38 research outputs found

    A home and ambulatory artificial nutrition (NADYA) group report, home parenteral nutrition in Spain, 2013

    Get PDF
    Aim: to communicate the results of the Spanish Home Parenteral Nutrition (HPN) registry of the NADYA-SENPE group for the year 2013. Material and methods: data was recorded online by NADYA group collaborators that were responsible of the HPN follow-up from 1st January to 31st December 2013. Results: a total of 197 patients and 202 episodes of HPN were registered from 35 hospitals that represents a rate of 4,22 patients/million habitants/year 2013. The median age was 53 years (IQR 40 – 64) for 189 adult patients and 7 months (IQR 6 – 35,5) for children. The most frequent disease in adults was neoplasm (30,7%) followed by other diseases (20,1%) and mesenteric ischemia (12,7%). Short bowel syndrome and intestinal obstruction (25,9%) were in 35.7% cases the indications for HPN

    Phenomenological template family for black-hole coalescence waveforms

    Full text link
    Recent progress in numerical relativity has enabled us to model the non-perturbative merger phase of the binary black-hole coalescence problem. Based on these results, we propose a phenomenological family of waveforms which can model the inspiral, merger, and ring-down stages of black hole coalescence. We also construct a template bank using this family of waveforms and discuss its implementation in the search for signatures of gravitational waves produced by black-hole coalescences in the data of ground-based interferometers. This template bank might enable us to extend the present inspiral searches to higher-mass binary black-hole systems, i.e., systems with total mass greater than about 80 solar masses, thereby increasing the reach of the current generation of ground-based detectors.Comment: Minor changes, Submitted to Class. Quantum Grav. (Proc. GWDAW11

    A template bank for gravitational waveforms from coalescing binary black holes: non-spinning binaries

    Get PDF
    Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the non-perturbative merger phase of the binary black-hole coalescence problem. This enables us to \emph{coherently} search for all three stages of the coalescence of non-spinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only \emph{effectual} in detecting the signals from black hole coalescences, but also \emph{faithful} in estimating the parameters of the binary. We compare the sensitivity of a search (in the context of different ground-based interferometers) using all three stages of the black hole coalescence with other template-based searches which look for individual stages separately. We find that the proposed search is significantly more sensitive than other template-based searches for a substantial mass-range, potentially bringing about remarkable improvement in the event-rate of ground-based interferometers. As part of this work, we also prescribe a general procedure to construct interpolated template banks using non-spinning black hole waveforms produced by numerical relativity.Comment: A typo fixed in Eq.(B11

    Medicina Balear 2008, vol. 23, n. 3

    Get PDF
    Medicina Balear, òrgan de la Reial Acadèmia de Medicina de les Illes Balears, publica en català, castellà o anglès treballs originals, articles de revisió, cartes al director i altres escrits d'interès relacionats amb les ciències de la salut i presta particular atenció als treballs que tinguin per àmbit les Illes Balears i altres territoris de la conca mediterrània occidental. La revista sotmet els manuscrits a la revisió anònima per al menys dos experts externs (peer review

    Medicina Balear 2019, vol. 34, n. 3

    Get PDF
    Medicina Balear, òrgan de la Reial Acadèmia de Medicina de les Illes Balears, publica en català, castellà o anglès treballs originals, articles de revisió, cartes al director i altres escrits d'interès relacionats amb les ciències de la salut i presta particular atenció als treballs que tinguin per àmbit les Illes Balears i altres territoris de la conca mediterrània occidental. La revista sotmet els manuscrits a la revisió anònima per al menys dos experts externs (peer review

    Reliability of complete gravitational waveform models for compact binary coalescences

    Full text link
    With recent advances in post-Newtonian (PN) theory and numerical relativity (NR) it has become possible to construct inspiral-merger-ringdown waveforms by combining both descriptions into one hybrid signal. While addressing the reliability of such waveforms, previous studies have identified the PN contribution as the dominant source of error, which can be reduced by incorporating longer NR simulations. Here we overcome the two outstanding issues that make it difficult to determine the minimum NR simulation length necessary to produce suitably accurate hybrids: (1) the criteria for a GW search is the mismatch between the true waveform and a set of model waveforms, optimized over all waveforms in the model, but for discrete hybrids this optimization was not yet possible. (2) these calculations typically require that numerical waveforms already exist, while we develop an algorithm to estimate hybrid mismatches errors without numerical data. Our procedure relies on combining supposedly equivalent PN models at highest available order with common data in the NR regime, and their difference serves as a measure of the uncertainty assumed in each waveform. Contrary to some earlier studies, we estimate that ~10 NR orbits before merger should allow for the construction of waveform families that are accurate enough for detection in a broad range of parameters, only excluding highly spinning, unequal-mass systems. Nonspinning systems, even with high mass-ratio (q>=20) are well modeled for astrophysically reasonable component masses. The parameter bias is only of the order of 1% for total mass and symmetric mass-ratio and less than 0.1 for the dimensionless spin magnitude. We take the view that similar NR waveform lengths will remain the state of the art in the advanced detector era, and begin to assess the limits of the science that can be done with them.Comment: 16 pages, 8 figures, PDFLaTeX, updated presentation, consistent with published PRD versio
    corecore