386 research outputs found

    Magnetic excitations in the S = 1/2 antiferromagnetic-ferromagnetic chain compound BaCu2V2O8 at zero and finite temperature

    Get PDF
    Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in S=1/2S=1/2 dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temperatures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu2_2V2_2O8_8 which we show to be an alternating antiferromagnetic-ferromagnetic spin1/2-1/2 chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.Comment: 5 pages + 6 pages supplement; problems with list of references are fixe

    Fermionic symmetry-protected topological state in strained graphene

    Get PDF
    The low-energy physics of graphene is described by relativistic Dirac fermions with spin and valley degrees of freedom. Mechanical strain can be used to create a pseudo magnetic field pointing to opposite directions in the two valleys. We study interacting electrons in graphene exposed to both an external real magnetic field and a strain-induced pseudo magnetic field. For a certain ratio between these two fields, it is proposed that a fermionic symmetry-protected topological state can be realized. The state is characterized in detail using model wave functions, Chern-Simons field theory, and numerical calculations. Our paper suggests that graphene with artificial gauge fields may host a rich set of topological states.Comment: 8 pages, 4 figure

    Position-dependent correlation function from the SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 10 CMASS Sample

    Full text link
    We report on the first measurement of the three-point function with the position-dependent correlation function from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 10 CMASS sample. This new observable measures the correlation between two-point functions of galaxy pairs within different subvolumes, ξ^(r,rL)\hat{\xi}({\rm r},{\rm r}_L), where rL{\rm r}_L is the location of a subvolume, and the corresponding mean overdensities, δˉ(rL)\bar{\delta}({\rm r}_L). This correlation, which we call the "integrated three-point function", iζ(r)=ξ^(r,rL)δˉ(rL)i\zeta(r)=\langle\hat{\xi}({\rm r},{\rm r}_L)\bar{\delta}({\rm r}_L)\rangle, measures a three-point function of two short- and one long-wavelength modes, and is generated by nonlinear gravitational evolution and possibly also by the physics of inflation. The iζ(r)i\zeta(r) measured from the BOSS data lies within the scatter of those from the mock galaxy catalogs in redshift space, yielding a ten-percent-level determination of the amplitude of iζ(r)i\zeta(r). The tree-level perturbation theory in redshift space predicts how this amplitude depends on the linear and quadratic nonlinear galaxy bias parameters (b1b_1 and b2b_2), as well as on the amplitude and linear growth rate of matter fluctuations (σ8\sigma_8 and ff). Combining iζ(r)i\zeta(r) with the constraints on b1σ8b_1\sigma_8 and fσ8f\sigma_8 from the global two-point correlation function and that on σ8\sigma_8 from the weak lensing signal of BOSS galaxies, we measure b2=0.41±0.41b_2=0.41\pm0.41 (68% C.L.) assuming standard perturbation theory at the tree level and the local bias model.Comment: 30 pages, 11 figures. revised version submitted to JCA

    On-chip generation and dynamic piezo-optomechanical rotation of single photons

    Get PDF
    Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors

    Scale dependence of galaxy biasing investigated by weak gravitational lensing: An assessment using semi-analytic galaxies and simulated lensing data

    Full text link
    Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as function of physical scale kk with weak gravitational lensing. This method enables us to reconstruct the galaxy bias factor b(k)b(k) as well as the galaxy-matter correlation r(k)r(k) on spatial scales between 0.01hMpc1k10hMpc10.01\,h\,{\rm Mpc^{-1}}\lesssim k\lesssim10\,h\,{\rm Mpc^{-1}} for redshift-binned lens galaxies below redshift z0.6z\lesssim0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructed r(k)r(k). For simulated data, the reconstructions achieve an accuracy of 37%3-7\% (68\% confidence level) over the above kk-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 1015%10-15\%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates for b(k)b(k) and r(k)r(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn-Deep Survey and give a physical interpretation of the lens population.Comment: 31 pages, 16 figures; corrected typos in Eqs. (31), (34), and (36

    Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta

    Full text link
    Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly-interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant dd. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta ±(π/2)(/d)\pm (\pi/2) (\hbar / d) in the momentum distribution function.Comment: See also Viewpoint: Emerging Quantum Order in an Expanding Gas, Physics 8, 99 (2015
    corecore