12 research outputs found

    Design of a Knee Exoskeleton actuated with Artificial Muscles of SMA

    Get PDF
    This project presents the preliminary design of a powered exoskeleton for the knee joint, build upon the structural framework of DonJoy’s X-Act Rom Lite - Knee Brace. The device allows exclusively one degree of freedom, intended for the flexion and extension of the lower limb. The actuation mechanism is based on artificial muscles of Nitinol fibers, which are a type of Shape Memory Alloys (SMA). These wires contract 4% of its original length as the temperature rises due to the Joule Effect, when connected to a power supply. Thanks to this phenomenon, the proposed robotic orthosis presents portability, lightness and noiseless performance, in comparison to similar products. The main role of these instruments is to conduct medical rehabilitation therapy for those patients who have suffered from neurological diseases, musculoskeletal lesions or spinal cord injuries. Consequently, the wearer might recover -partially or fully- the movement on the joint. The results from several trials were obtained after mimicking real rehabilitation positions -like sitting, standing or lying down- and are analyzed thoroughly in this thesis. All in all, this prototype proves how the SMA actuators are a viable alternative to create lower extremity robotic devices for rehabilitation.Ingeniería Biomédic

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Minimising vibration in a flexible golf club during robotic simulations of a golf swing

    Get PDF
    Robots are widely used as substitutes for humans in situations involving repetitive tasks where a precise and repeatable motion is required. Sports technology is an area which has seen an increase in the implementation of robots which simulate specific human motions required for a sport. One purpose is to test sports equipment, where the requirement is for a motion to be performed with consistent variables. One issue which has arisen frequently in the robot simulation of humans is the inherent presence of vibration excited in a flexible object being manipulated by a robot, and this issue is not unfounded in the situation presented in this research, of a golf robot manipulating a flexible golf club during the simulation of a golf swing. It had been found that during robotic simulations of golf swings performed with the Miyamae Robo V at the Sports Technology Institute at Loughborough University, swing variables such as shaft deformation and clubhead orientation were dissimilar to those measured for human golf swings. Vibrations present in the golf club were identified as the key cause of the disparity between human and robot swing variables. This research sought to address this issue and find a method which could be applied to reduce clubhead vibrations present in robot simulations of a golf swing to improve their similarity to human swings. This would facilitate the use of the golf robot for equipment testing and club fitting. Golf swing variables were studied and measured for 14 human subjects with the aim being to understand the motion that the robot is required to simulate. A vibration damping gripper was then fitted to the robot to test the effect that changing the interface between the robot-excited vibrations and the club would have, this was achieved with a selection of silicone sleeves with differing material properties which could be attached to the club. Preliminary results showed a noticeable reduction in clubhead vibrations and this solution was investigated further. Mathematically modelling the robot was seen as the most suitable method for this as it meant the robot remained functional and allowed a number of solutions to be tested. Several iterations of a mathematical model were developed with the final model being structurally similar to the robot with the addition of a compliant grip and wrist. The method by which the robot is driven was also recognised as having a large effect on the level of vibration excited in the clubhead and the methodology behind generating smooth robot swing profiles is presented. The mathematical model was used to perform 6 swings and the resulting shaft deformation and clubhead vibration were compared with data from human swings. It was found that the model was capable of producing swing variables comparable to human swings, however in the downswing portion of the swing the magnitude of these variables were larger for the simulations. Simulations were made which sought to demonstrate the difference between the model replicating the rigid robot and a compliant system. Reductions in vibration were achieved in all swings, including those driven with robot feedback data which contains oscillations excited by the method with which the robot is driven

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore