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ABSTRACT 

The rapid advancements in artificial intelligence have enabled recent progress of self-

driving vehicles. However, the dependence on 3D object models and their annotations 

collected and owned by individual companies has become a major problem for the 

development of new algorithms. This thesis proposes an approach of directly using 

graphics models created from open-source datasets as the virtual representation of real-

world objects. This approach uses Machine Learning techniques to extract 3D feature 

points and to create annotations from graphics models for the recognition of dynamic 

objects, such as cars, and for the verification of stationary and variable objects, such as 

buildings and trees. Moreover, it generates heat maps for the elimination of 

stationary/variable objects in real-time images before working on the recognition of 

dynamic objects. The proposed approach helps to bridge the gap between the virtual and 

physical worlds and to facilitate the development of new algorithms for self-driving 

vehicles. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview  

 

A self-driving or autonomous vehicle can detect its environment and navigate without 

human input. It can detect an environment using a range of methods, including cameras, 

GPS and computer vision [2]. Automated driving is a rapidly advancing application area 

with a complex structure and lots of progress in Deep Learning. Companies like Google, 

Uber, Tesla, Mercedes and BMW have already released or foraying quick. The examples 

of the self-driving vehicle are shown in Figure 1 and Figure 2. 

 

According to recent outcomes of studies [36], feature extraction techniques are of critical 

significance to many pattern recognition applications and systems involving detection, 

recognition, registration, matching, reconstruction and classification. Object detection in 

real complex environments is a challenging task for autonomous driving in the 

aforementioned applications. A typical pipeline for object detection can be divided into 

three stages: the selection of informative regions, extraction of features and classification. 

Deep Learning has reformed Computer Vision and is the core innovation behind the 

capabilities of a self-driving vehicle [1]. Convolutional Neural Networks (CNNs) are 

pivotal to the improvement of object detection in this deep learning revolution.  

 

We propose the integration of a new source of a priori information, the virtual 3D city 

model for self-driving cars for object detection, feature extraction and heatmap generation. 
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Figure 1: Google's self-driving car [69] 

 

 

Figure 2: Uber’s autonomous car [11] 

 

1.2 Sensing Technology Comparison 

 

 

Table 1: Sensing Technology Comparison [49] 

 

In consideration of all these differences shown in Table 1, autonomous vehicles can use a 

camera because of its added advantages and with better machine vision, it can identify 

everything it detects and navigates accordingly. 
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1.3 Problem Statement 

 

• In the real world, there are many associated risks and cost issues to acquire training 

data for self-driving artificial intelligence algorithms

• The dependence on 3D object models and their annotations, collected and owned 

by individual companies is a hindrance to the development of the new algorithms. 

• Their approaches remain fundamentally bounded by massive amounts of human-

annotated training data.  

• This time-consuming process impedes the progress of these deep learning efforts. 

 

1.4 Motivation 

 

In recent years, exploration in the area of self-driving cars has increased.  Nowadays, 

outdoor positioning systems often rely on GPS because of its affordability and 

convenience. However, GPS suffers from the occurrence of satellite masks especially in 

urban environments, under bridges, tunnels or in forests. To provide continuous, accurate, 

and high integrity position data, satellite-based localization systems should incorporate 

additional sensors (as proprioceptive sensors or environment perception sensors) or 

database (for example 2D digital map). Nevertheless, using only incremental encoders 

placed on the rear wheels and gyroscopes is not sufficient in case of long GPS outages, 

because the Dead-Reckoning (DR) localization is prone to drift error due to accumulation 

of data. As an alternative, a new approach to back up the limitations of GPS and DR sensors 

based localization is required. The proposed approach must aim at providing absolute 

positioning information by integrating a virtual 3D city model and an on-board camera in 

the localization process. If a GPS measurement is available, then this data is used to update 

the prediction, else the 3D model/camera-based pose estimation corrects the prediction. 

We can determine the vehicle pose by registering a priori virtual 3D city model with a 

captured 2D image. These virtual environments can be purposefully and increasingly 

challenging for critical applications, and will also be able to train a self-driving car to drive 

in an area full of simulated people, or a robot to respond to complex challenges and 
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variances before being placed on a real assembly line. In addition to the above, there is still 

a visible gap between machine performance and that of humans’, inspiring and 

recommending promising future bearings for the deployment of computer vision 

applications.  

 

1.5 Thesis Contribution 

 

• The target of ongoing research is to present an approach that directly uses graphic 

models from open source datasets as the virtual presentation of real-world objects 

to develop new computer vision tasks related to self-driving vehicles.  

• To train the system in a way that they can not only detect objects but also 

differentiate with high accuracy. 

• To train a network to extract features of 3D models for verification and elimination 

of static and variable objects and identification of dynamic objects. 

• Sensor and object recognition technologies for self-driving cars must fulfill 

enhanced requirements in terms of accuracy, unambiguousness, robustness, space 

demand and of course, costs. 

 

1.6 Structure of the thesis 

 

The overall structure of the thesis is organized in the following way: Chapter 2 begins with 

the background study for feature extraction and object detection techniques. In Chapter 3, 

literature survey and related works about feature extraction and object detection techniques 

are discussed extensively. The proposed system is introduced in Chapter 4: the feature 

extraction of cars and buildings, details of the overall system and connection of this thesis 

work with the overall system are also discussed. In Chapter 5, we delve into details about 

the implementation and experimental setup. Experimental results, detailed quantitative and 

qualitative analysis are performed by comparing them with existing techniques are reported 

in Chapter 6. In Chapter 7, we conclude and discuss the scope of this thesis. 
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CHAPTER 2 

BACKGROUND STUDY 

 

This chapter discusses the basic definitions and technical background of feature extraction 

and object detection techniques.  

 

2.1 3D Model 

 

A 3D model is a three-dimensional object’s mathematical representation. Until it is 

represented, a model is not technically a graphic model. A model can be represented 

visually through a method called 3D rendering as a two-dimensional picture [3]. 

 

2.2 Rendering 
 

The process of converting 3D wireframe models to 2D images automatically on a computer 

is called 3D rendering [3]. Advantages of 3D modeling over exclusively 2D methods 

include flexibility, ease of rendering, accurate photorealism, spatial reality, etc. Graphical 

Models are dependent on the synergy between computer graphics, computer vision and 

image processing. The traditional approach for generating virtual views of an object or a 

scene is to render directly from an appropriately constructed 3D model. 

 

2.3 Virtual 3D city model 
 

The Virtual 3D city model is a realistic and accurate representation of the environment in 

three dimensions. It is a geographically textured model of the surroundings where the 

vehicle navigates as shown in Figure 3. Such virtual 3D city models are produced using 

aerial/satellite imagery (photogrammetry), airborne laser scanner data (LIDAR), GIS and 

3D computer graphic. There are different terms utilized for 3D city models in writing, for 

example, Virtual City’, ‘Cybertown’, ‘Cybercity’, ‘Digital City’, ‘3D Urban Model’. The 
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need for 3D city models is growing and expanding rapidly in various fields, including urban 

planning and design, architecture, environmental visualization and many more [4].  

 

Figure 3: Views of the virtual 3D city model of Nancy [4] 

 

2.4 3D Geographical Information System 

 

To manipulate the virtual 3D city model, we need to navigate effectively in the 3D model 

by specifying the position and the orientation of the observer in a chosen reference frame. 

A computer tool has been developed for this purpose, referred to as the Three - 

Dimensional Geographic Information System (3D-GIS). A 3D-GIS can conceptualize 

terrain elevation, location of buildings, buildings facade texture, ground vegetation, rivers, 

etc. The inputs of the 3D-GIS are the 3D model database and the desired calibration 

parameters of the virtual camera. The 3D model database is composed of XML files 

containing the tagged information of every place with geo-locations, height and area 

information. The calibration parameters are the intrinsic parameters which are defined here 

as the horizontal field of view (FOV) on the one hand and the extrinsic parameters on the 

other. The latter being the position and the orientation of the virtual camera with respect to 

the frame that is attached to the 3D model [4]. The design of 3D-GIS is shown below in 

Figure 4. 

 

Figure 4: 3D-GIS [4] 
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2.5 Feature 
 

A feature is described as “a piece of information which is relevant for solving the different 

computational tasks related to a specific application” [54]. Feature points are also referred 

to as keypoints/interest points/salient features. The idea of feature detection and description 

refers to the process of identifying points in an image (interest points) that can be used to 

describe the image’s contents such as edges, corners, ridges and blobs as shown below in 

Figure 5. Features are categorized into two standard categories: local features and global 

features. Local features are geometrical in shape, and global features are topological in 

shape [5]. It is mainly aiming towards object detection, analysis and tracking from a video 

stream to describe the semantics of its actions and behavior. 

 

2.6 Feature Extraction 
 

The term feature-detector (a.k.a extractor) traditionally refers to the algorithm or technique 

that detects feature-points in an image. Subsequently, the recognized characteristics are 

defined in logically distinct ways based on distinctive patterns that their adjacent pixels 

possess. This method is called the feature description as it describes each feature by 

assigning it a unique identity that allows for their efficient matching recognition. The terms 

detector and extractor are used interchangeably in this work [5]. 

 

 

Figure 5: Illustrative image local features (a) input image (b) corners (c) edges (d) regions [5] 

 

 

2.7 Feature Selection 
 

Feature selection module is used for selecting a subset of relevant features from a large 

number of features extracted from the input data. The selected features are expected to 
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contain better discriminatory power to help distinguish among different classes with better 

accuracy. It also helps to reduce the dimensions of the feature space by selecting only the 

distinguishable features [56]. 

 

2.8 2D Feature Extraction techniques 

 

Several techniques have been created for feature extraction and their operating patterns are 

quite distinct from each other as described in Figure 6. Each method’s performance is 

optimal for a particular implementation. 

 

Figure 6: Common 2D Feature Extraction Methods [6] 

 

Different types of 2D  traditional Feature Extraction techniques are: 

Local Binary Patterns (LBP):  

It is an optimal feature extraction technique for texture analysis. It divides the image 

window into cells of 16 × 16 pixels, and every pixel in the cell is compared with eight of 

its neighbors, in which the center pixel has a higher value than other pixels. After the cell 

formation, a histogram is computed and normalized to make a feature vector. This feature 

vector can be processed by machine learning algorithms or SVM for classification. The 

improvements in LBP have enhanced the efficiency of face recognition applications, such 

as over complete LBP, transition LBP, modified LBP, and RGB-LBP, which are enriched 

with adjacent blocks overlapping, comparison of neighbor pixels, intensity values 

comparison of neighbor pixels, and computation of LBP for RGB-independent color 
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channels, respectively. Another outstanding combination of HOG-LBP has proved that the 

performance of LBP can be increased by combining it with other feature extraction 

algorithms [6]. 

 

Color histogram: 

A color histogram is the representation of the distribution of colors in a picture [9]. For 

computerized pictures, a color histogram speaks to the number of pixels that have colors 

in each of a settled list of color ranges that span the image’s color space, the set of all 

conceivable colors. Color histograms are adaptable builds that can be built from pictures 

in different color spaces, whether RGB or any other color space of any measurement. The 

main disadvantage of histograms for classification is that the representation is dependent 

on the object color, ignoring its shape and texture. Color histograms can be 

indistinguishable for two pictures with distinctive protest substance which happens to share 

color data. Then again, without spatial or shape data, comparative objects of diverse color 

may be undefined based exclusively on color histogram comparisons [7]. 

 

Canny Edge Detection: 

A well-known, general and robust approach for edge detection in digital images was 

introduced by Canny. First, the input image is smoothed using a Gaussian filter. 

Subsequently, the values of the first derivatives in the horizontal and vertical direction are 

obtained by applying the Sobel operator to the smoothed input image. Using these values, 

the gradient magnitude and the edge direction can be calculated. The resulting edges are 

thinned using Non-Maximum Suppression (NMS). Subsequently, the remaining edge 

pixels are classified using a high and a low threshold in the so-called hysteresis. Edges 

above the high threshold are kept, edges below the low threshold are discarded. Edges 

between the low and the high threshold are only kept if there is an edge pixel within the 

respective 8-connected neighborhood [10]. This leads to a binary edge image as displayed 

in Figure 7. 
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Figure 7: Left: Input image and Right: Canny edge image [10] 

 

Structured Edge Detection (SED): 

A more sophisticated, yet still real-time edge detection framework incorporating learning 

and the use of information of the objects of interest has been proposed by Dollár and Zitnick 

[71]. Therefore, in contrast to Canny edge detection, this approach requires a training 

procedure using an annotated training corpus. Here, a Random Forest (RF) maps patches 

of the input image I to output edge image patches using pixel-lookups and pairwise-

difference features of 13 (3 colors, 2 magnitudes, and 8 orientation) channels. While 

testing, densely sampled, overlapping image patches are fed into the trained detector. The 

edge patch outputs which refer to the same pixel are locally averaged. The resulting 

intensity value (which lies in the interval [0,1]) can be seen as a confidence measure for 

the current pixel belonging to an edge. Subsequently, an NMS can be applied to sharpen 

the edges and reduce diffusion [10]. 

 

Scale Invariant Feature Transform (SIFT):  

The SIFT method is used for extracting distinctive invariant features from images which 

will be used to perform reliable matching between different images using a nearest-

neighbor algorithm. The significant steps in computation of SIFT are: 1) scale-space 

extrema detection and keypoint localization based on Difference of Gaussian (DoG) 

function to identify potential interest points; 2) orientation assignment to each keypoint 

location based on local image gradient direction; 3) the keypoint descriptor measures the 

local image gradients at the designated scale in the region around each keypoint [8].   
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Speeded-Up Robust Feature (SURF): 

SURF is a local feature detection and matching method. The use of an integral image and 

basic Hessian-matrix approximation has dramatically reduced the computational 

complexity. The SURF parts consist of 1) interest point detection based on the Hessian 

matrix that approximates second-order Gaussian derivative with box filters by using 

integral images; 2) orientation assignment determined by constructing a circular region 

around the detected interest point and the dominant orientation describes the orientation of 

interest point; 3) interest point descriptors are built by extracting square windows around 

the interest points and computing the Haar wavelet responses in horizontal and vertical 

directions [8]. 

 

Histogram of Oriented Gradients (HOG): 

Scale gradients, spatial binning, orientation binning, and contrast normalization are the key 

steps for human detection using HOG. According to gamma normalization, different color 

spaces that were used, such as LAB (LAB stands for Luminance/Lightness and A and B 

are chromatic components) and RGB, and grayscale gamma normalization has reduced the 

performance. This performance was evaluated by the false positive per window with 

respect to the miss rate. Log compression was found to be weak compared to the square 

root of gamma compression. Gaussian smoothing is used for gradient computation and 

different scales are tested. In orientation binning, a weighted vote was calculated for each 

pixel and these votes were summed up to make cells (orientation bins). The shape of cells 

is of two types: rectangular and circular. These orientation bins were equally spaced as 0 

degree to 180 degrees (unsigned) and 0 degree to 360 degrees (signed). Contrast 

normalization and grouping blocks were performed for normalization. Two types of block 

geometries have been introduced as rectangular and circular, which are known as R-HOG 

and C-HOG, respectively [6]. 
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Corner Detection Techniques 

The term corner in detection does not mean to detect the physical corner such as the corner 

of the table or chair, but these are points in images with high curvatures. Corner means a 

point in the image whose gradient direction changes rapidly. The techniques of this class 

select the portion of the image which possesses the distinct properties from their immediate 

surroundings. Then, computes the key points or features which remain locally invariant or 

constant. Using these features, the image can be detected in different scenarios: rotation, 

scaling, translation and occlusion. Corner detection techniques are used for image 

recognition, detection and analysis [55]. List of type of detectors and descriptors present in 

Corner detection techniques are described in Figure 8 present below. 

 

Figure 8: Classification of popular corner detectors and descriptors [54] 

 

Forstner Corner Detector: 

In 1986 Forstner presented a rotation-invariant corner identifier in light of the ratio between 

the determinant and the trace of μ. The accuracy of sub-pixel is used to find the location of 

a corner that is stable to a certain set of photometric and geometric transformations [54].  

 

Harris Corner Detection:  

Harris corner detection algorithm detects corners by forming a local search window and 

shifting it pixel-by-pixel in each direction. The variance in the pixel intensity helps the 
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algorithm identify peaks of low and high brightness levels. The center point of the window 

detects the corner. The shifting process averages the variation in pixel intensity. When the 

window is shifted along a flat or smooth part of the image where there is no drastic change 

in the pixel intensities, no corners are detected. However, when there is no change in 

intensity levels along the edge direction, an edge region is identified. When there is a 

significant change in intensity level in every direction, a corner is recognized [27]. Harris 

was successful in identifying robust features in any given image. But on account 

that it was only detecting corners, his work suffered from a lack of connectivity of feature-

points which represented an essential obstacle for obtaining major level descriptors such 

as surfaces and objects [7].  

 

Shi and Tomasi (Min Eigen) Corner Detection: 

Shi and Tomasi have proposed the modified version of the Harris corner detector. This 

algorithm works in the almost same way like Harris but with a little change. Harris uses 

corner selection criteria with the help of Response Function R, if the score of R greater 

than a certain value, then the point will be called as a corner, where the score function 

computed by using two Eigenvalues. Shi & Tomasi have used Eigenvalues to decide 

corners instead of using score function [55]. It works quite well where even the Harris 

corner detector fails. We consider a small window on the image then scan the whole image, 

looking for corners. Shifting this small window in any direction would result in a large 

change in appearance if that particular window happens to be located on a corner. Flat 

regions will have no change in any direction. If there is an edge, then there will be no major 

change along the edge direction [57]. 

 

2.9 3D Feature Extraction techniques 

3D keypoint detection is a critical step of object recognition. Several 3D keypoint detectors 

have been inspired by 2D feature engineering. The method for feature extraction should be 

independent of data representation. The method also should be invariant under transforms 

as translation, rotation and scale of a 3D object.  
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Different types of 3D Feature Extraction techniques are: 

HOG 3D:  

HOG3D is based upon histograms of oriented spatiotemporal gradients computed for a 

space-time volume in the neighborhood of an interesting point. This volume is further 

subdivided into video blocks. The gradient of each block is computed at different spatial 

and temporal scales, using integral video representation. Then, regular polyhedrons are 

used to uniformly quantize the orientation of the computed 3D gradients. The final gradient 

vector for space-time volume is obtained by concatenating the gradient vectors of all sub-

blocks [58]. 

 

3D SIFT:  

3D SIFT (Scale Invariant Feature Transform) extends the popular 2D SIFT to videos. The 

authors use finite difference approximations to compute the magnitude and orientations of 

3D gradients for space-time volume around the interest points. Orientations of 3D gradients 

are parameterized by two angles: θ giving the gradient direction in 2D and φ encoding the 

angle away from the 2D gradient. The gradient magnitude is quantified along uniform 

orientations by dividing θ and φ into equally sized bins using meridians and parallels [58]. 

 

Harris 3D:  

The Harris 3D detector is a space-time extension of the popular 2D (spatial) corner detector 

known as the Harris detector. It is a spatiotemporal interest point detector. In order to find 

spatiotemporal interest points, a second-moment matrix μ is computed for each video input 

point (x,y,t), at different spatial (σ) and temporal (τ) scale values. It uses a separable 

Gaussian smoothing function and space-time gradients. The descriptors used with Harris 

3D are HOG/HOF descriptors. Harris3D might prove to be an inadequate representation of 

video by giving only a sparse set of spatiotemporal interest points. To overcome this 

limitation, dense sampling was introduced. Dense sampling extracts points at regular 

positions in time and space for different spatial and temporal scales [58].  
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However, each 3D object can be represented by a set of multiple rendered views as shown 

in Figure 9 instead of the original 3D model, some existing 2D image processing (feature 

extraction) methods can be employed. These images are captured with a static camera or 

virtual camera array [59]. 

 

Figure 9: 3D shape model rendered with different virtual cameras [72] 
 

 

Ideal features should typically have the following essential qualities:  

 

(1) Distinctiveness: The intensity patterns underlying the detected features should be rich 

in variations that can be used for distinguishing features and matching them.  

(2) Locality: Features should be local to reduce the chances of getting occluded as well as 

to allow a simple estimation of geometric and photometric deformations between two 

frames with different views.  

(3) Quantity: The total number of detected features (i.e., features density) should be 

sufficiently (not excessively) large to reflect the frame’s content in a compact form.  

(4) Accuracy: Features detected should be located accurately concerning different scales, 

shapes and pixels locations in a frame. 

(5) Efficiency: Features should be efficiently identified in a short time to make them 

suitable for real-time (i.e., time-critical) applications.  
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(6) Repeatability: Given two frames of the same object (or scene) with different viewing 

settings, a high percentage of the detected features from the overlapped visible part should 

be found in both frames. Repeatability is greatly affected by the following two qualities.  

(7) Invariance: In scenarios where large deformation is expected (scale, rotation, etc.), the 

detector algorithm should model this deformation mathematically, as precisely as possible 

so as to minimize its effect on the extracted features.  

(8) Robustness: In scenarios where a small deformation is expected (noise, blur, 

discretization effects, compression artifacts, etc.), it is often sufficient to make detection 

algorithms less sensitive to such deformations (i.e., no drastic decrease in the accuracy) 

[5].  

 

2.10 Computer Vision tasks  

  

Computer Vision is the interdisciplinary scientific field that can recognize and understand 

images and scenes. As depicted in Figure 10, the three most common tasks in computer 

vision are the classification of an image, object classification with localization and object 

detection.  

 

Figure 10: Three most common computer vision tasks [1] 

 

Classification of an image:  

Image Classification is the most common computer vision problem where an algorithm 

looks at a picture and classifies the object in it. Image classification has an extensive variety 

of applications, ranging from face detection on social networks to cancer detection in 
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medicine. Such problems are usually modeled using Convolutional Neural Nets (CNNs). 

Figure 11 shows the high-level steps involved in a typical image classification task. The 

input image is sent through multiple convolutional, pooling, non-linear layers and the 

output of the final layer of the CNN is passed into a softmax layer which converts the 

numbers between 0 and 1, giving the probability of the image being of a particular class. 

 

Figure 11: Steps for image classification using CNN [1] 

 

Object classification and localization:  

Localization of object’s algorithms not only spots an object’s class but also it draws a 

bounding box around an object’s picture position as displayed in Figure 12. To get the 

bounding box location, four more numbers are added to the output layer. The final output 

contains class labels and four numbers to locate the bounding box. 

 

Figure 12: Input and Output for object localization problems [1] 
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Multiple objects detection and localization:  

If multiple objects are present in the image and the task is to detect them all, then that 

would be a multiple object detection and localization problem. These kinds of issues need 

to leverage the concepts learned from image classification as well as from object 

localization. For the algorithm to detect all types of objects in an image, it needs to be 

capable of classifying and localizing all the objects in the picture as shown in Figure 13. 

This process is typically done using either a simple sliding window approach, wherein, the 

cropped window is passed through a ConvNet (Convolutional Neural Network) and have 

the ConvNet make the predictions. The sliding window is passed through the entire image. 

In the end, a set of cropped regions will remain, which will have some object, together with 

the class name and its bounding box. This sliding window approach is a fundamental object 

detection approach, and to tackle this problem, many advanced object detection algorithms 

have been devised [1].  

 

Figure 13: Multiple object detection and localization [1] 

 

2.11 Object Detection Algorithms 

 

Overview 
 

Object detection algorithms work by finding out the specific object by matching the 

object’s pixel values and equating them with the particular picture frame. There have been 

many object detection algorithms which have been proved to be feasible for engineering 
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uses. These algorithms have progressed from binary classified based approach to a 

learning-based approach [13].  

 

2.11.1 Object Detection Traditional Methods 

Viola-Jones Algorithm:  

Viola-Jones algorithm was one of the breakthrough algorithms which was devised in 2001. 

It was mainly used for face detection but also was applicable for the general-purpose object 

detection techniques. It had four modules which included Haar Feature Selection, Integral 

Image Creation, Adaboost Training and Cascade Classifiers.  

The algorithm searches for various features in a face like eyes, nose, mouth, etc. and 

computes face cascades and compares them with the Haar features to check for faces in an 

image. Due to this purpose, for the face to be detected, the images needed to be properly 

oriented with the face being frontal upright. This algorithm had very low false positives 

and very high detection rates. However, the recognition of faces was not quite developed 

as compared to detection rates, thus reducing practical implications [13].  

 

Histograms of Oriented Gradients (HOG): 

This algorithm interprets robust low-level features that are based on HOG. It is still 

grounded upon the approach of hardcoded features like the Viola-Jones method, but it is 

an alternative to exhaustive search. It initially converts to grayscale image and then finds 

the object by pixel-by-pixel in a particular frame. It matches each pixel with its surrounding 

pixels with reference to the intensity of darkness. By doing this, it can create a map of the 

gradients of the pixel intensity variation. These gradients can assist us to locate the nuances 

in an image. The HOG method computes the gradient orientation in localized portions of 

the image to identify multiple objects in a particular image. To highlight the required parts 

of the image and eliminate other background noise, feature descriptor can be used as 

presented in Figure 14. An image (size width x height x channels) to a feature vector/array 

of length n by the feature descriptor converts.  
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The feature vector produced by the algorithm produces excellent results when fed to an 

image classification algorithm like Support Vector Machine (SVM) [13].  

 

Figure 14: Illustration of HOG feature descriptors and SVM weights used for classification [74] 

 

 

 

2.11.2 Deep learning methods 
 

Deep learning is a component of a broader family of machine learning methods based on 

learning data representation [73]. Learning can be supervised, semi-supervised, or 

unsupervised. Deep learning models can attain state-of-the-art accuracy, sometimes 

surpassing performance at the human-level [15].  

 

Deep learning architectures:  

 Deep Neural Networks 

 Deep Belief Networks 

 Recurrent Neural Networks  

 Convolutional Neural Networks 

 

CNN 

The basic building blocks of ConvNets (or CNN) are the convolutional layers, max-pooling 

or average pooling layers, and fully-connected layers. CNNs are connected as an 

arrangement of interconnected layers. The layers are made up of repeated pieces of 

convolutional, Rectified Linear Units (ReLU) and pooling layers. With a set of channels, 

the convolutional layers convolve their input. The channels are naturally found within the 

course of network training. The ReLU layer includes nonlinearity to the network, which 
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enables the network to memorize nonlinear combinations of the initial inputs, which is 

called feature extraction. These learned features, also known as activations, from one layer, 

become the inputs for the next layer. The pooling layers down-sample their inputs and help 

consolidate local image features. Finally, the learned features become the inputs to the 

classifier or the regression function at the end of the network. For image classification 

problems, the last layer is a classifier, and for object localization problems, the last layer is 

a combination of both [1]. The basic CNN architecture is represented in Figure 15. 

However, it is difficult to locate items precisely by directly mixing CNN with a sliding 

window approach. To address these issues, region-based CNN, that is, R-CNN, SPPnet and 

Fast-R-CNN have been proposed to improve object detection performance [17].  

 

Figure 15: CNN Architecture [1] 

 

 

R-CNN  

R-CNN stands for Region-Based Convolution Neural Network and is a method that 

depends on the external region proposal system. R-CNN has proved to show better 

performance than other ensemble methods and feature types. R-CNN takes an input image 

and extracts region proposals and computes rich features using large CNNs and then 

classifies the image [13]. The basic R-CNN Architecture is shown in Figure 16. Although 

R-CNN was the new state-of-the-art system for general object detection, it is tough to 

identify small objects such as far-away cars and human faces, since the low resolution and 

lack of contexts in each candidate box significantly decrease the classification accuracy in 

them. Moreover, the two different phases in the R-CNN pipeline cannot be jointly 

optimized, leaving the trouble for applying end-to-end training on R-CNN [16]. 
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Figure 16: R-CNN Architecture [75] 

  

FAST R-CNN  

The main advantage of Fast R-CNN over previous state-of-the-art techniques lies in multi-

stage pipeline training. In terms of space and time, training is expensive in R-CNN. On 

testing, it was observed that R-CNN based object detection was slow. R-CNN work is 

slowed down because of the execution of a ConvNet forward pass for each object proposal 

without sharing computation makes. The input image and a set of object proposals are fed 

into Fast R-CNN. It first processes the image through various convolutional and pooling 

layers and produces a convolutional map and then a fixed-length feature vector is extracted 

from the feature map for each proposal Region of Interest (RoI). To output, the K object 

classes by bounding boxes, each of these feature vectors are fed into a succession of fully 

connected layers that [13]. The basic Fast R-CNN Architecture is shown in Figure 17. The 

limitation of this approach is the prolonged computation time in the region proposal 

generation step. Therefore, Fast R-CNN was further improved by Ren et al., 2015 and 

Faster R-CNN was developed, which attained state-of-the-date object detection accuracy 

with real-time detection speed [17]. 
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Figure 17: FAST R-CNN Architecture [20] 

 

Recent Approaches: 

Recent advances in self-driving cars have prompted researchers to build a variety of object 

detection algorithms. Most of these object detection algorithms are based on three meta-

architectures: Single Shot multi-box Detector (SSD), Faster R-CNN (Regions with 

Convolutional Neural Networks) and Region-based Fully Convolutional Networks (R-

FCN). Each of these architectures fundamentally differs in the way they build their object 

detection pipelines. A typical object detection pipeline can be mainly divided into three 

stages: informative region selection, feature extraction, and classification [1]. 

 

 

Single-Shot Detector (SSD)  

The term single shot means the tasks of object localization and classification are handled 

in a single forward pass of the network. It is relevant to methods that require object 

proposals because it encapsulates all computation in a single network by eliminating 

proposal generation and subsequent pixel or feature resampling stages.  

Based on a feed-forward convolutional network, a fixed-size group of bounding boxes and 

their corresponding scores for the target classification instances are shaped by this 

technique. Now by performing the non-maximum suppression step, the final detections are 

shaped. For high-quality image classification (with their last classification layer removed), 

the initial network layers are built on a standard architecture called as a base network (here 

it is VGG-16). The basic SSD Architecture is shown in Figure 18. 
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The SSD architecture builds on these base networks, by discarding the fully connected 

layers and replacing them with a set of auxiliary convolutional layers. These additional 

Convolutional layers enable the algorithm to progressively decrease the size of the input to 

each subsequent layer and extract features at multiple scales [1]. 

 

Figure 18: SSD Architecture [1] 
 

Faster R-CNN  

It consists of two networks one for region proposal network (RPN) (as shown in Figure 20) 

for generating region proposals and another for the network for detecting the object using 

these proposals. The main difference between Fast R-CNN is that it uses a selective search 

to create region proposals. As RPN shares the most computation with object detection, the 

time cost of making region proposals is much smaller in RPN than selective search. The 

region proposal network produces a cluster of boxes that are inspected by a classifier or a 

regressor to check for the occurrence of objects. After RPN, we get different sizes of 

proposed regions. Different sized regions mean different sized CNN feature maps. It’s 

challenging to make an efficient structure to work on features of diverse sizes. A region of 

Interest Pooling simplifies the problem by reducing the feature maps to the same size. A 

fixed number of roughly equal regions (say k) are produced when an input feature map is 

divided with ROI splitting, and then Max-Pooling is applied to it. Therefore, the output of 

ROI Pooling is always k regardless of the size of the input. With the fixed ROI Pooling 

outputs as inputs, lots of choices are available for the architecture of the final regressor and 

classifier [13]. The basic Faster R-CNN Architecture is shown in Figure 19. 
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Figure 19: Faster RCNN Architecture [17] 

 

 

Figure 20: Region Proposal Network (RPN) [17] 

 

 

Region-Based Fully Convolutional (R-FCN)  

Region-based Fully convolutional networks introduced by Dai, J., et al. [75] provides an 

accurate and efficient object detection. R-FCN closely resembles the architecture of Faster 

R-CNN but instead of cropping features from the same layer where region proposals (RoI) 

are predicted, crops are taken from the last layer of features prior to prediction. Dai et al. 

argue this approach of pushing the cropping to the last layer greatly minimizes the amount 

of per-region computation that must be performed. This paper states that the R-FCN model 

(using Resnet 101) could achieve comparable accuracy to Faster R-CNN often at faster 

running times. The basic R-FCN Architecture is shown in Figure 21. 
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Figure 21: R-FCN Architecture [1] 

 

In R-FCN architecture above, a given input object is divided into feature maps each 

detecting the corresponding region of the object. The feature maps are also known as 

position-sensitive score maps. Taking the example of the 3 X 3 ROI in Figure 21 above, 

we ask ourselves how likely each in the 3 X 3 matrix contains the corresponding part of 

the object and assign a score to it. This process of mapping score maps and ROIs to the 

vote array is called position-sensitive ROI-pool. The average of the resulting ROI pool 

gives the class score for a given object in the given ROI [1], as shown in Figure 22 below. 

 

Figure 22: Applying ROI onto the feature maps to output a 3*3 vote array 

 

 



27 
 

Dilated CNN  

The architecture of Dilated convolutions (à-trous convolutions/convolution with holes) is 

based on the fact that dilated convolutions support the exponential expansion of the 

receptive field without introducing additional parameters and sacrificing the resolution of 

data at the output layer and computational cost and filling the vacant positions with zeros 

to learn multi-scale features. In practice, no expanded filter is created instead, the 

filter features (weights) are matched to distant (not adjacent) features in the input matrix. 

The distance is determined via the dilation coefficient D. Generally, dilated convolutions 

have improved performance. With dilated convolutions in different dilation rates, receptive 

fields in various sizes can be obtained, those multi-scale features extracted are as displayed 

in Figure 23. 

 

One of the critical components of our design is the dilated convolutional layer. A 2-D 

dilated convolution can be defined as follow: 

  

y(m,n) is the output of dilated convolution from input x(m,n) and a filter w(i,j) with the 

length and the width of M and N respectively. The parameter r is the dilation rate. If r = 1, 

a dilated convolution turns into regular convolution.  

In dilated convolution, a small-size kernel with k × k filter is enlarged to k + (k − 1)(r − 1) 

with dilated stride r. Thus it allows flexible aggregation of the multi-scale contextual 

information while keeping the resolution same [21]. They feature the scale of each 

convolutional kernel that is (2l + 1) 2  where l is the dilation rate of this kernel [22].  

  

Figure 23: An illustration showing the effect of increasing the dilation of 3*3 filter [31] 
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In dilation1, there is a 1-pixel distance between each filtered pixel and its nearest neighbor. 

In dilation2, there is a 2-pixel distance: the filter is only applied to pixels that are in both 

odd-numbered rows and columns of each 5×5 region. In dilation3, the filter is applied to 

only pixels in every third row and column of each 7×7 region, and so on.  

 

These dilations allow for a model to perceive higher-order abstractions without the need 

for dimensionality reduction. The main advantage of this type of mechanism is that the 

model is capable of capturing the frequency component from the input signal. Using this 

simple trick, the CNN can accommodate a larger receptive field also, thus letting the model 

accommodate longer-range dependencies. The dilated convolution technique opens up the 

possibility of making as many as required skips in the input data, so we have a better global 

view of the problem domain, in our case, one-dimensional vibration signal. It can alleviate 

the severe loss of spatial acuity due to multiple down samplings in a traditional deep 

network [24]. Another added advantage is if one wants to replace multiple dilated 

convolutional layers with a single convolutional layer with large size filter, it is safe. For 

instance, two 3×3 filters with 2-dilation can be replaced by one 9×9 filter with 1-dilation 

[25]. Dilated CNN can deliver 5×5 information with only nine weights instead of 

conventional CNN, which needs 25 weights [26].  However, a key drawback of dilated 

convolutions is exactly what they do not perform any subsampling, which is essential for 

reducing the complexity of deep layers. Thus, models that use dilation still rely on regular 

subsampling layers [23].  They are frequently used in model compression, audio 

generation, semantic image segmentation, generic image classification, sound wave 

synthesis, machine translation, signal processing, weakly-supervised object location, etc. 

 

2.12 Heatmaps 

 

Heatmap is a data matrix visualizing values in the cells by the use of a color gradient. This 

gives a good overview of the largest and smallest values in the matrix. Rows and/or 

columns of the matrix are often clustered so that users can interpret sets of rows or columns 

rather than individual ones. 
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In other words, a heatmap is a type of graphical representation of data that consists of a set 

of cells, in which each cell is painted for a specific color according to a specific value 

attributed to the cell. The term “heat” in this context is seen as a high concentration of 

geographical objects in a particular place. Heatmaps show the distribution of objects or 

phenomena across the entire surface. More generally, heatmaps can be viewed as the 

surfaces of densities. Such surface density well illustrates the location of the concentration 

of points or linear objects [37]. An example of a heatmap is shown below in Figure 24. 

 

At a fundamental level, heatmaps are implemented as spatial matrices with cells colored 

after their values. Explicitly, they encode a continuous quantitative variable as a color in 

space through a color transfer function to a sequential color scheme [38]. 

 

Broadly speaking they fall into two classes: (i) image-based heat maps and (ii) data-matrix 

heat maps. Image-based heat maps display numerical information that is mapped over an 

image, an object or a geographic location. On the other hand, data-matrix heat maps display 

numerical data in a pseudo-colored tabular or matrix format. The data may be subsequently 

clustered using various measures of similarity or dissimilarity [39]. 

 

Figure 24: Heatmap generated on a sample image [28] 

 

2.13 Annotations 

From a technical point of view, annotations are usually seen as metadata, as they give 

additional information about an existing piece of data. We do not need a server to create 

local annotations. We can store annotation data in a local file system (local annotations - 

can be seen only by their owner) or it can store annotations remotely, on annotations servers 

accessed through the Web (remote annotations - can be seen by other people). 
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CHAPTER 3 

LITERATURE SURVEY 

 

This chapter discusses the relevant background of recent works in the Feature Extraction 

and Object Detection techniques 

 

3.1 Static object feature extraction techniques: 

 

Kaneva, B., et al. 2011 [30] proposed to use a photorealistic virtual world to gain complete 

and repeatable control of the environment to evaluate image features. They used two sets 

of images rendered from the Virtual City and from the Statue of Liberty to evaluate the 

performance of a selection of commonly-used feature descriptors, including SIFT, GLOH 

(Gradient Location and Orientation Histogram), DAISY, HOG, and SSIM (the Self-

SIMilarity descriptor). They then used the virtual world to study the effects on descriptor 

performance of controlled changes in illumination and camera viewpoint resulting in the 

best performance of DAISY descriptor.  

 

Cappelle, C., et al. 2012 [4] explored that in structured scenes, as indoor environments, line 

and edge are favored. But outdoor environments are often textured, so the usually used 

features are points, corners. In their work, the chosen features are the well-known Harris 

points. Once the Harris points are detected in the real image and in the virtual image, they 

have matched these two sets of points.  

 

The Li, H., et al. 2018 [51] elucidates that when the number of images is too large, or the 

time of image feature extraction is long, it is not conducive to the implementation of the 

system. Aiming at this problem, this paper introduces and analyzes the principle and 
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shortcomings of Harris corner detection, and proposes an algorithm based on adaptive 

threshold Harris feature point selection is proposed. Firstly, the Harris algorithm is 

optimized from the two aspects of adaptive threshold and prescreening feature points. 

Then, in order to further reduce the pseudo-corner and prepare the image matching, the 

Forstner operator is used to determine the best feature point.  

 

In [29], the algorithms compared by author are Moravec, Susan, Harris, FAST, Eigen and 

Forstner. The kinds of noise used are Gaussian, Poisson, salt & pepper and speckle. Results 

of testing the accuracy of each corner detector on the image noise mentioned that; a) not 

all corner detectors are able to find the corner points appropriately, b) all corner detectors 

do not show the location of the corner of the point accurately, c) all the corner detectors 

are very sensitive to all types of noise. The test results in this study show that the entire 

corner detector is very sensitive to noise, in other words, the degree of accuracy of detection 

results every corner detector will be strongly influenced by the noise and the type of noise  

 

The commonly used key point descriptors like SIFT or SURF fail to obtain feature points 

[M. Yamaguchi et al., 2017]. Recently, new approaches for feature extraction based on 

deep learning methods [T. Faulhammer et al., 2016 and W. Kehl et al., 2016 and E. Simo-

Serra et al., 2015] have demonstrated excellent performance. 

 

3.2 Dynamic object feature extraction techniques: 

 

In this Wang, Z., et al. 2017 [46] paper, the author elaborates that with orientation invariant 

feature embedding, local region features of different orientations are calculated based on 

20 keypoint locations as mentioned in Figure 25 and are well aligned and combined. 

Firstly, vehicle images are propelled into the region proposal module, which produces the 

response maps of 20 vehicle key points. The key point regressor takes the input image and 

outputs one response map for each of the 20 key points. Instead of directly predicting 

boundary points or corner points, these key points are chosen as some discriminative 
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locations or some main vehicle components, e.g. the wheels, the lamps, the logos, the rear-

view mirrors, the license plates.   

  

Figure 25: Definition and Illustration of 20 selected vehicle key points [46] 

 

Chabot, F., et al. 2017 [47] goes on to explain that the Deep MANTA (Deep Many-Tasks), 

architecture consisting of the robust convolutional network provides vehicle part 

coordinates (even if these parts are hidden), part visibility and 3D template for each 

detection. They use a 3D vehicle dataset composed of 3D meshes with real dimensions. 

Several vertices are annotated for each 3D model. These 3D points correspond to vehicle 

parts (such as wheels, headlights, etc.) and define a 3D shape for each 3D model. The main 

idea of this approach is to recover the projection of these 3D points (2D shape) in the input 

image for each detected vehicle. Then, the best corresponding 3D model for each detection 

box is chosen as shown in Figure 26. For this purpose, they proposed a semiautomatic 

annotation process using 3D models to generate labels on real images for the Deep 

MANTA training. Labels from 3D models (geometry information, visibility, etc.) are 

automatically projected onto real images providing a large training dataset without labor-

intensive annotation work. 

 

Figure 26: Corresponding 3D model for each detection box is shown [47] 
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Zhou, Y., et al. 2018 [34] states the possible reasons for the slow progress in Vehicle re-

identification (re-ID) as the shortage of the special 3D structure of a vehicle and suitable 

research data. Previous works have mostly fixated on some specific views (e.g., front) but 

these methods are less effective in realistic situations, where vehicles usually appear in 

arbitrary views to cameras as explained in Figure 27. In this paper, the author focused on 

the uncertainty of vehicle viewpoint in re-ID, proposing two deep end-to-end architectures: 

The Spatially Concatenated ConvNet (SCCN) and Convolutional Neural Network (CNN)-

LSTM Bi-Directional Loop (CLBL). Their models exploit the great advantages of the CNN 

and long short-term memory (LSTM) to learn transformations across different viewpoints 

of vehicles. Thus, a multi-view vehicle representation containing information about all 

viewpoints can be inferred from the only one input view and then used to calculate distance 

from learning. The output is presented in Figure 28. Experimental outcomes demonstrate 

that their models have achieved consistent improvements over the state-of-the-art vehicle 

re-ID approaches. 

 
Figure 27: Motivation for multi-view vehicle re-ID [34] 

 

 

Figure 28: Semi-automatic annotation process [34] 
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To enable efficient labeling in 3D, Song, X., et al. 2019 [48] has built a pipeline by 

considering 2D-3D key point correspondences for a single instance and 3D relationship 

among multiple instances. To efficiently annotate complete 3D object properties, they have 

developed a context-aware 3D annotation pipeline. Nonetheless, KITTI only labels each 

car by a rectangular bounding box and lacks fine-grained semantic key point labels (e.g. 

window, headlight).  In this paper, authors offer to the community the first large-scale and 

fully 3D shape labeled dataset. Besides, they contributed the first large-scale database 

suitable for 3D car instance understanding – ApolloCar3D, where each car is fitted with an 

industry-grade 3D (Computer-Aided Design) CAD model with the absolute model size and 

semantically labeled key points as presented in Figure 29. 

 

Figure 29: Defined 66 3D keypoints for car models [48]  
  

This dataset is above 20× larger than PASCAL3D+ and KITTI, the current state-of-the-art. 

To enable efficient labeling in 3D, they build a pipeline by considering 2D-3D keypoint 

correspondences for a single instance and 3D relationship among multiple instances as 

pipelined in Figure 30. Complementing existing related datasets, we hope this new dataset 

could serve as a long-standing benchmark facilitating future research on 3D pose and shape 

recovery.  

 

Figure 30: Training pipeline for 3D car understanding [48] 
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Warrington, A., et al. 2017 [53] states that the patch-based architecture uses strided max 

pool layers to reduce the spatial dimensions of the patch. However, applying this max 

pooling to a whole image reduces the dimensionality of the image, and hence the output 

will be of lower resolution than the input. A one-step method of circumventing this is to 

use unstrided max pool operators. However, this means that the effective field of view is 

dramatically reduced. Therefore, they have used dilated or atrous convolutions. Atrous 

convolutions ‘inflate’ the size of the mask by inserting fixed zeros at regular intervals. For 

instance, dilation of a three by three mask, with a dilation rate of one yields a five by five 

mask, with two rows and columns of zeros (resembling a noughts-and-crosses board). This 

allows us to capture the spatial extent similar to the original implementation while retaining 

a fully convolutional structure, but without exposing us to overfitting if we were to simply 

use larger, undilated convolutional kernels. 

 

3.3 Static and Dynamic object feature extraction techniques: 

 

In [59] authors had a set of depth images whose foreground has already been extracted. 

Laplacian operator is used for sharpening depth image then SIFT algorithm is adopted to 

get the key points. An algorithm called RANSAC (Random Sample Consensus) is 

employed as the filter before feature matching to improve the matching accuracy. The 

processing of feature extraction and feature matching is shown in Figure 31. However, the 

computation cost of feature extraction is still high.  

 

Figure 31: The process of the algorithm [59] 
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In [60] author proposed a Graphic Processing Unit (GPU) based algorithm that performs 

multi-view range image rendering and SIFT feature extraction of the Bag-of-Features (BF) 

SIFT algorithm on the GPU. This technique first calculates a set of multi-scale local visual 

features from a collection of depth images rendered from multiple view orientations about 

the 3D model. Thousands of visual features per model are combined into a feature vector 

for the model by using the bag-of-features approach. The algorithm performed very well, 

especially for models having articulation or global deformation. However, the method was 

computationally expensive because of the costs of rendering depth images, extracting local 

visual features and quantizing these features. 

 

In [61] the author proposed an algorithm that samples each depth image of a 3D model 

more uniformly and densely. Such sampling would produce a “balanced” representation of 

local geometrical features in the bag of features, and consequently, in the histogram of 

visual words that describes the 3D model. They have chosen a dense and random sampling 

of the image, so the proposed method is called Bag-of-Features Dense SIFT (BF-DSIFT) 

algorithm. To extract and encode an increased number of local features efficiently, they 

have adopted a GPU implementation of the SIFT algorithm. The pipeline is explained in 

Figure 32.  

 

Figure 32: Local Visual features are integrated into a feature vector by using BoF approach [61] 
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In [62] authors adopted GPU to accelerate the procedure of feature extraction. Impressed 

by the superior performance of deep learning approaches in various visual tasks, they have 

proposed to use the activation of a Convolutional Neural Network (CNN). The CNN used 

here takes depth images as input, and the loss function is exerted on the classification error 

for projections. The network architecture consists of five successive convolutional layers 

and three fully connected layers. They have normalized each activation in its Euclidean 

norm to avoid scale changes. It only takes 56ms on average to extract the view features for 

a 3D model. The sequence flow of the feature extraction is described in Figure 33. 

 

Figure 33: 3D shape search engine [62] 

 

Gao, B. B., et al. 2015 [52] states that feature representation is among the most important 

topics in current state-of-the-art visual recognition tasks. Over the past decade, handcrafted 

features (e.g., SIFT and HOG) were very popular, and they were often encoded into a high 

dimensional vector by the Bag-of-Visual-Words (BOVW) framework. This representation 

is further improved by the Vector of the Locally Aggregated Descriptors and Fisher Vector 

methods, via adding higher-order statistics. However, such features are significantly 

outperformed by the recent deep features from CNNs which have exhibited significantly 

enhanced performance than those handcrafted features in visual recognition. In spite of the 

significant results achieved by deep features, there are many factors which can affect the 

performance of deep feature representations.  

 

More recently, Aubry, M., et al. 2015 [19] proposed an approach which analyzes CNN 

feature responses corresponding to different scene factors by fully controlling them via 

rendering. To a trained CNN, the rendered snapshots are presented and responses for 



38 
 

different layers are studied concerning the input setting factors. The authors observed 

important differences across the CNN layers for various scene factors. They also 

demonstrated that their deep feature analysis based on computer-generated imagery is 

related to understanding the network representation of natural images. 

 

Su, H., et al. 2015 [35] addresses that two issues hinder Object viewpoint estimation from 

2D images progress: the scarcity of training data with viewpoint annotations and a lack of 

powerful features.  They suggested a framework to address both issues by combining a 

scalable and over fit resistant render-based image synthesis pipeline from 3D models and 

CNNs to generate large-scale training data with fully annotated viewpoint estimate 

information. Critically, achieved this with negligible human effort. They presented that by 

cautiously designing the data synthesis process as shown in Figure 34, this method can 

significantly outperform existing methods on the task of viewpoint estimation on 12 object 

classes from PASCAL 3D+.  

 

Figure 34: The learned CNN is applied to estimate the viewpoints of objects [35] 

 

3.4 Static and Dynamic object detection techniques: 

 

Region proposals are a cornerstone in the object detection methods. However, in YOLO 

(You Only Look Once), region proposition and classification are integrated into one single 

stage. YOLO’s single-stage detection pipeline is extremely fast, making YOLO the first 

CNN based, general-purpose object detection model that achieved real-time speed when 

Compared with R-CNN and Faster R-CNN based methods [45]. The basic steps involved 

in YOLO are shown in Figure 35.   
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Figure 35: Illustration of YOLO [33] 

 

Fully-convolutional networks (FCN) were popularized by Wu, B., et al. 2017 [45], who 

applied them to the semantic segmentation domain. FCN defines a broad class of CNNs, 

where the output of the final parameterized layer is a grid rather than a vector. This is useful 

in semantic segmentation, where each location in the grid corresponds to the predicted class 

of a pixel. FCN models have been applied in other areas as well. To address the image 

classification problem, CNN needs to output a 1-dimensional vector of class probabilities. 

 

In Tang, S., et al. 2017 [32], the author mainly discusses different approaches on object 

detection methods. He says that detection with Deep Networks Region proposal methods 

plays an important role in object detection. Current top performing object detectors avoid 

exhaustive sliding window search across images and employ detection proposals to guide 

the search for objects. There are approaches mainly based on grouping, windows scoring, 

and CNN. Grouping proposal methods include methods such as Selective Search, 

Constrained Parametric Min-Cut, and Multiscale Combinatorial Grouping. Windows 

scoring methods are those that are based on objectness for sliding windows such as 

Objectness, EdgeBoxes, and Binarized Normed Gradients. CNN proposal methods consist 

of MultiBox, RPN, and HyperNet. 

 

Selective Search that mainly employs color information merges superpixels to generate 

proposals. Edge Boxes that employs mostly the texture information starts from a coarse 

sliding window pattern builds on object boundary estimates and adds a subsequent 

refinement step to improve localization. Most recent faster R-CNN proposes RPN that 

mainly employs the supervised information to generate proposals [32].  
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3.5 Related Works: 

 

Feature Extraction: Dynamic Objects (Cars) 

 

Paper Contribution Limitations 

Suwajanakorn, 

S., et al. 

"Discovery of 

latent 3d 

keypoints via 

end-to-end 

geometric 

reasoning."  

2018. 

 

• Given a single 2D image of a 

known class, this network can 

predict a set of 3D key points 

that are consistent across 

viewing angles of the same 

object and across object 

instances. 

• These key points and their 

detectors are discovered and 

learned automatically without 

keypoint location supervision. 

 

No information is provided 

regarding the estimation of 

orientation and the spatial 

transformation of the 

model. 

Khan, S. D.,  

et al.  

“Estimating 

Speeds and 

Directions of 

Pedestrians in 

Real-Time 

Videos: A 

solution to 

Road-Safety 

Problem.”  

2014 

 

• This paper states that the driver 

must know when the pedestrian 

is going to change his/her 

walking direction to collision 

prone area.  

• Therefore, estimating the 

orientation of pedestrian on 

pedestrian crossing becomes 

very important to avoid such 

collisions. 

Estimates orientation only 

for pedestrians. Hence the 

same concept can be 

applied to calculate for 

vehicles. 
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Feature Extraction: Static Objects (Buildings) 

 

Paper Contribution Limitations 

Lal, K.,  

et al. 

“Feature 

extraction for 

moving object 

detection in a 

non-stationary 

background.”   

2016 

 

• The author states that using the 

Harris Corner Detection, the 

image turns out to be sharp with 

lesser noise and a significant 

number of points are detected. 

• They also concluded that the 

SURF algorithm was able to 

identify more points in the 

background comparing Harris 

and SIFT. 

Harris Corner Detection 

and SURF Detector are able 

to process the information 

relatively faster than SIFT 

Detector, but Harris Corner 

Detection are seemingly 

more susceptible to noise 

and smooth pixel intensity 

level while SIFT Detector 

will detect the maximum 

amount of feature points, 

causing a longer processing 

time. 

Xi, W.,  

et al.   

“Comparisons 

of feature 

extraction 

algorithm 

based on 

unmanned 

aerial vehicle 

image.”  

2017 

 

• The author presented the 

contrasts between point feature 

extraction operators like SIFT 

operator, Forstner operator, 

Harris operator by extracting 

feature points from the building 

images, grassland images, 

shrubbery images, and vegetable 

greenhouses images. 

• The extraction accuracy of the 

SIFT operator for the building is 

the lowest, while the extraction 

accuracy of the Forstner 

operator is the highest. 

In the process of building 

feature points extraction, 

the Harris operator is 

slower. In the process of 

grassland feature points 

extraction process, Forstner 

operator is slower. In the 

process of bushes feature 

points extraction, the SIFT 

operator is slower. In the 

process of vegetable 

greenhouses feature points 

extraction, the Harris 

operator is slower. 



42 
 

Object Detection 

 

Paper Contribution Limitations 

Ren, S.,  

et al. 

“Faster r-cnn: 

Towards real-

time object 

detection with 

region 

proposal 

networks.” 

2015 

 

• The author introduced a Region 

Proposal Network (RPN) that 

shares full-image convolutional 

features with the detection 

network, thus enabling nearly 

cost-free region proposals.  

• An RPN is a fully convolutional 

network that simultaneously 

predicts object bounds and 

objectness scores at each 

position.  

• RPNs are trained end-to-end to 

generate high-quality region 

proposals, which are used by 

Fast R-CNN for detection. 

The limitation is related to 

insufficient performance of 

Fast R-CNN block in Faster 

R-CNN. 

They have limitation for 

detecting relatively small 

objects in images. 

Most of the proposals are 

not always fit to target 

objects. 

Jensen, M. B., 

et al. 

“Evaluating 

state-of-the-art 

object detector 

on challenging 

traffic light 

data.” 

2017 

 

• The author applied the state-of-

the-art, real-time object 

detection system You Only 

Look Once, (YOLO) on the 

public LISA Traffic Light 

dataset available through the 

VIVA-challenge, which contain 

a high number of annotated 

traffic lights, captured in varying 

light and weather conditions. 

In this paper, YOLO is 

applied only on the daytime 

data from the freely 

available LISA (Laboratory 

for Intelligent and Safe 

Automobiles) Traffic Light 

Dataset. 

YOLO doesn’t provide any 

information regarding the 

detected  color. 
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CHAPTER 4 

PROPOSED METHODOLOGY 

 

This chapter discusses the proposed system and flowcharts for executing the feature 

extraction techniques and other modules. Furthermore, this section discusses the working 

of the overall system and connection of the proposed approach with all other modules. 

 

4.1 Proposed Methodology Overview 

Our idea is to find a method of directly using graphic models created from open-source 

datasets as the virtual representation of real-world objects. Our approach uses Machine 

Learning techniques to extract 3D feature points and to create annotations from graphic 

models for the identification of dynamic objects, such as cars, and for the verification and 

elimination of stationary objects, such as buildings.  

In our method, a Dilated Convolutional Neural Network model is used to detect feature 

points of 3D car models. This helps to generate spatial transformation and estimate the 

orientation of the key points. This information is required for object identification. 

As the pre-trained model is not available for trees and buildings, Faster RCNN trained 

model is constructed using open google images. 

A faster RCNN approach is used to detect buildings in the input road scene and virtual 

scene. Annotations are generated for 3D virtual building models using corner feature 

extraction algorithms (FAST algorithm) followed by a feature selection technique for the 

object verification purpose. 

A Priori Knowledge of 3D virtual buildings is used for the generation of heatmaps on real-

time data for the elimination purpose because the cost and the computation time for the 

dynamic object recognition can be improved by the self-driving system. 
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4.1.1 Training Information 

 

Cars: 

• Dataset used: ShapeNet dataset 

• Train set: 149 models 

• Test set: 18 models 

• Validation set: 18 models 

Buildings: 

• Dataset used: Google OpenImage dataset 

• Train set: 2000 rendered images 

• Test set: 400 rendered images 

Trees: 

• Dataset used: Google OpenImage dataset 

• Train set: 1000 rendered images 

• Test set: 400 rendered images 

 

Training Time (in single GPU): 

Cars: 20 days 

Buildings and Trees: 3 days 
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4.2 CARS 

Algorithm for Feature Extraction 

Input: 185 3D models of cars (.obj) 

Output: Annotation files containing Normalised 2D keypoints, Orientation estimation 

and spatial transformations of all rendered images (.txt files) 

1) Perform Rendering to generate 240 images each of size 128*128 of each model 

2) Create. tfRecords for each model. 

3) Out of which, 149. tfRecords are used as the training set, 18 as the test set and 

remaining 18 as the validation set. Define a 4*4 global camera projection matrix 

4) Send the output of step 4 and step 5, along with tuned parameters such as count of 

keypoints, epoch value, etc. to dilated CNN. 

5) Now output generated by the convolutional dilated base network is sent to 

Orientation network. Orientation network constructs a system that infers the 

orientation of an object. 

6) After this, with the help of orientation network, keypoint network is built, which 

predicts the 3D keypoints. The ground-truth orientation flag is used at the beginning 

of training. Then we linearly anneal in the prediction. Anneal refers to a number 

between [0, 1] where 1 means using the ground-truth orientation and 0 means using 

our estimate. 

7) Now Rendered images are sent as test images to Keypoint Net to predict 3D 

keypoints. 

8) Once 3D keypoints are predicted, they are normalized to 2D keypoints.  

9) With the help of these normalized 2D keypoints, orientation and spatial 

transformation (using Euclidean distance) of the key points are generated.  

Orientation: tanϴ = y/x where (x,y) is the normalized keypoint location. 

10) Outputs are saved as annotation files(.txt) in the repository for feature matching and 

object identification.  
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Flowchart for Feature Extraction: 

 

 

Figure 36: System Architecture for Feature Extraction of car models 
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Flowchart Explanation: 

 

In the feature extraction module of cars, we first select 3D models of cars (.obj) from any 

open-source dataset say ShapeNet dataset. As a part of the experiment, I have selected 185 

car models. For each model, we normalize the object so that the longest dimension lies in 

between [−1, 1]. After which rendering is done to generate 240 images each of size 

128*128 for each model. Then we create .tf records for each model. Out of these, 149. 

tfRecords are used as the training set, 18 as the test set and remaining 18 as the validation 

set. Next, we define a 4*4 global camera projection matrix. The projection matrix, the 

generated .tf records and tuned parameters such as count of key points to be detected, epoch 

value, etc. to dilated CNN. Here we have selected the number of key points to be detected 

as 10, the total batch size of 256 epoch values as 200k using synchronous training with 32 

replicas, etc.  

 

Now output generated by the convolutional dilated base network is sent to Orientation 

network. Orientation network constructs a system that infers the orientation of an object. 

With the help of orientation network, keypoint network is built, which predicts the 3D 

keypoints. The ground-truth orientation flag is used at the beginning of training. Then we 

linearly anneal in the prediction. Anneal refers to a number between [0, 1] where 1 means 

using the ground-truth orientation and 0 means using our estimate. Now Rendered images 

are sent as test images to Keypoint Net to predict 3D keypoints.  

 

Once 3D keypoints are predicted, they are normalized to 2D keypoints. With the help of 

these normalized 2D keypoints, orientation and spatial transformation (using Euclidean 

distance matrix) of the key points are generated. A spatial transformation is a mapping 

function that establishes a spatial correspondence between all points in an image and its 

warped counterpart. If A is a Euclidean distance matrix and the points x1, x2, x3…., xn are 

defined on m-dimensional space, then the elements of A are given by A = (aij) where aij = 

dij2 = ||xi-xj||22. Orientation: tanϴ = y/x where (x,y) is the normalized keypoint location. 

Outputs are now saved as annotation files (.txt) in the repository for feature matching and 

object identification
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4.3 BUILDINGS 

Algorithm for Feature Extraction 

Input: Textured 3D model of Virtual city (.obj)   

Output:  32 feature points for each rendered image (.txt file) 

1) Perform rendering to fetch building virtual view scene.  

2) Now, Calibrate these virtual views. 

3) Perform Object detection technique like Faster RCNN to detect buildings. 

4) Once identified, its corresponding bounding box coordinates are retrieved. 

5) Based on those coordinates, cropping task is performed otherwise go to next frame. 

6) Perform preprocessing on the cropped images. 

7) A FAST algorithm is applied as part of the feature extraction (corner detection) 

technique.  

8) Apply non-maximal suppression. 

9) It generates a robust list of feature points. 

10) Once these set of feature points generated, the center of each cropped image is 

calculated and Euclidean distance formula is applied with respect to each feature 

point for an image and calculated center. 

Euclidean formula:  

where the points (x1, y1) and (x2, y2) are in 2-dimensional space. 

 

11) Now 32 key points who have longest distances from the center are selected as the 

optimal set of keypoints. These points act as selective features. 

12) And now these points are saved as annotation as (.txt file) are saved in the repository 

for feature matching and object verification. 
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Feature Detection using the FAST algorithm 

Input: Rendered image (.png/.jpg) 

Output:  feature points for each rendered image  

 

1) Select a pixel  in the image which is to be identified as an interest point or not. 

Let its intensity be . 

2) Select an appropriate threshold value . 

3) Consider a circle of 16 pixels around the pixel under test. (This is a Bresenham 

circle of radius 3) as shown in figure 37. 

4) Now the pixel  is a corner if there exists a set of (=12) contiguous pixels in the 

circle (of 16 pixels) which are all brighter than , or all darker than . 

5) A high-speed test was proposed to exclude a large number of non-corners. This test 

examines only the four pixels at 1, 9, 5 and 13 (First 1 and 9 are tested if they are 

too brighter or darker. If so, then checks 5 and 13). If  is a corner, then at least 

three of these must all be brighter than  or darker than . If neither of 

these is the case, then  cannot be a corner. The full segment test criterion can then 

be applied to the passed candidates by examining all pixels in the circle. 

6) Now we should apply Non-Maximum Suppression to avoid detecting multiple 

interest points in adjacent locations.  

7) Compute a score function,  for all the detected feature points.  is the sum of the 

absolute difference between  and 16 surrounding pixels values. 

8) Consider two adjacent keypoints and compute their  values. 

9) Discard the one with lower  value 

10)  Display the robust set of keypoints 

                               

Figure 37: A circle of 16 pixels around the pixel under test [70] 

http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
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Flowchart for Feature Extraction: 

 

Figure 38: System Architecture for Feature Extraction of building models 
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Flowchart Explanation: 

 

As a part of Feature Extraction of buildings, the input is the video of the textured 3D model 

of the virtual city. Perform rendering to fetch building virtual view scene. Then, we 

calibrate these virtual views. Now, perform Object detection technique like Faster RCNN 

to detect buildings. In faster RCNN the image is provided as an input to a convolutional 

network which provides a convolutional feature map. Instead of using selective search 

algorithm on the feature map to identify the region proposals, a separate network is used to 

predict the region proposals. The predicted region proposals are then reshaped using an RoI 

pooling layer which is then used to classify the image within the proposed region and predict 

the offset values for the bounding boxes.  

 

If the desired object is not present, then go to the next frame. Or else, once identified, its 

corresponding bounding box coordinates are retrieved. Based on those coordinates, 

cropping task is performed otherwise go to next frame. Next, perform preprocessing on the 

cropped images. After this, the FAST algorithm is applied as part of the feature extraction 

(corner detection) technique to find the key points. The advantage of the FAST corner 

detector is its computational competence. True to its name, it is actually faster than many 

other well-known feature extraction methods such as SIFT and Harris detectors. 

Moreover, the FAST corner detector is very suitable for real-time video processing 

application because of this high-speed performance. Next, apply Non-Maximal 

Suppression step which generates a robust list of feature points. Once these set of feature 

points generated, center of each cropped image is calculated and Euclidean distance 

formula is applied with respect to each feature point for an image and calculated center. 

Euclidean formula:  

where the points (x1, y1) and (x2, y2) are in 2-dimensional space 

 

Now retrieve 32 key points which have the longest distances from the center are selected 

as the optimal set of keypoints. These points act as selective features. Finally, these points 

are kept as annotations (.txt file) and are saved in the repository for feature matching and 

object verification. 

https://en.wikipedia.org/wiki/Corner_detector
https://en.wikipedia.org/wiki/Corner_detector
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Harris_affine_region_detector
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Buildings 

Algorithm for heatmap generation 

Input: Textured 3D model of Virtual city (.obj)   

Output:  Binary Heatmap of the rendered scene 

 

1) Perform rendering to real-time scene  

2) Now, Calibrate these views 

3) Perform Object detection technique like Faster RCNN to detect buildings 

4) Once identified, its corresponding bounding box coordinates are retrieved 

5) Based on those coordinates, cropping task is performed  

6) Perform preprocessing on the cropped images. 

7) Remove noise by eliminating background details like the sky, etc 

8) Fetch its corresponding structural information like height and width from virtual 

data and perform scaling accordingly 

9) Execute applyColorMap() to its grayscaled image 

10) Now generate heatmap by tuning parameters 

11) Perform heatmap resizing according to the virtual structural information 

12) If heatmap_pixel_value == (128,0,0) 

Then replace heatmap_matrix_value == 0 

Else replace heatmap_matrix_value == 1 

13) Now binary heatmap is generated 

14) Finally, save binary heatmap in the repository for Object Elimination 
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Flowchart for heatmap generation:  

 

 
 

Figure 39: System Architecture for Heatmap generation for buildings 
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Flowchart Explanation: 

 

In the heatmap generation module of buildings, the input is the real-time we first perform 

rendering to the real-time scene. Then we calibrate these views. Next, we perform Object 

detection technique like Faster RCNN to detect buildings. In faster RCNN the image is 

provided as an input to a convolutional network which provides a convolutional feature 

map. Instead of using a selective search algorithm on the feature map to identify the region 

proposals, a separate network is used to predict the region proposals. The predicted region 

proposals are then reshaped using an RoI pooling layer which is then used to classify the 

image within the proposed region and predict the offset values for the bounding boxes. Once 

identified, its corresponding bounding box coordinates are retrieved.  

 

Based on those coordinates, cropping task is performed. Now, perform preprocessing on 

the cropped images. After that, remove noise by eliminating background details like the 

sky, etc. Then, fetch its corresponding structural information like height and width from 

virtual data and perform scaling accordingly. Followed by this step, we now execute 

applyColorMap() to its grayscaled image. A colormap is a mapping from 0-255 values to 

256 colors. In OpenCV, we can create an 8-bit color image of size 256 x 1 to store the 256 

color values. 

 

Now generate heatmap by tuning parameters. Next, perform heatmap resizing according to 

the virtual building structural information. The height of the building is present in the OSM 

file but the width needs to be calculated. The width is calculated using its realtime footprint 

coordinates. The height and width of each building are stored along with its place_id, 

osm_id, latitude, longitude and address.  

 

If heatmap_pixel_value is (128,0,0) then replace heatmap_matrix_value as 0 or else with 

1. Now generated heatmap is called as binary heatmap as it contains only binary digits. 

Finally, save binary heatmap in the repository for Object Elimination.   
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4.4 TREES 

Algorithm for Trees 3D reconstruction 

Input: Textures of trees from real-time data 

Output:  Reconstructed 3D tree  

 

1) Perform rendering to real-time scene  

2) Now, Calibrate these views 

3) Perform Object detection technique like Faster RCNN to detect trees 

4) Once identified, its corresponding bounding box coordinates are retrieved 

5) Based on those coordinates, cropping task is performed  

6) Perform preprocessing on the cropped images 

7) Remove noise by eliminating background details like the sky, etc 

8) Now calculate the height and width of each tree texture 

9) Open blender and create a plane 

10) Now resize the plane using the calculated structured information 

11) Add material and apply the texture to the plane 

12)  Tune parameters like alpha etc 

13) Perform UV mapping if necessary 

14) The output now generated is a 3d tree 

15) Thus this can be used to update virtual city to add more realism to it 
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Flowchart for 3D Tree reconstruction:  

 

 

Figure 40: System Architecture for 3D Tree reconstruction 
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Flowchart Explanation: 

In 3D Tree reconstruction module, the input is real-time video. We first perform rendering 

to fetch and calibrate these views. Next, we perform Object detection technique like Faster 

RCNN to detect buildings. In faster RCNN the image is provided as an input to a 

convolutional network which provides a convolutional feature map. Instead of using a 

selective search algorithm on the feature map to identify the region proposals, a separate 

network is used to predict the region proposals. The predicted region proposals are then 

reshaped using an RoI pooling layer which is then used to classify the image within the 

proposed region and predict the offset values for the bounding boxes. Once identified, its 

corresponding bounding box coordinates are retrieved.  

 

Based on those coordinates, cropping task is performed. After which we perform 

preprocessing on the cropped images. Now, noise is removed by eliminating background 

details like the sky, etc. Then, we calculate the height and width of each tree texture. Then, 

open Blender and create a plane and resize the plane using the calculated structured 

information. Material and apply texture is added to the plane. Tune parameters like alpha 

etc. Afterward, perform UV mapping ("U" and "V" are the names of the axes of a plane) if 

necessary. The output now generated is a 3D tree. Thus this can be used to update virtual 

city to add more realism to it. 

 

Figure 41: The architecture of Faster RCNN [68] 
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4.5 TRAFFIC LIGHT 

 

Algorithm for traffic light detection 

 

Input: Video/ Image frame 

Output: Command activated using Color code  

 

1) Perform rendering to real-time scene 

2) Now, Calibrate these views 

3) Perform Object detection technique like YOLO v3 to detect traffic lights 

4) Once identified, its corresponding bounding box coordinates are retrieved 

5) Based on those coordinates, cropping task is performed 

6) Perform preprocessing on the cropped images. 

7) Using OpenCV and python, retrieve the color code 

8) Based on color decoded, the command will be generated for the self-driving vehicle 
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Flowchart for traffic light detection: 

 

 

Figure 42: Flowchart for traffic light detection 
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Flowchart Explanation: 

In the traffic light color detection module, real-time video is sent as input to the system. In 

the video, each frame is treated as render views. Now, calibrate these views and Perform 

Object detection technique like YOLO v3 to detect traffic lights. YOLO v3 uses a variant 

of Darknet, which initially has 53-layer network trained on Imagenet. For the object 

detection task, 53 more layers are stacked onto it, giving us a 106 layer fully convolutional 

underlying architecture for YOLO v3 [67]. In YOLO v3, the detection is done at three 

different places in the network. The first detection is done by the 82nd layer. Then, the 

second detection is done by the 94th layer. And third at the 106th layer.  

 

Once traffic light is identified, its corresponding bounding box coordinates are retrieved. 

Based on those coordinates, cropping task is performed. Preprocessing is performed on the 

cropped images. Using OpenCV and python, retrieve the color code. Based on color 

detected, command such as STOP, PROCEED, GET READY will be activated for the self-

driving vehicle to guarantee prompt car control with high accuracy to ensure safety. 

 

 
Figure 43: YOLO v3 Network Architecture [67] 
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4.6 Working of the overall system 

The overall system consists of six modules: 

1. Construction on a virtual 3D environment 

2. Rendered images of real-time video 

3. 3D feature and keypoint extraction 

4. Removal of static and variable objects 

5. Dynamic object recognition 

6. Dynamic object detection  

As shown in Figure 44, all these modules are interconnected which each other. 

 

Figure 44: Overall System 

 

In above Figure 44, work shown in the green-colored box is the contribution of this thesis 

work. Its connection with all other modules, which are in different colored boxes, is also 

depicted using arrows. 
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The description of the overall system is with reference to Figure 44. The system initially 

starts with the construction of a virtual 3D environment with the use of OpenStreetMap 

data and the façade texture from Google street view images. The virtual 3D city model 

consists of static objects, such as buildings, and some of the variable objects, such as trees. 

Apart from this, there is a separate repository containing 3D models of dynamic objects, 

such as cars is maintained. The module marked in the blue-colored box in Figure 44 shows 

the real-time video (image sequences) passed as input to the system. The virtual 

environment is rendered as corresponding to the real-time drive, and at the same time 

keypoint features are extracted and are stored in a repository; this work is performed in the 

module colored in green. The module marked in pink performs static and variable object 

verification and elimination by matching keypoints extracted in the previous step and key 

points present in its corresponding real-time image. In this module, the keypoint features 

of the input image (blue module) and keypoint features of the virtual environment (pink 

module) are matched. Matching the keypoint features of the virtual environment and real-

time image confirms the location of the car in the real-world; this solves the problem of 

geo-localization of the self-driving car. As static and variable objects are eliminated, the 

computation time for the identification and prediction of dynamic objects such as human 

beings or animals on the road, as those are the ones which have an impact on the navigation 

of the self-driving system is reduced. The module marked in cyan deals with the object 

recognition and pose estimation of dynamic objects present in the real-time input image, 

such as cars. Additionally, this module tracks the recognized objects from multiple frames 

of the video and calculates the speed of the dynamic object. The recognized object with the 

pose information along with the object speed and location is used to update dynamic 

objects into the 3D virtual environment. The module marked in grey color updates the 

dynamic objects’ information into the virtual environment.  

 

4.7 Working of individual modules 

The modules which are directly associated with this research work are the 3D rendering 

and extraction of objects features. The virtual 3D city model and the real-time video are 

the input to the overall system.  
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Creation of virtual 3D city model: 

A virtual city is first created from the open-source/cloud VGI data (2D street views/satellite 

images). The virtual city contains the static and variable objects. Now the texture is applied 

to these models to resemble the real world. The constructed 3D environment is used as 

prior knowledge for the navigation purposes in a self-driving car. 

   

Figure 45: Pipeline for Creation of 3D virtual city 

 

Keypoint extraction and dataset creation: 

The static 3D object models are rendered and keypoint features are extracted and passed to 

the Static object removal module for object verification and heatmap is generated for object 

elimination. A repository of dynamic models is used as training set after rendering and 

KeypointNet [18] is used to extract the keypoint features from different rendered views of 

car models. The coordinate information of the identified key points in the rendered image 

and orientation details of the keypoint is stored in an annotation file for dynamic object 

recognition and detection module (will be explained in detail in Results chapter). 

 

Static and variable object removal: 

In this module, static and variable objects in the real-time image are detected with the Faster 

R-CNN approach. Once detected, the keypoint features of a virtual image are matched with 

the keypoint features of a real-time image to verify static and variable objects. Once 

verified, a heat map is generated for the verified images, and with the help of the heat map 

and the contour detection, verified objects are eliminated from the image. In this way, static 
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and variable objects are eliminated. This would save a lot of processing time on the 

dynamic object recognition in a real scene. 

      

Figure 46: Static object elimination 

 

Dynamic object recognition: 

This module matches keypoint features of the dynamic objects in the input image with the 

keypoint feature information of 3D object models stored in the repository to find a suitable 

matching 3D model. A voting algorithm is used for the matching purpose, which also 

estimates a confidence score that signifies the confidence of object identification. This 

process improves the confidence of recognition and pose estimation of dynamic objects in 

the input image to update the virtual city. This module is marked in cyan color in Fig 44. 

 

Figure 47: Dynamic object recognition and identification 

 

Dynamic object prediction: 

This module uses the information from the dynamic object recognition module to update 

the virtual city with dynamic objects on the road in real-time. The recognized object, with 

its pose information, speed and location, is used to update the virtual city with the identified 
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dynamic objects in real-time. Prior knowledge about the dynamic, static and variable 

objects from the virtual city and Internet of Things (IoT) is then used to determine the 

appropriate navigation decision of the self-driving car. This module is marked in grey color 

in Figure 44. The output of different modules is visualized in this module with the use of 

AirSim Simulator. Also, future prediction about the navigation of dynamic objects is 

calculated in this module. Moreover, this module predicts the distance from dynamic 

objects and visualizes them with different indicators. 

       

Figure 48: Virtual city update and dynamic object masking 
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CHAPTER 5 

IMPLEMENTATION AND EXPERIMENTS 

 

The proposed approach is implemented on Windows OS using Python Programming 

Language. In the implementation, Python, OpenCV and other libraries were used. The list 

of software and tools used are mentioned in Table 2. 

 

5.1 Software and Hardware Requirement 

 

The implementation of proposed methodology was performed on Processor: Intel(R) 

Core(TM) i7-5820K CPU @ 3.30GHz, 3301 Mhz, 6 Core(s), 12 Logical Processor(s) 

Hardware 1 GPU 

Operating System Windows 10 (64-bit) 

Rendering Software Blender 2.79 

Audodesk Maya 2018 

Graphical User Interface Anaconda Navigator  

Programming Languages Python 3.7.1 

Markup language XML (eXtensible Markup Language) 

Integrated Development Environment Jupyter Notebook 5.5.0 

Source code editor Notepad++ 

Libraries OpenCV, TensorFlow, Keras, PIL, numpy,  

TensorFlow, TensorFlow-Slim, plotly, etc 

3D object viewer Microsoft 3D viewer 
 

Table 2: List of tools used for implementation and experiments 
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5.2 Car  

Feature Extraction Module 

Incurred Preprocessing: 

Rendering of 3D Model:  

The image formation is the process by which a 3D representation of a scene is reduced to 

a 2D representation of that same scene, an image (3D scene transformation 2D image). 

Figure 49 below illustrates the Image Formation: Pinhole model [65]. 

 

Figure 49: Image Formation: Pinhole model (Perspective model)[66] 

 

An image point (pixel), given by its image coordinates, is the result of a three-step 

transformation of a physical point defined in a scene reference frame. 

The following three steps are applied in sequential order: 3D Euclidean Transformation, 

3D-2D transformation, 2D-2D transformation. 

A 3D Euclidean Transformation:  

3D rigid displacement where a scene point, initially defined in the scene reference frame, 

is transformed so that they would be defined in the camera reference frame. This 

transformation has 6 parameters corresponding to a 3D rotation and 3D translation. 
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A 3D-2D Transformation:  

3D points defined in the camera reference frame are projected onto the image plane. These 

new points are called normalized coordinates. 

A 2D-2D Transformation:  

The normalized coordinates expressed in the scene metrics, undergo a 2D affine 

transformation to become defined in pixels in the image plane reference frame. 

After the three steps, a perspective projection of the 3D point, P = (X, Y, Z, 1) onto the 

pixel p = (u, v, 1) is done using the projection matrix information. u and v can be defined 

using below equations [65]: 

 

It is clear from the above equation of u and v that, u and v coordinates make use of the X, 

Y, Z information of the image plane onto the pixel, thus saving the depth information. 

 

Concept Involved:  

Given a single 2D image of a known class, Keypoint Network can predict a set of 3D key 

points that are consistent across viewing angles of the same object and across object 

instances. These key points and their detectors are discovered and learned automatically 

without keypoint location supervision [18]. 

 

Figure 50: Training and Inference phase using Keypointnet [18] 
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Dataset Used: 

We use ShapeNet dataset for our training and testing datasets. The ShapeNetCore subset 

of ShapeNet contains about 51,300 3D models over 55 common categories, each 

subdivided into several subcategories [12]. 

 

Input: 

185 3D car models are represented as a series of 2D images that are obtained from different 

views on the model. For each model, we normalize the object so that the longest dimension 

lies in [−1,1], and render 240 images of size 128×128 under different viewpoints. The 

camera viewpoints are randomly sampled around the object from a fixed distance, all above 

the ground with zero roll angle. We then add small random shifts to the camera positions. 

 

Implementation details: 

We implemented our network in TensorFlow and trained with Adam optimizer with a 

learning rate of 10−3, β1 = 0.9, β2 = 0.999, and a total batch size of 256. We use the 

following weights for the losses: (αcon, αpose, αsep, αobj) = (1,0.2,1.0,1.0). We train the 

network for 200K steps using synchronous training with 32 replicas. All kernels for all 

layers are 3×3, and 13 layers of dilated convolutions are stacked with dilation rates of 1, 1, 

2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 1, all with 64 output channels except for the last layer which 

has 2N output channels, split between probability distribution map generation and depth 

value prediction. LeakyRelu and Batch Normalization is used for all layers except for the 

last layer. The output layers for depth value prediction have no activation function, and the 

channels are passed through a spatial softmax to produce a probability distribution map. 

Finally, generated probability distribution map and predicted depth value is then converted 

to actual coordinates using certain equations [18]. 

Training hours: 

Training almost took 20 days to generate KeypointNet.  
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Output: 

Each image produces 10 salient points. Thus, each 3D car model is described by a set of 

2.4k keypoints and Orientation information of each key point. Save them in the repository 

which can be used for feature matching and object identification. 

 

Result: 

10 key points, corresponding orientation and spatial transformation are shown for image 

000001 in Figure 43. 

 

 

Figure 51: Car feature extraction result 
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5.3 Building  

Feature Extraction Module 

Incurred Preprocessing: 

Inspired by the success of Faster R-CNN in both detection accuracy and detection speed, 

this work proposed an object detection method based on Faster R-CNN to detect buildings 

from the virtual world.  

 

Concept Involved: 

With FAST, corner detection was prioritized over edges as they claimed that corners are 

one of the most intuitive kinds of characteristics showing a sharp two-dimensional shift in 

intensity and are thus well-differentiated from adjacent points. FAST uses 16 pixels circle 

to evaluate whether point p is a corner or not. 

 

Figure 52: 16 pixels circle involved in the FAST algorithm[70] 

 

Dataset used: 

The textured 3D virtual model that we used in our work corresponds to the region of King 

St S at Wills Way to King St S at William St E, Waterloo, Ontario. But for implementing 

Faster RCNN, training model is built using google open images dataset. 

 

Input: 

The video contains a sequence of 2D rendered images that are obtained by moving the 

virtual camera across the lane in the virtual world. Next, break it into image frames. 
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Implementation details: 

The first step includes extracting sub-data from Open Images Dataset V4 which includes 

downloading the images and creating the annotation files for our training. The second part 

is to train the model. The configuration and model saved path are inside this file. Final Step 

of object detection is to test the model with test images and calculate the mAP (mean 

average precision) for the model. Coming to the feature extraction part, a FAST algorithm 

is applied along with the non-maximum suppression step to fetch key points. To conclude, 

selective features needs to be far from the center of the image and are obtained by 

calculating the Euclidean distance between detected points and the center of the image.  

 

Training hours: 

It almost took 3 days to train the model for object detection using Faster RCNN.  

 

Output

The extracted features are used to build selective features by fetching extreme ‘n’(say 

n=32) points detected on image using Euclidean distance formula. Save them in the 

repository for feature matching and object verification. 

Results: 

 
Figure 53: Building feature extraction result 
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Building heatmap generation module 

Incurred Preprocessing: 

Inspired by the success of Faster R-CNN in both detection accuracy and detection speed, 

this work proposed an object detection method based on Faster R-CNN to detect buildings 

from the virtual world.  

Concept Involved: 

A heatmap is a 2D visual/graphical representation of data where the individual values are 

represented as colors that are contained in a matrix. Heatmaps are used in various analysis 

but we are using if for eliminating pixels with some threshold value. 

 

Dataset Used: 

The real-time video/images that we used in our work corresponds to the region of King St 

S at Wills Way to King St S at William St E, Waterloo, Ontario. But for implementing 

Faster RCNN, training model is built using google open images dataset. 

Input: 

The video contains a sequence of 2D rendered images that are obtained by moving the 

embedded camera across the lane in real-world. Next, break it into image frames. 

Implementation details: 

Once cropped image obtained using Faster-RCNN, remove noise by eliminating 

background details like the sky, etc. Then, execute applyColorMap() to its grayscaled 

image. A colormap is a mapping from 0-255 values to 256 colors. In OpenCV, we can 

create an 8-bit color image of size 256 x 1 to store the 256 color values. Now generate 

heatmap by tuning parameters. 

Training Hours: 

It almost took 3 days to train the model for object detection using Faster RCNN.  
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Output: 

Generates heatmap which is called as binary heatmap as it contains only binary digits. 

Finally, save binary heatmap in the repository for object elimination. 

Result: 

 

Figure 54: Building heatmap generation 

 

5.4 Trees  

3D reconstruction module  

Incurred Preprocessing: 

Inspired by the success of Faster R-CNN in both detection accuracy and detection speed, 

this work proposed an object detection method based on Faster R-CNN to detect trees from 

the real world.  

Concept Involved: 

For architectural visualization, a scene produced is never complete without some 

components or objects such as trees that represent a real sense of scale for the viewer. 

Blender 3D has a few options to add those type of elements to a scene, going from a 3D 

model of trees to the use of 2D images. 
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Dataset Used: 

The real-time video/images that we used in our work corresponds to the region of King St 

S at Wills Way to King St S at William St E, Waterloo, Ontario. But for implementing 

Faster RCNN, training model is built using google open images dataset. 

Input: 

The video contains the sequence of 2D rendered images that are obtained by moving the 

embedded camera across the lane in the real world. Next, break it into image frames and 

perform object detection using Faster RCNN. 

Implementation details: 

With the cropped image saved to .png, leaving the background transparent. Open Blender 

and create a plane. Scale the plane and add material and an image texture to the plane. 

Next, go to the materials panel and set the alpha of the material as 0, Ztransp as 

transparency enabled and make shadeless so as to make the material insensitive to light or 

shadow. Use UV Mapping to control and see the texture in 3D View. 

Training Hours: 

It almost took 3 days to train the model for object detection using Faster RCNN.  

Output: 

In the end, 3D models of trees are produced which can be used to add realism in the 3D 

virtual city. 

Result: 

 

Figure 55: Tree 3D reconstruction 
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5.5 Traffic light detection module 

Incurred Preprocessing: 

YOLO v3 is used to detect traffic light from the real world.  

Concept Involved: 

Object detection technique like YOLO v3 to detect traffic lights. YOLO v3 uses a variant 

of Darknet, which initially has 53-layer network trained on Imagenet. For the object 

detection task, 53 more layers are stacked onto it, giving us a 106 layer fully convolutional 

underlying architecture for YOLO v3. It contains a high number of annotated traffic lights, 

captured in varying light and weather conditions. 

Dataset Used: 

The real-time video/images that we used in our work corresponds to the region of King St 

S at Wills Way to King St S at William St E, Waterloo, Ontario. But for implementing 

Faster RCNN, training model is built using google open images dataset. 

Input: 

The video contains the sequence of 2D rendered images that are obtained by moving the 

embedded camera across the lane in the real world. Next, break it into image frames and 

perform object detection using YOLO v3. 

Implementation details: 

Once YOLO v3 is applied, crop the image using its bounding boxes. Send the cropped 

image to color detection code to detect the color pixel which occupies the major portion.  

Training Hours: 

Used Pre-trained model: YOLO v3 
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Output: 

Based on color detected, command such as STOP, PROCEED, GET READY will be 

activated for the self-driving vehicle to guarantee prompt car control with high accuracy to 

ensure safety. 

 

Result: 

 

Figure 56: Traffic light color detection module 
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CHAPTER 6 

RESULTS AND EVALUATION 

 

 

6.1 Car: Graphs generated using training data 

 

Figure 57 represents the variation in accuracy w.r.t increase in epoch value obtained from 

training the car dataset using Dilated CNN.  

 

Figure 57: epoch vs accuracy in car's training 

 

Figure 58 depicts the variation in total loss w.r.t increase in epoch value obtained from 

training the car dataset using Dilated CNN.  

 

Figure 58: epoch vs total loss in car's training 
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6.2 Buildings and Trees: Graphs generated using training data 

 

Figure 59 illustrates the variation in the mean of overlapping bounding boxes w.r.t increase 

in epoch value obtained from training the building and trees dataset using Faster RCNN.  

 

Figure 59: epoch vs mean_overlapping_bboxes 

 

Figure 60 shows the variation in the class accuracy w.r.t increase in epoch value obtained 

from training the building and trees dataset using Faster RCNN.  

 

Figure 60: epoch vs class_accuracy 
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Figure 61 portrays the variation in the loss in RPN classification w.r.t increase in epoch 

value obtained from training the building and trees dataset using Faster RCNN.  

 

Figure 61: epoch vs loss_rpn_cls 

 

Figure 62 interprets the variation in the loss in RPN regression w.r.t increase in epoch value 

obtained from training the building and trees dataset using Faster RCNN.  

 

Figure 62: epoch vs loss_rpn_regr 
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Figure 63 depicts the variation in the current loss w.r.t increase in epoch value obtained 

from training the building and trees dataset using Faster RCNN.  

 

Figure 63: epoch vs current_loss 

  

Figure 64 describes the variation in the elapsed time w.r.t increase in epoch value obtained 

from training the building and trees dataset using Faster RCNN.  

 

Figure 64: epoch vs elapsed_time 

 

6.3 Performance Measures (for cars): 

• Multi-view consistency loss (Lcon): 

Multi-view consistency loss measures the discrepancy between the two sets of points 

under the ground truth transformation. 
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[x,y,z] to denote 3D coordinates, and [u,v] to denote pixel coordinates. ŭ denotes the projection of u to the 

second view, and u’^ denotes the projection of ŭ to the first view. 

 

•  A relative pose estimation loss (Lpose): 

A relative pose estimation loss, which penalizes the angular difference between the 

ground truth rotation R and the rotation Ř recovered from P1 and P2 (two views that best 

match one view to the other) using orthogonal procrustes. 

 

 

• Total loss = multi-view consistency loss + relative pose estimation loss 

 

6.4 Evaluations and Comparisons 

Car 

AUTHOR 

NAME 

Models Learning Drawbacks Annotations 

Suwajanakorn, 

S., et al. 2018 

[18] 

Train set = 149 

Test set =18 

Val test =18 

Unsupervised The Keypointnet orientation 

network fails to predict 

correct orientation and the 

output keypoints are flipped 

in the case of cars whose 

front and back look similar. 

Keypoints are calculated but 

no additional information 

regarding the key points is 

provided like orientation, 

spatial transformations, etc  

 

No 

 

Our Approach Train set =149 

Test set =18 

Val test =18 

Unsupervised The Keypointnet orientation 

network fails to predict 

correct orientation and the 

output keypoints are flipped 

in the case of cars whose 

front and back look similar 

Yes  

(-2D key points 

-orientation of 

the keypoints 

-spatial 

transformations 

of the key 

points) 

 

Table 3: Suwajanakorn, S., et al. 2018 vs Our approach 
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 SIFT HOG 2d/3d Ours 

Keypoint 

Orientation 

formula 

 

  

 

m(x,y)=√x2+y2 

ϴ(x,y) = tan-1 (y/x)                        

Table 4: Comparison between different Keypoint Orientation formulae 

 

Buildings  

Various feature extraction (corner detection) technique are tested with our virtual images 

IMAGES FASTER RCNN 

ACCURACY(%) 

 FORSTNER SHI AND 

TOMASI 

HARRIS FAST 

1 78 dp 93 113 150 

 

526 

t 3.4783556461334
23 

0.15987443
923950195 

0.15987420
082092285 

 

0.18085908889
770508 

dp/t 26.7367714694 706.804668

323 

938.237684

566 

2908.34153376 

2 70 dp 117 135 

 

178 

 

644 

t 4.0663967132568

36 

 

0.14788508

415222168 

 

0.17138099

670410156 

 

0.21083498001

098633 

dp/t 28.7724017725 912.870968

522 

1038.62157

079 

3054.52159773 

3 77 dp 39 68 
 

96 
 

362 

t 1.8705601692199

707 
 

0.15838313

102722168 

0.12541460

990905762 
 

0.17686057090

759277 

dp/t 20.8493694251 429.338652

159 

765.461058

083 

2046.81008402 

4 61 dp 38 
 

52 
 

177 320 

t 1.7251849174499

512 

 

0.15188264

846801758 

0.16087460

5178833 

 

0.16187381744

384766 

dp/t 22.0266242857 342.369589

446 

1100.23580

044 

1976.84841844 

5 89 dp 54 69 

 

96 473 

t 1.9190306663513

184 
 

0.15638875

96130371 
 

0.12490320

205688477 

0.16986393928

527832 

dp/t 28.1392063956 441.208179

992 

768.595187

466 

2784.58160096 
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6 77 dp 57 

 

71 

 

123 

 

575 

t 2.0269505977630
615 

0.16986823
081970215 

 

0.15687751
77001953 

 

0.18985080718
99414 

dp/t 28.1210603075 417.971033

532 

784.051161

716 

3028.69399667 

7 78 dp 62 

 

82 

 

137 

 

509 

 

t 2.4211206436157
227 

 

0.17486357
688903809 

 

0.15638709
06829834 

0.16886687278
747559 

 

dp/t 25.6079762747 468.936993

391 

876.031387

256 

3014.20871719 

8 72 dp 39 

 

61 150 437 

t 1.7006986141204

834 
 

0.15787601

470947266 
 

0.15587759

017944336 
 

0.16087388992

30957 

dp/t 22.9317526787 386.379147

664 

962.293552

443 

2716.41346031 

9 80 dp 38 
 

53 
 

164 232 

t 1.7551617622375

488 

0.15038704

872131348 

 

0.16038298

606872559 

0.13389420509

33838 

dp/t 21.6504260847 352.423965

033 

1022.55235

434 

1732.71128379 

10 83 dp 58 
 

64 
 

109 342 

t 2.0469346046447

754 

 

0.15738797

187805176 

 

0.14339470

863342285 

 

0.15587711334

228516 

dp/t 28.3350527508 406.638444

071 

760.139624

668 

2194.03601123 

Table 5: Various corner detection techniques tested with our virtual  images 

dp - number of detected points, t - time taken for detecting points (sec) 
dp/t - detection rate, Accuracy - Accuracy generated by Faster RCNN 

green - highest value, orange - least value 

 

6.5 Advantages of proposed methodology 

• It adds realism to virtual city by updating it with 3D tree models. 

• The feature points generated for virtual building models is used for feature 

matching and object verification for elimination. 

• The heat map generated on the real time building images is used for object 

elimination so as to detect dynamic objects in less time. 
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• Using Faster RCNN for training trees and buildings, we achieved high mean 

Average Precison value as 0.765. 

 

6.5.1 Advantage to dependency modules 

Based on buildings - Object elimination: 

• After applying the proposed approach of masking, the building will be eliminated, 

allowing dynamic object detection algorithm to focus on actual dynamic objects 

• The running time of object elimination algorithm is 548 milliseconds, and 

dynamic object detection algorithm is 15.8 seconds on masked image 

• The proposed approach makes moving object detection method to perform 

efficiently and accurately 

 

Based on cars - Feature extraction:  

• Improvement in confidence of object recognition  

Based on this sequence flow: mAP = 91.0  

whereas Tangruamsub et al. 2011 stated only 86 

• Pose estimation also improved 

• No incorrect detection of objects by the system 

 

 

6.6 Limitations   

• FAST algorithm does not detect corners on computer-generated images that are 

perfectly aligned to the x-axes and y-axes.  

• However, Faster R-CNN pipelines are fitting for object detection in still images. 

When these methods are applied to videos, they might miss some positive samples 

because the objects might not be of their best poses in each frame of the videos. 

• The Keypointnet orientation network fails to predict correct orientation and the 

output keypoints are flipped in the case of cars whose front and back look similar. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

  

7.1 Conclusion 

The concept of the proposed approach takes advantage of a priori source of information to 

perform feature extraction and generate heat maps on real-time building objects. Our 

dataset consists of selective features from a virtual city. We have conducted a wide range 

of experiments and provided a comprehensive analysis of the performance of the FAST 

algorithm against other techniques. Ultimately, these results motivate future research on 

synchronous learning from real and virtual data. The experimental results also show that 

our framework is robust for the extraction of features of buildings and cars with complex 

shapes. Overall, we can affirm that we have driven along the route of research for training 

our car to see using virtual worlds.   

 

 

7.2 Future Works 

The research enables many more opportunities to improve further. The number of test 

images can be increased substantially and tested with streaming videos to perform more 

practical real-world applications of self-driving cars and other autonomous vehicles. The 

performance of mAP scores and inference time can be improved by tuning other hyper-

parameters using high-performance GPU systems. In the future, the entire system 

compatibility will be improved in such a way that a hardware implementation will be done. 

Scalability issues require further attention to extend the proposed approach to city size 

maps. The algorithms which will be in fruition in the near future will be mostly aimed 

towards reducing such complexities, increasing the performance as well as finding ways to 

minimize data dependency to make more efficient and practical systems. 
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APPENDIX 

 

Faster RCNN: 

Faster RCNN is an object detection architecture presented by Ross Girshick, Shaoqing 

Ren, Kaiming He and Jian Sun in 2015, and is one of the famous object detection 

architectures that uses convolution neural networks like YOLO (You Look Only Once) 

and SSD ( Single Shot Detector). 

 

Faster RCNN is composed from 3 parts 

 

 Part 1: Convolution layers 

In this layers we train filters to extract the appropriate features the image, for example let’s 

say that we are going to train those filters to extract the appropriate features for a human 

face, then those filters are going to learn through training shapes and colors that only exist 

in the human face. 

So we can assimilate convolution layers to coffee filters, coffee filter doesn’t let the coffee 

powder pass to the cup so our convolutions layer that learn the object features and don’t let 

anything else pass, only the desired object. 

 

 Coffee powder + Coffee liquid = Input image 

 Coffee filter = CNN filters 

 Coffee liquid = Last feature map of the CNN 

https://arxiv.org/search/cs?searchtype=author&query=Girshick%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=He%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Sun%2C+J
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Convolution networks are generally composed of Convolution layers, pooling layers and a 

last component which is the fully connected or another extended thing that will be used for 

an appropriate task like classification or detection. 

 

 

 

We compute convolution by sliding filter all along our input image and the result is a 

two-dimension matrix called feature map. 

 

Pooling consists of decreasing quantity of features in the features map by eliminating pixels 

with low values. 

 

And the last thing is using the fully connected layer to classify those features which not 

our case in the Faster RCNN. 
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 Part 2: Region Proposal Network (RPN) 

RPN is small neural network sliding on the last feature map of the convolution layers and 

predict whether there is an object or not and also predict the bounding box of those objects. 

 

 

 Part 3: Classes and Bounding Boxes prediction 

Now we use another Fully connected neural networks that takes as an input the regions 

proposed by the RPN and predict object class (classification) and Bounding boxes 

(Regression). 

 Training 

To train this architecture, we use SGD to optimize convolution layers’ filters, RPN weights 

and the last fully connected layer weights. 

 

Examples: 

 

Multiple object detection 

             

Input image                         After applying faster RCNN  
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