362 research outputs found

    Phase Transition of the 2-Choices Dynamics on Core-Periphery Networks

    Full text link
    Consider the following process on a network: Each agent initially holds either opinion blue or red; then, in each round, each agent looks at two random neighbors and, if the two have the same opinion, the agent adopts it. This process is known as the 2-Choices dynamics and is arguably the most basic non-trivial opinion dynamics modeling voting behavior on social networks. Despite its apparent simplicity, 2-Choices has been analytically characterized only on networks with a strong expansion property -- under assumptions on the initial configuration that establish it as a fast majority consensus protocol. In this work, we aim at contributing to the understanding of the 2-Choices dynamics by considering its behavior on a class of networks with core-periphery structure, a well-known topological assumption in social networks. In a nutshell, assume that a densely-connected subset of agents, the core, holds a different opinion from the rest of the network, the periphery. Then, depending on the strength of the cut between the core and the periphery, a phase-transition phenomenon occurs: Either the core's opinion rapidly spreads among the rest of the network, or a metastability phase takes place, in which both opinions coexist in the network for superpolynomial time. The interest of our result is twofold. On the one hand, by looking at the 2-Choices dynamics as a simplistic model of competition among opinions in social networks, our theorem sheds light on the influence of the core on the rest of the network, as a function of the core's connectivity towards the latter. On the other hand, to the best of our knowledge, we provide the first analytical result which shows a heterogeneous behavior of a simple dynamics as a function of structural parameters of the network. Finally, we validate our theoretical predictions with extensive experiments on real networks

    Cost Automata, Safe Schemes, and Downward Closures

    Get PDF
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed ?Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes

    Low-Sensitivity Functions from Unambiguous Certificates

    Get PDF
    We provide new query complexity separations against sensitivity for total Boolean functions: a power 33 separation between deterministic (and even randomized or quantum) query complexity and sensitivity, and a power 2.222.22 separation between certificate complexity and sensitivity. We get these separations by using a new connection between sensitivity and a seemingly unrelated measure called one-sided unambiguous certificate complexity (UCminUC_{min}). We also show that UCminUC_{min} is lower-bounded by fractional block sensitivity, which means we cannot use these techniques to get a super-quadratic separation between bs(f)bs(f) and s(f)s(f). We also provide a quadratic separation between the tree-sensitivity and decision tree complexity of Boolean functions, disproving a conjecture of Gopalan, Servedio, Tal, and Wigderson (CCC 2016). Along the way, we give a power 1.221.22 separation between certificate complexity and one-sided unambiguous certificate complexity, improving the power 1.1281.128 separation due to G\"o\"os (FOCS 2015). As a consequence, we obtain an improved Ω(log⁥1.22n)\Omega(\log^{1.22} n) lower-bound on the co-nondeterministic communication complexity of the Clique vs. Independent Set problem.Comment: 25 pages. This version expands the results and adds Pooya Hatami and Avishay Tal as author

    Unboundedness Problems for Machines with Reversal-Bounded Counters

    Get PDF
    We consider a general class of decision problems concerning formal languages, called (one-dimensional) unboundedness predicates, for automata that feature reversal-bounded counters (RBCA). We show that each problem in this class reduces-non-deterministically in polynomial time to the same problem for just nite automata. We also show an analogous reduction for automata that have access to both a push- down stack and reversal-bounded counters (PRBCA). This allows us to answer several open questions: For example, we settle the complexity of deciding whether a given (P)RBCA language L is bounded, meaning whether there exist words w1, . . . , wn with L ⊆ w1∗ · · · wn∗ . For PRBCA, even decidability was open. Our methods also show that there is no language of a (P)RBCA of intermediate growth. Part of our proof is likely of independent interest: We show that one can translate an RBCA into a machine with Z-counters in logarithmic space

    Embeddings of Schatten Norms with Applications to Data Streams

    Get PDF
    A_poly(nd) in R^{n x d}, suppose we want to construct a linear map L such that L(A_i) in R^{n\u27 x d\u27} for each i, where n\u27 = 1. Then how large do n\u27 and d\u27 need to be as a function of D_{p,q}? We nearly resolve this question for every p, q >= 1, for the case where L(A_i) can be expressed as R*A_i*S, where R and S are arbitrary matrices that are allowed to depend on A_1, ... ,A_t, that is, L(A_i) can be implemented by left and right matrix multiplication. Namely, for every p, q >= 1, we provide nearly matching upper and lower bounds on the size of n\u27 and d\u27 as a function of D_{p,q}. Importantly, our upper bounds are oblivious, meaning that R and S do not depend on the A_i, while our lower bounds hold even if R and S depend on the A_i. As an application of our upper bounds, we answer a recent open question of Blasiok et al. about space-approximation trade-offs for the Schatten 1-norm, showing in a data stream it is possible to estimate the Schatten-1 norm up to a factor of D >= 1 using O~(min(n, d)^2/D^4) space

    Approximate F_2-Sketching of Valuation Functions

    Get PDF
    We study the problem of constructing a linear sketch of minimum dimension that allows approximation of a given real-valued function f : F_2^n - > R with small expected squared error. We develop a general theory of linear sketching for such functions through which we analyze their dimension for most commonly studied types of valuation functions: additive, budget-additive, coverage, alpha-Lipschitz submodular and matroid rank functions. This gives a characterization of how many bits of information have to be stored about the input x so that one can compute f under additive updates to its coordinates. Our results are tight in most cases and we also give extensions to the distributional version of the problem where the input x in F_2^n is generated uniformly at random. Using known connections with dynamic streaming algorithms, both upper and lower bounds on dimension obtained in our work extend to the space complexity of algorithms evaluating f(x) under long sequences of additive updates to the input x presented as a stream. Similar results hold for simultaneous communication in a distributed setting

    Space proof complexity for random 3-CNFs

    Get PDF
    We investigate the space complexity of refuting 3-CNFs in Resolution and algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a random 3-CNF φ in n variables requires, with high probability, distinct monomials to be kept simultaneously in memory. The same construction also proves that every Resolution refutation of φ requires, with high probability, clauses each of width to be kept at the same time in memory. This gives a lower bound for the total space needed in Resolution to refute φ. These results are best possible (up to a constant factor) and answer questions about space complexity of 3-CNFs
    • 

    corecore