33 research outputs found

    Complementary Countermeasures for Detecting Scenic Face Spoofing Attacks

    Get PDF
    The face recognition community has finally started paying more attention to the long-neglected problem of spoofing attacks. The number of countermeasures is gradually increasing and fairly good results have been reported on the publicly available databases. There exists no superior anti-spoofing technique due to the varying nature of attack scenarios and acquisition conditions. Therefore, it is important to find out complementary countermeasures and study how they should be combined in order to construct an easily extensible anti-spoofing framework. In this paper, we address this issue by studying fusion of motion and texture based countermeasures under several types of scenic face attacks. We provide an intuitive way to explore the fusion potential of different visual cues and show that the performance of the individual methods can be vastly improved by performing fusion at score level. The Half-Total Error Rate (HTER) of the best individual countermeasure was decreased from 11.2% to 5.1% on the Replay Attack Database. More importantly, we question the idea of using complex classification schemes in individual countermeasures, since nearly same fusion performance is obtained by replacing them with a simple linear one. In this manner, the computational efficiency and also probably the generalization ability of the resulting anti-spoofing framework are increased

    Face Liveness Detection for Biometric Antispoofing Applications using Color Texture and Distortion Analysis Features

    Get PDF
    Face recognition is a widely used biometric approach. Face recognition technology has developed rapidly in recent years and it is more direct, user friendly and convenient compared to other methods. But face recognition systems are vulnerable to spoof attacks made by non-real faces. It is an easy way to spoof face recognition systems by facial pictures such as portrait photographs. A secure system needs Liveness detection in order to guard against such spoofing. In this work, face liveness detection approaches are categorized based on the various types techniques used for liveness detection. This categorization helps understanding different spoof attacks scenarios and their relation to the developed solutions. A review of the latest works regarding face liveness detection works is presented. The main aim is to provide a simple path for the future development of novel and more secured face liveness detection approach

    Integration of biometrics and steganography: A comprehensive review

    Get PDF
    The use of an individual’s biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards

    Face liveness detection using dynamic texture

    Get PDF
    User authentication is an important step to protect information, and in this context, face biometrics is potentially advantageous. Face biometrics is natural, intuitive, easy to use, and less human-invasive. Unfortunately, recent work has revealed that face biometrics is vulnerable to spoofing attacks using cheap low-tech equipment. This paper introduces a novel and appealing approach to detect face spoofing using the spatiotemporal (dynamic texture) extensions of the highly popular local binary pattern operator. The key idea of the approach is to learn and detect the structure and the dynamics of the facial micro-textures that characterise real faces but not fake ones. We evaluated the approach with two publicly available databases (Replay-Attack Database and CASIA Face Anti-Spoofing Database). The results show that our approach performs better than state-of-the-art techniques following the provided evaluation protocols of each database2014This work has been performed within the context of the TABULA RASA project, part of the 7th Framework Research Programme of the European Union (EU), under the grant agreement number 257289. The financial support of FUNTTEL (Brazilian Telecommunication Technological Development Fund), Academy of Finland and Infotech Oulu Doctoral Program is also gratefully acknowledg

    Textural features for fingerprint liveness detection

    Get PDF
    The main topic ofmy research during these three years concerned biometrics and in particular the Fingerprint Liveness Detection (FLD), namely the recognition of fake fingerprints. Fingerprints spoofing is a topical issue as evidenced by the release of the latest iPhone and Samsung Galaxy models with an embedded fingerprint reader as an alternative to passwords. Several videos posted on YouTube show how to violate these devices by using fake fingerprints which demonstrated how the problemof vulnerability to spoofing constitutes a threat to the existing fingerprint recognition systems. Despite the fact that many algorithms have been proposed so far, none of them showed the ability to clearly discriminate between real and fake fingertips. In my work, after a study of the state-of-the-art I paid a special attention on the so called textural algorithms. I first used the LBP (Local Binary Pattern) algorithm and then I worked on the introduction of the LPQ (Local Phase Quantization) and the BSIF (Binarized Statistical Image Features) algorithms in the FLD field. In the last two years I worked especially on what we called the “user specific” problem. In the extracted features we noticed the presence of characteristic related not only to the liveness but also to the different users. We have been able to improve the obtained results identifying and removing, at least partially, this user specific characteristic. Since 2009 the Department of Electrical and Electronic Engineering of the University of Cagliari and theDepartment of Electrical and Computer Engineering of the ClarksonUniversity have organized the Fingerprint Liveness Detection Competition (LivDet). I have been involved in the organization of both second and third editions of the Fingerprint Liveness Detection Competition (LivDet 2011 and LivDet 2013) and I am currently involved in the acquisition of live and fake fingerprint that will be inserted in three of the LivDet 2015 datasets

    Convolutional Neural Network Approach for Multispectral Facial Presentation Attack Detection in Automated Border Control Systems

    Get PDF
    [EN] Automated border control systems are the first critical infrastructure point when crossing a border country. Crossing border lines for unauthorized passengers is a high security risk to any country. This paper presents a multispectral analysis of presentation attack detection for facial biometrics using the learned features from a convolutional neural network. Three sensors are considered to design and develop a new database that is composed of visible (VIS), near-infrared (NIR), and thermal images. Most studies are based on laboratory or ideal conditions-controlled environments. However, in a real scenario, a subject’s situation is completely modified due to diverse physiological conditions, such as stress, temperature changes, sweating, and increased blood pressure. For this reason, the added value of this study is that this database was acquired in situ. The attacks considered were printed, masked, and displayed images. In addition, five classifiers were used to detect the presentation attack. Note that thermal sensors provide better performance than other solutions. The results present better outputs when all sensors are used together, regardless of whether classifier or feature-level fusion is considered. Finally, classifiers such as KNN or SVM show high performance and low computational level

    Textural features for fingerprint liveness detection

    Get PDF
    The main topic ofmy research during these three years concerned biometrics and in particular the Fingerprint Liveness Detection (FLD), namely the recognition of fake fingerprints. Fingerprints spoofing is a topical issue as evidenced by the release of the latest iPhone and Samsung Galaxy models with an embedded fingerprint reader as an alternative to passwords. Several videos posted on YouTube show how to violate these devices by using fake fingerprints which demonstrated how the problemof vulnerability to spoofing constitutes a threat to the existing fingerprint recognition systems. Despite the fact that many algorithms have been proposed so far, none of them showed the ability to clearly discriminate between real and fake fingertips. In my work, after a study of the state-of-the-art I paid a special attention on the so called textural algorithms. I first used the LBP (Local Binary Pattern) algorithm and then I worked on the introduction of the LPQ (Local Phase Quantization) and the BSIF (Binarized Statistical Image Features) algorithms in the FLD field. In the last two years I worked especially on what we called the “user specific” problem. In the extracted features we noticed the presence of characteristic related not only to the liveness but also to the different users. We have been able to improve the obtained results identifying and removing, at least partially, this user specific characteristic. Since 2009 the Department of Electrical and Electronic Engineering of the University of Cagliari and theDepartment of Electrical and Computer Engineering of the ClarksonUniversity have organized the Fingerprint Liveness Detection Competition (LivDet). I have been involved in the organization of both second and third editions of the Fingerprint Liveness Detection Competition (LivDet 2011 and LivDet 2013) and I am currently involved in the acquisition of live and fake fingerprint that will be inserted in three of the LivDet 2015 datasets
    corecore