous?

    Get PDF
    nombre de pages: 8National audienceCet article se propose d'aborder ce qu'il en est de la consommation des interconnexions dans les systèmes sur puce (SOC : Sytem On Chip) à l'heure actuelle. L'efficacité des différentes méthodes qui visent à réduire la consommation des interconnexions et leur influence en termes d'activité, de vitesse et de surface seront vues de manière détaillée. Les expérimentations nous ont permis de mettre au point un modèle de consommation pour les bus. A partir de ce modèle, nous avons développé un outil d'estimation rapide et précis en termes de surface, de vitesse de transfert et de consommation (instantanée, moyenne et maximale) sur le bus. Cet outil permet de tester rapidement les différentes méthodes et de conclure sur leur efficacité

    A Four-Transistor Level Converter for Dual-Voltage Low-Power Design

    Get PDF
    Power dissipation in digital circuits has become a primary concern in electronic design. With increasing usage of portable devices, there are severe restrictions being placed on the size, weight and power of batteries. In this work, we propose a design of a dual V th feedback type four-transistor level converter (DVF4) with reduced delay and power overheads. The use of DVF4 enhances the effectiveness of a dual-voltage low-power design. The level converter can be used in a circuit with multi supply voltage system where low supply gates may feed into high supply gates resulting in lower power and higher speed than with previously published level converters. The proposed level converter is based on a feedback circuit and employs multi-V th technique. To portray the advantages, we compare the proposed level converter with a previously published level converter for various supply voltages and observe 17.44% to 53% power savings and around 50% delay reduction over the best 32 nm CMOS design available in the literature. The impact of process variations is also examined. When used with dual VDD designs, the new level converter renders up to 61% more energy savings for benchmark circuits in comparison when level converters are not allowed. Furthermore, a level converter flip-flop combination performs better than an existing level converting flip-flop. A single-threshold alternative of the new level converter still remains effective, though over a reduced voltage range

    Electrical and Computer Engineering Annual Report 2016

    Get PDF
    Faculty Directory Faculty Highlights Faculty Fellow Program Multidisciplinary Research Fills Critical Needs Better, Faster Technology Metamaterials: Searching for the Perfect Lens The Nontraditional Power of Demand Dispatch Space, Solar Power\u27s Next Frontier Kit Cischke, Award-Winning Senior Lecturer Faculty Publications ECE Academy Class of 2016 Staff Profile: Michele Kamppinen For the Love of Teaching: Jenn Winikus Graduate Student Highlights Undergraduate Student Highlights External Advisory Committee Contracts and Grants Department Statistics AAES National Engineering Awardhttps://digitalcommons.mtu.edu/ece-annualreports/1002/thumbnail.jp

    Techniques de conception de circuits analogiques intégrés à haute performance en CMOS

    Get PDF
    Amplificateurs opérationnels à réaction en courant et circuits de transconductance à hautes fréquences en technologie CMOS -- Amplificateurs opérationnels à réaction en courant -- Circuits de transconductance CMOS (VCT) -- Amplificateur opérationnel à réaction en courant, de gain élevé et de tension de décalage réduite -- An offset compensated and high gain CMOS current-feedback op.-amp. -- Technique de compensation pour réduire la tension de décalage et l'erreur de gain des amplificateurs opérationnels à réaction en courant en technologie CMOS : Conception et mesures -- Compensation technique to reduce offset and gain error of CMOS CFOA : design and subsequent measurements -- Circuit de transconductance à hautes performances en technologie CMOS pour les applications mixtes analogiques et numériques -- High performance CMOS transconductor for mixed-signal analog-digital applications -- Nouvelle architecture d'un CFOA en CMOS (partie A) -- Nouvelle architecture d'un VCT en CMOS (partie B)

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Air Force Institute of Technology Research Report 2010

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physic

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Techniques de routage pseudo-aléatoire pour une application micro-électronique

    Get PDF
    Résumé La problématique de routage est très actuelle. On en trouve des applications dans les GPS, les prévisions de trafic routier, mais aussi pour le prototypage sur FPGA, la fabrication de puces électroniques ou le trafic TCP/IP sur Internet. On trouve des publications sur le sujet depuis plusieurs dizaines d'années, mais on observe actuellement une recrudescence confirmant l'actualité, l'importance et la complexité de ce problème. Cette thèse concerne le routage et ses ressources pour une application dans un nouveau type de système micro-électronique, nommé le WaferBoardTM . Son noyau consiste en un circuit électronique intégré à l'échelle d'une tranche de silicium (wafer). Peu d'applications commerciales de la micro-électronique ont exploité ce niveau d'intégration. Ce système de prototypage rapide vise à réduire d'un ou deux ordres de grandeur le temps de développement de systèmes électroniques. Il nécessite un ensemble d'outils logiciel de support, dont un outil de routage très rapide, capable de produire des solutions valables en des temps de l'ordre de la minute, et de certaines fonctionnalités spécifiques, l'équilibrage de délai ou le reroutage à la volée, au sein d'une netlist déjà routée. La problématique de routage pour cette application peut être imagée comme suit. Étant donné un réseau routier régulier (les routes d’Amériques du Nord en version cartésienne par exemple) et 100,000 voitures au départ lundi à 8h a.m. dans tout le pays avec des sources et destinations très variées; calculer les chemins pour toutes les voitures de telle sorte qu'aucune ne prenne la même route dans la journée. Il est 7h59 a.m, vous avez 1 minute, et des ponts sont inaccessibles pour travaux, en voici la liste. Cet exemple simpliste donne une idée des ordres de grandeurs de la problématique de routage que l'on cherche à résoudre pour cette application. Un algorithme de routage prend en paramètres deux structures de données : un graphe (ou réseau d'interconnexions) constitué de n\oe{}uds (sommets) et d'arcsUn arc relie deux sommets du graphe, et une netlistDans ce contexte, un netlist réfère à une liste d'interconnexions entre composants, liste de n\oe{}uds électriques dont les points de départ et d'arrivée sont positionnés géographiquement. Ainsi, au lieu de voitures, il s'agit de router des signaux électriques dont les points de départ et d'arrivée sont dictés par la position des broches des composants placés sur le système de prototypage. Un réseau régulier maillé mufti-dimensionnel (plus généralement appelé « réseau d'interconnexions ») sert de réseau routier dont certaines routes sont défectueuses, des ponts inaccessibles. En effet, le réseau d'interconnexions est un circuit électronique intégré à l'échelle d'une tranche de silicium complète, ce qui implique la présence de défectuosités au sein de chaque circuit fabriqué. Contrairement aux circuits électroniques classiques, où chacun est testé et les défectueux écartés, une intégration à l'échelle de la tranche demande de fortes redondances au sein du circuit pour minimiser le taux de rejets. Pour l'application du WaferBoard, un certain nombre d'éléments du réseau d'interconnexions seront fort probablement défectueux sur chaque circuit produit; l'algorithme de routage se doit de prendre en compte ces éléments très particuliers. Cette contrainte ne se retrouve pas dans les applications plus classiques des routeurs que l'on retrouve dans les PCB, circuits FPGA ou circuits VLSI. D'autres contraintes s'appliquent à ce projet particulier : la latence induite par la technologie est environ un ordre de grandeur plus importante que celle dans les circuits sur PCB, ce qui impose un routage orienté vers sa réduction.----------Abstract The routing problem is very actual. Applications are found in GPS, road traffic forecast, but also for prototyping on FPGA, or TCP/IP traffic on the Internet. Publications on the subject have existed for several decades, but new publications keep appearing, confirming the importance and complexity of the problem. This thesis deals with routing and the resources it requires for a new category of micro-electronic applications, called the WaferBoard. It is an electronic circuit integrated at the wafer scale. Few commercial applications of micro-electronics have exploited this level of integration. This rapid prototyping system aims at reducing by one or two orders of magnitude the development time of digital circuits. It requires a very fast routing tool, capable of producing viable solutions in a few minutes, with dedicated functionality such as balancing delays and rerouting on the fly parts of a netlist. The routing problem for this application can be pictured as follows. Given a regular road network of the size of north america, if 100.000 cars were to start Monday 8 a.m. across the continent with a wide variety of sources and destinations; the challenge is to compute paths for all cars so none of them take the same route that day. It is 7:59 am, you have 1 minute, and some bridges are under road work: here is the list. This simplistic example gives an idea of the orders of magnitude of the problem that need to be solved for this application. A routing algorithm takes as input: a graph (or interconnection network) made of nodes and edges, and a netlst, a list of electrical nodes with starting and ending points physically placed. Therefore, instead of cars, the problem consists of routing electrical signals with points of departure and arrival dictated by the pin position of components placed on the prototyping system. A regular, multi-dimensional mesh (also called "interconnection network") serves as a road network, which contains defective roads and inaccessible bridges. Indeed, the interconnection network is an electronic circuit integrated across a full wafer, implying the presence of defects within each manufactured circuit. Unlike conventional electronic circuits, where each is tested and defective ones are set apart, wafer scale integrated applications require lots of redundancy in the circuit to minimize the rejection rate. In the WaferBoard, a number of elements of the interconnection network will be defective in each circuit; the routing algorithm must take into account these very specific elements. This constraint is not found in the classic applications of routers found in PCB, FPGA or VLSI circuits. Other restrictions apply to this particular project: the latency induced by the technology is about one order of magnitude greater than that in the circuits of PCBs, which requires a routing oriented towards computation time reduction. This constraint partly explains the network architecture used. Within the WaferIC, the shortest distance is not necessarily the one that offers the smallest latency. This property of the network complexifies the routing problem. Balancing delays within a group of arbitrary size nets is a necessary feature of the routing algorithm, and the difficulty is amplified by the computation time limit. Indeed, the interest of the application is to reduce the time for a user to test a circuit: the time of setup is extremely short, and estimated at a few minutes only

    Air Force Institute of Technology Research Report 1997

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology\u27s Graduate School of Engineering and the Graduate School of Logistics and Acquisition Management. It describes research interests and faculty expertise; list student theses/dissertations; identifies research sponsors and contributions; and outlines the procedure for contacting either school
    • …
    corecore