104 research outputs found

    Vote from the Center: 6 DoF Pose Estimation in RGB-D Images by Radial Keypoint Voting

    Full text link
    We propose a novel keypoint voting scheme based on intersecting spheres, that is more accurate than existing schemes and allows for a smaller set of more disperse keypoints. The scheme is based upon the distance between points, which as a 1D quantity can be regressed more accurately than the 2D and 3D vector and offset quantities regressed in previous work, yielding more accurate keypoint localization. The scheme forms the basis of the proposed RCVPose method for 6 DoF pose estimation of 3D objects in RGB-D data, which is particularly effective at handling occlusions. A CNN is trained to estimate the distance between the 3D point corresponding to the depth mode of each RGB pixel, and a set of 3 disperse keypoints defined in the object frame. At inference, a sphere centered at each 3D point is generated, of radius equal to this estimated distance. The surfaces of these spheres vote to increment a 3D accumulator space, the peaks of which indicate keypoint locations. The proposed radial voting scheme is more accurate than previous vector or offset schemes, and is robust to disperse keypoints. Experiments demonstrate RCVPose to be highly accurate and competitive, achieving state-of-the-art results on the LINEMOD 99.7% and YCB-Video 97.2% datasets, notably scoring +7.9% higher (71.1%) than previous methods on the challenging Occlusion LINEMOD dataset

    An Approach Of Features Extraction And Heatmaps Generation Based Upon Cnns And 3D Object Models

    Get PDF
    The rapid advancements in artificial intelligence have enabled recent progress of self-driving vehicles. However, the dependence on 3D object models and their annotations collected and owned by individual companies has become a major problem for the development of new algorithms. This thesis proposes an approach of directly using graphics models created from open-source datasets as the virtual representation of real-world objects. This approach uses Machine Learning techniques to extract 3D feature points and to create annotations from graphics models for the recognition of dynamic objects, such as cars, and for the verification of stationary and variable objects, such as buildings and trees. Moreover, it generates heat maps for the elimination of stationary/variable objects in real-time images before working on the recognition of dynamic objects. The proposed approach helps to bridge the gap between the virtual and physical worlds and to facilitate the development of new algorithms for self-driving vehicles

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Full text link
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations

    Egocentric Perception of Hands and Its Applications

    Get PDF

    Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking

    Get PDF
    Robotic bin-picking is a common process in modern manufacturing, logistics, and warehousing that aims to pick-up known or unknown objects with random poses out of a bin by using a robot-camera system. Rapid and accurate object pose estimation pipelines have become an escalating issue for robot picking in recent years. In this paper, a fast 6-DoF (degrees of freedom) pose estimation pipeline for random bin-picking is proposed in which the pipeline is capable of recognizing different types of objects in various cluttered scenarios and uses an adaptive threshold segment strategy to accelerate estimation and matching for the robot picking task. Particularly, our proposed method can be effectively trained with fewer samples by introducing the geometric properties of objects such as contour, normal distribution, and curvature. An experimental setup is designed with a Kinova 6-Dof robot and an Ensenso industrial 3D camera for evaluating our proposed methods with respect to four different objects. The results indicate that our proposed method achieves a 91.25% average success rate and a 0.265s average estimation time, which sufficiently demonstrates that our approach provides competitive results for fast objects pose estimation and can be applied to robotic random bin-picking tasks

    Imitrob: Imitation Learning Dataset for Training and Evaluating 6D Object Pose Estimators

    Full text link
    This paper introduces a dataset for training and evaluating methods for 6D pose estimation of hand-held tools in task demonstrations captured by a standard RGB camera. Despite the significant progress of 6D pose estimation methods, their performance is usually limited for heavily occluded objects, which is a common case in imitation learning where the object is typically partially occluded by the manipulating hand. Currently, there is a lack of datasets that would enable the development of robust 6D pose estimation methods for these conditions. To overcome this problem, we collect a new dataset (Imitrob) aimed at 6D pose estimation in imitation learning and other applications where a human holds a tool and performs a task. The dataset contains image sequences of three different tools and six manipulation tasks with two camera viewpoints, four human subjects, and left/right hand. Each image is accompanied by an accurate ground truth measurement of the 6D object pose, obtained by the HTC Vive motion tracking device. The use of the dataset is demonstrated by training and evaluating a recent 6D object pose estimation method (DOPE) in various setups. The dataset and code are publicly available at http://imitrob.ciirc.cvut.cz/imitrobdataset.php

    Visual articulated tracking in cluttered environments

    Get PDF
    This thesis is concerned with the state estimation of an articulated robotic manipulator during interaction with its environment. Traditionally, robot state estimation has relied on proprioceptive sensors as the single source of information about the internal state. In this thesis, we are motivated to shift the focus from proprioceptive to exteroceptive sensing, which is capable to represent a holistic interpretation of the entire manipulation scene. When visually observing grasping tasks, the tracked manipulator is subject to visual distractions caused by the background, the manipulated object and by occlusions from other objects present in the environment. The aim of this thesis is to investigate and develop methods for the robust visual state estimation of articulated kinematic chains in cluttered environments which suffer from partial occlusions. To make these methods widely applicable to a variety of kinematic setups and unseen environments, we intentionally refrain from using prior information about the internal state of the articulated kinematic chain, and we do not explicitly model visual distractions such as the background and manipulated objects in the environment. We approach this problem with model-fitting methods, in which an articulated model is associated to the observed data using discriminative information. We explore model-fitting objectives that are robust to occlusions and unseen environments, methods to generate synthetic training data for data-driven discriminative methods, and robust optimisers to minimise the tracking objective. This thesis contributes (1) an automatic colour and depth image synthesis pipeline for data-driven learning without depending on a real articulated robot; (2) a training strategy for discriminative model-fitting objectives with an implicit representation of objects; (3) a tracking objective that is able to track occluded parts of a kinematic chain; and finally (4) a robust multi-hypotheses optimiser. These contributions are evaluated on two robotic platforms in different environments and with different manipulated and occluding objects. We demonstrate that our image synthesis pipeline generalises well to colour and depth observations of the real robot without requiring real ground truth labelled images. While this synthesis approach introduces a visual simulation-to-reality gap, the combination of our robust tracking objective and optimiser enables stable tracking of an occluded end-effector during manipulation tasks
    • …
    corecore