40 research outputs found

    An algorithm for the selection of route dependent orientation information

    Get PDF
    Landmarks are important features of spatial cognition and are naturally included in human route descriptions. In the past algorithms were developed to select the most salient landmarks at decision points and automatically incorporate them in route instructions. Moreover, it was shown that human route descriptions contain a significant amount of orientation information, which support the users to orient themselves regarding known environmental information, and it was shown that orientation information support the acquisition of survey knowledge. Thus, there is a need to extend the landmarks selection to automatically select orientation information. In this work, we present an algorithm for the computational selection of route dependent orientation information, which extends previous algorithms and includes a salience calculation of orientation information for any location along the route. We implemented the algorithm and demonstrate the functionality based on OpenStreetMap data

    Probabilistic latent semantic analysis as a potential method for integrating spatial data concepts

    Get PDF
    In this paper we explore the use of Probabilistic Latent Semantic Analysis (PLSA) as a method for quantifying semantic differences between land cover classes. The results are promising, revealing ‘hidden’ or not easily discernible data concepts. PLSA provides a ‘bottom up’ approach to interoperability problems for users in the face of ‘top down’ solutions provided by formal ontologies. We note the potential for a meta-problem of how to interpret the concepts and the need for further research to reconcile the top-down and bottom-up approaches

    A parent-centered radial layout algorithm for interactive graph visualization and animation

    Get PDF
    We have developed (1) a graph visualization system that allows users to explore graphs by viewing them as a succession of spanning trees selected interactively, (2) a radial graph layout algorithm, and (3) an animation algorithm that generates meaningful visualizations and smooth transitions between graphs while minimizing edge crossings during transitions and in static layouts. Our system is similar to the radial layout system of Yee et al. (2001), but differs primarily in that each node is positioned on a coordinate system centered on its own parent rather than on a single coordinate system for all nodes. Our system is thus easy to define recursively and lends itself to parallelization. It also guarantees that layouts have many nice properties, such as: it guarantees certain edges never cross during an animation. We compared the layouts and transitions produced by our algorithms to those produced by Yee et al. Results from several experiments indicate that our system produces fewer edge crossings during transitions between graph drawings, and that the transitions more often involve changes in local scaling rather than structure. These findings suggest the system has promise as an interactive graph exploration tool in a variety of settings

    Analyzing Cognitive Conceptualizations Using Interactive Visual Environments

    Full text link

    Usage de la cognition spatiale pour localiser les lieux d'activité lors d'une enquête Origine - Destination

    Get PDF
    Ce mémoire cerne la problématique de la description qualitative de la localisation d'un lieu décrit en langage naturel. C'est par une approche cognitive qu'est abordé successivement l'apprentissage de l'espace, le stockage de l'information et la restitution de l'information en langage naturel, par l'entremise des concepts de méronymie, de catégories hiérarchiques et de référents spatiaux. De ce cadre théorique, on propose de restructurer une base de données de lieux existants en y ajoutant des paramètres qui permettent de retrouver, d'une description en langage naturel précise ou floue, un lieu sans ambigüité dans une base de données grâce à une interface usager offrant divers modes de repérage spatial

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    Curviness as a Parameter for Route Determination

    Get PDF
    Abstract The determination of optimized routes requires the stipulation of costs for various road segments. These costs can then be used in, e.g., the Dijkstra algorithm to determine optimal routes. The functions for stipulating costs vary with the goal of the optimization. Typical goals are the determination of the shortest, fastest, or simplest route. The paper discusses a parameter that has not yet received much attention: curviness of the road. Special user groups like motorbike riders or truck drivers have specific requirements. Motorbike riders try to avoid long, straight roads whereas truck drivers have to avoid sharp bends. Different approaches to model these goals and results for a specific route are presented in the paper

    On the assessment of landmark salience for human navigation

    Full text link
    In this paper, we propose a conceptual framework for assessing the salience of landmarks for navigation. Landmark salience is derived as a result of the observer’s point of view, both physical and cognitive, the surrounding environment, and the objects contained therein. This is in contrast to the currently held view that salience is an inherent property of some spatial feature. Salience, in our approach, is expressed as a three-valued Saliency Vector. The components that determine this vector are Perceptual Salience, which defines the exogenous (or passive) potential of an object or region for acquisition of visual attention, Cognitive Salience, which is an endogenous (or active) mode of orienting attention, triggered by informative cues providing advance information about the target location, and Contextual Salience, which is tightly coupled to modality and task to be performed. This separation between voluntary and involuntary direction of visual attention in dependence of the context allows defining a framework that accounts for the interaction between observer, environment, and landmark. We identify the low-level factors that contribute to each type of salience and suggest a probabilistic approach for their integration. Finally, we discuss the implications, consider restrictions, and explore the scope of the framework
    corecore