248 research outputs found

    SMART TECHNIQUES FOR FAST MEDICAL IMAGE ANALYSIS AND PROCESSING

    Get PDF
    Medical Imaging has become an important transversal applications and re- search field that embraces a great variety of sciences. Imaging is the central science of measurement in diagnosis and treating diseases. The effort of the technological progress has made possible human imaging starting from a single molecule to the whole body. The open challenge is to treat the huge amount of medical informations with the use of smart and fast techniques that allows clinical and images data analysis and processing. In this ph.D. Thesis, many issues have been addressed and a certain amount of improvement in various fields have been produced, such as biom- etry, organs and tissues segmentation, MRI thermometry, medical reports retrieval and classification. The topic prefixed at the beginning of this ph.D. route was to analyze, understand, and give a step over to various kind of problematics related to Medical Images and Data analysis, working closely to radiologist physicians, with specific equipments, and following the common denominator of fast and smart methodologies applied to the medical imaging issue. A series of contribution have been carried out in fields such as: • proposing two different kind of multimodal biometric authentication systems that investigates fingerprint and iris fusion and processing; • applying expert systems to the issue of data validation, comparing and validating data to two different methodologies that assess liver iron overload in thalassemic patients;• addressing and improving non-invasive referenceless thermometry by using Radial Basis Function as interpolator; • applying the multi-seed region growing method to the segmentation of CT liver dataset; • proposing a novel unsupervised voxel-based morphology method for MRI brain segmentation by using k-means clustering and neural net- work classification; • proposing a novel ontology-based algorithm for information retrieval from mammographic text reports. The above work has been developed with the cooperation of the medical staff of the “Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi” and the “Scuola di Specializzazione in Radiodiagnostica" of the Università degli Studi di Palermo. All the proposed contributions show good performance using the stan- dard metrics. Most of them have produced scientific publications in com- puter science venues as well as in radiological venues. In addition, some specific frameworks, such as OsiriX, have been used to improve usability and easiness of the developed systems

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue

    Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    Get PDF
    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented

    Smart Feature Selection to enable Advanced Virtual Metrology

    Get PDF
    The present dissertation enhances the research in computer science, especially state of the art Machine Learning (ML), in the field of process development in Semiconductor Manufacturing (SM) by the invention of a new Feature Selection (FS) algorithm to discover the most important equipment and context parameters for highest performance of predicting process results in a newly developed advanced Virtual Metrology (VM) system. In complex high-mixture-low-volume SM, chips or rather silicon wafers for numerous products and technologies are manufactured on the same equipment. Process stability and control are key factors for the production of highest quality semiconductors. Advanced Process Control (APC) monitors manufacturing equipment and intervenes in the equipment control if critical states occur. Besides Run-To-Run (R2R) control and Fault Detection and Classification (FDC) new process control development activities focus on VM which predicts metrology results based on productive equipment and context data. More precisely, physical equipment parameters combined with logistical information about the manufactured product are used to predict the process result. The compulsory need for a reliable and most accurate VM system arises to imperatively reduce time and cost expensive physical metrology as well as to increase yield and stability of the manufacturing processes while concurrently minimizing economic expenditures and associated data flow. The four challenges of (1) efficiency of development and deployment of a corporate-wide VM system, (2) scalability of enterprise data storage, data traffic and computational effort, (3) knowledge discovery out of available data for future enhancements and process developments as well as (4) highest accuracy including reliability and reproducibility of the prediction results are so far not successfully mastered at the same time by any other approach. Many ML techniques have already been investigated to build prediction models based on historical data. The outcomes are only partially satisfying in order to achieve the ambitious objectives in terms of highest accuracy resulting in tight control limits which tolerate almost no deviation from the intended process result. For optimization of prediction performance state of the art process engineering requirements lead to three criteria for assessment of the ML algorithm for the VM: outlier detection, model robustness with respect to equipment degradation over time and ever-changing manufacturing processes adapted for further development of products and technologies and finally highest prediction accuracy. It has been shown that simple regression methods fail in terms of prediction accuracy, outlier detection and model robustness while higher-sophisticated regression methods are almost able to constantly achieve these goals. Due to quite similar but still not optimal prediction performance as well as limited computational feasibility in case of numerous input parameters, the choice of superior ML regression methods does not ultimately resolve the problem. Considering the entire cycle of Knowledge Discovery in Databases including Data Mining (DM) another task appears to be crucial: FS. An optimal selection of the decisive parameters and hence reduction of the input space dimension boosts the model performance by omitting redundant as well as spurious information. Various FS algorithms exist to deal with correlated and noisy features, but each of its own is not capable to ensure that the ambitious targets for VM can be achieved in prevalent high-mixture-low-volume SM. The objective of the present doctoral thesis is the development of a smart FS algorithm to enable a by this advanced and also newly developed VM system to comply with all imperative requirements for improved process stability and control. At first, a new Evolutionary Repetitive Backward Elimination (ERBE) FS algorithm is implemented combining the advantages of a Genetic Algorithm (GA) with Leave-One-Out (LOO) Backward Elimination as wrapper for Support Vector Regression (SVR). At second, a new high performance VM system is realized in the productive environment of High Density Plasma (HDP) Chemical Vapor Deposition (CVD) at the Infineon frontend manufacturing site Regensburg. The advanced VM system performs predictions based on three state of the art ML methods (i.e. Neural Network (NN), Decision Tree M5’ (M5’) & SVR) and can be deployed on many other process areas due to its generic approach and the adaptive design of the ERBE FS algorithm. The developed ERBE algorithm for smart FS enhances the new advanced VM system by revealing evidentially the crucial features for multivariate nonlinear regression. Enabling most capable VM turns statistical sampling metrology with typically 10% coverage of process results into a 100% metrological process monitoring and control. Hence, misprocessed wafers can be detected instantly. Subsequent rework or earliest scrap of those wafers result in significantly increased stability of subsequent process steps and thus higher yield. An additional remarkable benefit is the reduction of production cycle time due to the possible saving of time consuming physical metrology resulting in an increase of production volume output up to 10% in case of fab-wide implementation of the new VM system

    Micro-/Nano-Fiber Sensors and Optical Integration Devices

    Get PDF
    The development of micro/nanofiber sensors and associated integrated systems is a major project spanning photonics, engineering, and materials science, and has become a key academic research trend. During the development of miniature optical sensors, different materials and micro/nanostructures have been reasonably designed and functionalized on the ordinary single-mode optical fibers. The combination of various special optical fibers and new micro/nanomaterials has greatly improved the performance of the sensors. In terms of optical integration, micro/nanofibers play roles in independent and movable optical waveguide devices, and can be conveniently integrated into two-dimensional chips to realize the efficient transmission and information exchange of optical signals based on optical evanescent field coupling technology. In terms of systematic integration, the unique optical transmission mode of optical fiber has shown great potential in the array and networking of multiple sensor units.In this book, more than ten research papers were collected and studied, presenting research on optical micro/nanofiber devices and related integrated systems, covering high-performance optical micro/nanofiber sensors, fine characterization technologies for optical micro/nanostructures, weak signal detection technologies in photonic structures, as well as fiber-assisted highly integrated optical detection systems

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF

    Embracing Analytics in the Drinking Water Industry

    Get PDF
    Analytics can support numerous aspects of water industry planning, management, and operations. Given this wide range of touchpoints and applications, it is becoming increasingly imperative that the championship and capability of broad-based analytics needs to be developed and practically integrated to address the current and transitional challenges facing the drinking water industry. Analytics will contribute substantially to future efforts to provide innovative solutions that make the water industry more sustainable and resilient. The purpose of this book is to introduce analytics to practicing water engineers so they can deploy the covered subjects, approaches, and detailed techniques in their daily operations, management, and decision-making processes. Also, undergraduate students as well as early graduate students who are in the water concentrations will be exposed to established analytical techniques, along with many methods that are currently considered to be new or emerging/maturing. This book covers a broad spectrum of water industry analytics topics in an easy-to-follow manner. The overall background and contexts are motivated by (and directly drawn from) actual water utility projects that the authors have worked on numerous recent years. The authors strongly believe that the water industry should embrace and integrate data-driven fundamentals and methods into their daily operations and decision-making process(es) to replace established ìrule-of-thumbî and weak heuristic approaches ñ and an analytics viewpoint, approach, and culture is key to this industry transformation

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research
    corecore