10 research outputs found

    Data Stream Clustering: A Review

    Full text link
    Number of connected devices is steadily increasing and these devices continuously generate data streams. Real-time processing of data streams is arousing interest despite many challenges. Clustering is one of the most suitable methods for real-time data stream processing, because it can be applied with less prior information about the data and it does not need labeled instances. However, data stream clustering differs from traditional clustering in many aspects and it has several challenging issues. Here, we provide information regarding the concepts and common characteristics of data streams, such as concept drift, data structures for data streams, time window models and outlier detection. We comprehensively review recent data stream clustering algorithms and analyze them in terms of the base clustering technique, computational complexity and clustering accuracy. A comparison of these algorithms is given along with still open problems. We indicate popular data stream repositories and datasets, stream processing tools and platforms. Open problems about data stream clustering are also discussed.Comment: Has been accepted for publication in Artificial Intelligence Revie

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    Boosting decision stumps for dynamic feature selection on data streams

    Get PDF
    Feature selection targets the identification of which features of a dataset are relevant to the learning task. It is also widely known and used to improve computation times, reduce computation requirements, and to decrease the impact of the curse of dimensionality and enhancing the generalization rates of classifiers. In data streams, classifiers shall benefit from all the items above, but more importantly, from the fact that the relevant subset of features may drift over time. In this paper, we propose a novel dynamic feature selection method for data streams called Adaptive Boosting for Feature Selection (ABFS). ABFS chains decision stumps and drift detectors, and as a result, identifies which features are relevant to the learning task as the stream progresses with reasonable success. In addition to our proposed algorithm, we bring feature selection-specific metrics from batch learning to streaming scenarios. Next, we evaluate ABFS according to these metrics in both synthetic and real-world scenarios. As a result, ABFS improves the classification rates of different types of learners and eventually enhances computational resources usage

    Stream-based active learning for sliding windows under the influence of verification latency

    Get PDF
    Stream-based active learning (AL) strategies minimize the labeling effort by querying labels that improve the classifier’s performance the most. So far, these strategies neglect the fact that an oracle or expert requires time to provide a queried label. We show that existing AL methods deteriorate or even fail under the influence of such verification latency. The problem with these methods is that they estimate a label’s utility on the currently available labeled data. However, when this label would arrive, some of the current data may have gotten outdated and new labels have arrived. In this article, we propose to simulate the available data at the time when the label would arrive. Therefore, our method Forgetting and Simulating (FS) forgets outdated information and simulates the delayed labels to get more realistic utility estimates. We assume to know the label’s arrival date a priori and the classifier’s training data to be bounded by a sliding window. Our extensive experiments show that FS improves stream-based AL strategies in settings with both, constant and variable verification latency

    Online transfer learning for concept drifting data streams

    Get PDF
    Online Transfer Learning (TL) allows knowledge to be learnt from a data rich source domain to aid predictions in an online target domain. However, when all domains are online, and a data rich source domain does not exist, we must determine what to transfer, how to combine transferred knowledge, and whether to transfer knowledge. To ensure the feasibility of online TL methods in real-world applications, they should not only aid predictions in receiving domains, but should consider the communication and computational overheads of knowledge transfer. To address these challenges, this thesis presents methods for online TL when all domains are online, which are evaluated using synthetic and real-world regression-based datasets. First, the BOTL framework is introduced, which enables knowledge transfer to be conducted bi-directionally between online data streams, where knowledge is transferred in the form of predictive models, and combined using an OLS metalearner. Second, two methods of selecting a relevant yet diverse subset of transferred and locally learnt models are presented, namely parameterised thresholding and conceptual clustering. These approaches help to prevent over_tting when the number of models transferred is large in comparison to the window of available data. To reduce the computational overhead of selecting subsets of models, a static diversity metric is introduced, which estimates the conceptual similarity between models using the Principal Angles (PAs) between their underlying subspaces. Third, two methods for determining whether to transfer knowledge are presented, namely IdDT and IdCS, which maintain comparable predictive performances to when all models are transferred, while reducing the number of models received in each domain by 47:1% and 30% respectively across the experiments conducted for this thesis

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Mining and Managing User-Generated Content and Preferences

    Get PDF
    Ιn this thesis, we present techniques to manage the results of expressive queries, such as skyline, and mine online content that has been generated by users. Given the numerous scenarios and applications where content mining can be applied, we focus, in particular, to two cases: review mining and social media analysis. More specifically, we focus on preference queries, where users can query a set of items, each associated with an attribute set. For each of the attributes, users can specify their preference on whether to minimize or maximize it, e.g., "minimize price", "maximize performance", etc. Such queries are also know as "pareto optimal", or "skyline queries". A drawback of this query type is that the result may become too large for the user to inspect manually. We propose an approach that addresses this issue, by selecting a set of diverse skyline results. We provide a formal definition of skyline diversification and present efficient techniques to return such a set of points. The result can then be ranked according to established quality criteria. We also propose an alternative scheme for ranking skyline results, following an information retrieval approach
    corecore