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Abstract

Medical Imaging has become an important transversal applications and re-

search field that embraces a great variety of sciences. Imaging is the central

science of measurement in diagnosis and treating diseases. The effort of

the technological progress has made possible human imaging starting from

a single molecule to the whole body.

The open challenge is to treat the huge amount of medical informations

with the use of smart and fast techniques that allows clinical and images

data analysis and processing.

In this ph.D. Thesis, many issues have been addressed and a certain

amount of improvement in various fields have been produced, such as biom-

etry, organs and tissues segmentation, MRI thermometry, medical reports

retrieval and classification.

The topic prefixed at the beginning of this ph.D. route was to analyze,

understand, and give a step over to various kind of problematics related to

Medical Images and Data analysis, working closely to radiologist physicians,

with specific equipments, and following the common denominator of fast and

smart methodologies applied to the medical imaging issue.

A series of contribution have been carried out in fields such as:

• proposing two different kind of multimodal biometric authentication

systems that investigates fingerprint and iris fusion and processing;

• applying expert systems to the issue of data validation, comparing and

validating data to two different methodologies that assess liver iron

overload in thalassemic patients;
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• addressing and improving non-invasive referenceless thermometry by

using Radial Basis Function as interpolator;

• applying the multi-seed region growing method to the segmentation of

CT liver dataset;

• proposing a novel unsupervised voxel-based morphology method for

MRI brain segmentation by using k-means clustering and neural net-

work classification;

• proposing a novel ontology-based algorithm for information retrieval

from mammographic text reports.

The above work has been developed with the cooperation of the medical staff

of the “Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi” and

the “Scuola di Specializzazione in Radiodiagnostica" of the Università degli

Studi di Palermo.

All the proposed contributions show good performance using the stan-

dard metrics. Most of them have produced scientific publications in com-

puter science venues as well as in radiological venues. In addition, some

specific frameworks, such as OsiriX, have been used to improve usability

and easiness of the developed systems.
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Chapter 1

Introduction

The medical imaging field is becoming nowadays increasingly important to

human body imaging, for diagnostic and for treatment purposes. It incorpo-

rates several medical imaging techniques and got the important goal of the

health’s improvement all over the world.

1.1 Smart and Fast Medical Imaging

Medical imaging is a complex field and encloses several experts and exper-

tise in different fields, such as physicians, engineers, biologist, physics and

so on, and several equipment for diagnosis of diseases’ course and treatment

purposes, such as Magnetic Resonance Imaging (MRI), Computerized To-

mography (CT), Positron Emission Tomography (PET), and many others

specific equipment.

The role of medical imaging is totally transversal to the disciplines of

medicine, computer science, electrical and electronics engineering, mathe-

matics and data computation. It is necessary to develops algorithms in or-

der to solve complex problems annexed to image visualization, clinical data

retrieval, statistics and many other addressed issues related to the world of

discovery and care about human’ health.
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The main focus is related to knowledge and clinical information extrac-

tion from different kinds of heterogeneous data: for the computation analysis

of the images and data, it is necessary to develop smart and fast algorithms

that can address all the issues related to the medicine field. This methods

can be regrouped into several categories, that spreads in image segmentation,

data classification and clustering, data reconstruction, brain morphometry,

expert systems, biometric recognition, MRI thermometry, with the wide use

of:

• Smart techniques: intelligent algorithms that rely on artificial neural

networks, data clustering, and interpolation of data and functions;

• Fast methodologies: fast means an ad-hoc development of software that

enable medical people to do job/research in a faster way (e.g. segmen-

tation of hundreds of images all at once), and ad-hoc implementation

of algorithms in dedicated hardware.

Medical data are not only related to medical images, but also includes med-

ical reports written as free and unstructured text. Nowadays, the trend is to

push most of the efforts also on information retrieval from medical reports

and laboratory analysis. This data mining and information extraction, and

conversion of unstructured data in structure data, is possible with the help

of Big Data methodologies and soft-computing algorithms (i.e. ontologies

and semantic and syntactic similarity).

It is necessary, however, understand that the medical imaging and medi-

cal data analysis and processing shouldn’t be only for a strict group of expert

physicians and researchers, but it should be available to all the people in-
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volved in the medical imaging issues.

The technology and the computational power are nowadays enough ma-

ture and widespread: a big effort is necessary now to address all the power

of calculators to analyze and process a huge quantity of data in the best and

fastest possible way, and to mix all the heterogeneous data in order to obtain

an information with a big data quantity and quality.

Smart algorithms and fast elaboration are the keywords for the care of

each of us. Easiness and diffusion of ad-hoc algorithms and software appo-

sitely developed can have an huge impact on effectiveness of the work of all

specialists involved in diagnosis and treatment of diseases.

In this ph.D. Thesis, specific aspects of medical imaging analysis and

processing has been investigated and a contribution in several fields has

been carried.

1.2 Bioimaging

With the “bioimaging” term we refer to structural and functional images

of living things. Indeed, medical imaging can be considered a sub-branch

of biomaging. The bioimaging science comprises the techniques designed

to create images of the human body, both for clinical purposes (such as

diagnosis and disease’ follow-up), or to study the biometric traits of the

humans.

1.2.1 Medical Images

The great multitude of heterogeneous data characterizes the field of medicine

and medical imaging. With the terms of medical imaging we refer to the
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process that allows to observe an internal area of the body in a non-invasive

way. Radiology is the branch that mainly is involved for this purposes.

Many imaging techniques are available, such as CT, MRI, fMRI, Mam-

mography, PET and many others. All the scans are almost always stored in

a particular data format, called DICOM protocol.

MRI is a multi-parameter and multi-planar technique, which allows to

capture images of axial, sagittal, or coronal planes without moving the pa-

tient, in order to obtain images of the internal structure of the body, to

highlight pathological or physiological living tissues.

The images that can be acquired by MRI are mostly of two types:

• T1-weighted images: the time T1, or longitudinal relaxation time is a

measure of the time for which the protons to return to the initial equi-

librium conditions, through the transfer of energy to the surrounding

microenvironment (lattice), in order to obtain a T1-weighted SE se-

quence, using a short TR (relaxation time) associated with a short

TE (echo time). On average, the living tissue immersed in a magnetic

field intensity of 0.1-0.5 T have a T1 comprised between 300 and 700

milliseconds. On T1-weighted images, the cerebrospinal fluid (CSF) is

dark while the fat is brilliant. The structures of the CNS (white and

gray matter) have intermediate signal intensity.

• T2-weighted images: the T2, or transverse relaxation time, is a mea-

sure of the time taken by the spin of protons to get out of sync. This

progressive desynchronization will void the transverse magnetization.

A sequence to get a T2-weighted sequence will have a long TR associ-
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ated with a long TE. The water has, therefore, a long T2. In biological

tissues, T2 is between 50 and 150 milliseconds. Liquids or at least very

hydrated tissues, appear bright white in T2-weighted images.

Figure 1: An example of MRI T1-w and T2-w acquisition of a brain.

CT is a diagnostic imaging technique, which uses ionizing radiation (X-rays)

and allows to reproduce sections or layers (CT) of the body patient and

three-dimensional processing. For the production of images is required the

intervention of a data processor (computer).

Figure 2: A CT acquisition of the liver.
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The law of absorption of X-rays explains how, given a beam of X-rays of

a certain initial intensity exponentially decreasing in extent to the mass

attenuation coefficient and the path made in the medium.

Then the X-ray beam through an object will be attenuated by materials

with an high atomic number, the more energy will be low and the greater will

be the thickness crossed; vice versa, if it crosses a low density material, the

attenuation will be less. This is why on radiographs analog objects appear

clear to higher density (maximum attenuation) and the lower-density objects

appear darker (minimum attenuation).

The principle on which the tomographic reconstruction is based is the

involving of many radiographic acquisition of the same object at different

angles, and in this way is it possible to reconstruct the object in its third

dimension. To obtain the third dimension, complex mathematical algorithms

such as filtered backprojection methods (Filtered Back Projection algorithm,

FBP) if the X-ray beam is parallel are used, the Feldkamp method if the

beam is conical, or iterative methods are used. After applying reconstruction

algorithms, is obtained a digital image that represents the distribution of the

density of the object in one of its internal section (slice) and whose smallest

element is called voxel, as it is a volume element. The smaller the volume

represented by a voxel is, the greater the spatial resolution we obtain.

1.2.2 Biometric Templates

Fingerprints are characterized by a series of ridges; between two adjacent

ridges there is a valley. Careful analysis of images acquisition can find other

peculiarities, distinguished in macro and micro-features.
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Macro-features fingerprint are generally used for images classification,

and they can be divided into:

• Singularities: are regions where the ridges have a particular trend (pro-

nounced curvatures, reclosing, confluence, etc...) and they belong to

three distinct classes: loop, delta junction and whorl. In these areas

the "drawing" of the crests is in the shape of O,�, U ;

• Flow lines: hypothetical lines ideally parallel to a group of contiguous

ridges; since not being real lines, the flow lines are not precisely defined;

• Directional image: is a matrix of the directions obtained by overlapping

a grid with a series of nodes and thinking of drawing in each node a

vector with a parallel direction to the flow line passing through the

node itself;

• Ridge count: is a parameter that indicates how the ridges are close in

a certain region and is represented by the number of ridges intersect-

ing a segment having as its extreme two hypothetical points on the

fingerprint.

On the contrary, in a fingerprint there are local discontinuities along the

ridges: terminal points and bifurcation points called minutiae. The type of

discontinuity in the lines determines the type of minutia. Each minutia is

uniquely identified by:

• Type: terminal point and bifurcation point;

• Location: it is represented by minutiae coordinates in the Cartesian

system representation;
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• Orientation: it represents the angle formed by the vector which deter-

mines the direction, and the direction of the minutia with the horizon-

tal axis.

Figure 3: a) Original fingerprint; b) image enhanced by Gabor and

Segmentation algorithms; c) fingerprint after thinning algorithm.

The iris is an increasingly used biometric template. The visible part of the

iris is divided into two main zones which are often different for the color:

the ciliary zone and the area separated from the pupillary internal collars

(hedge) that has a zigzag pattern structure, called Collarette.

Iris features are random and they aren’t dependent by genetic factors (the

pigmentation color is the only genetic feature). Moreover, in each person iris

differs from one eye to another. It exhibits about 266 features against 90

of the fingerprint; the iris temporal invariance is guaranteed by cornea and

it isn’t subject to diseases that can change its appearance. The probability

to find two identical irises is one in 10^78, so the iris is a valid biometric

identifier.
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The biometric system phases are the following:

• Eye image acquisition: typically it is performed by a CCD camera,

that tries to acquire with the maximum definition the human iris;

• Iris localization: iris is extracted from acquired image, localizing the

portion of the image between external (limbo) border, and internal

(pupil);

• Image normalization: the Cartesian coordinates system is modified into

polar coor-dinates representation, because the iris area isn’t constant

but it varies in relationship to pupil expansion;

• Features extraction: micro (nucleus, collarette, valleys, radiants) and

macro (frequency code extraction) features extraction;

• Coding: it consist in the pattern extracted construction of micro or

macro features;

• Matching: it compares an acquired iris against an iris stored in a

database, using a metric (i.e. Hamming distance).

Figure 4: Iris Collarette.
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1.3 The OsiriX Framework

OsiriX is an open source software developed by Antoine Rosset which allows

to realize image processing of medical images produced by special diagnostic

equipment, such as MRI, CT, PET and so on. OsiriX is fully compliant with

the DICOM standard.

The main purpose of OsiriX is the possibility to perform medical image

processing in a multimodality and multidimensional way: in fact, it is possi-

ble to display images from 2 up to 5 dimensions and combine images obtained

from different equipments, for example, a PET with a CT. In particular, the

display includes 3D rendering techniques, such as volume rendering, surface

rendering, MPR, MIP.

The software lets to interact with a PACS (Picture Archiving and Com-

munication System), a system that allows to store images in DICOM format,

to make queries regarding the information contained in these images and to

make download pictures. To be precise, even the communication protocol

with a PACS is specified by the DICOM standard.

OsiriX has been implemented in Objective-C, and is built at the top of

COCOA, a platform designed to develop applications on MAC OS, and it is

based on open source components that can be divided mainly into two levels:

high level and low level libraries. OsiriX interacts only with the libraries of

high level, through the API (Application Programming Interface) of the

latter, which, in turn, communicate with the low-level libraries, responsible

for interfacing with the hardware.

High-level libraries:
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• VTK (Visualization ToolKit) : C ++ libraries and open source platform

for graphics, image processing and 3D visualization;

• ITK (Insight ToolKit): C ++ libraries that implement open source and

cross-platform segmentation algorithms and registration into two, three or

more dimensions;

• Papyrus: platform library of C routines that facilitate the process of

reading and writing DICOM images;

Low-level libraries:

• OpenGL: environment for development of 2D and 3D graphics applica-

tions. The standard provides the possibility of using the C, C ++, Fortran,

Ada, Java;

• Quicktime: multimedia technology to develop video, sound, animation,

graphics, text, interactivity and music;

• Xgrid: technology that allows to virtually bring together a group of

MAC into a supercomputer, thereby capable of solving complex problems;

• GNUstep: object-oriented platform for the development of desktop

applications in Objective-C based on the specifications of the application

layer of the OpenStep NeXT (now Apple);

• COCOA [9]: object-oriented development environment designed to de-

velop native applications MAC OS in Objective-C or Objective-C ++

1.4 DICOM Protocol

DICOM (Digital Imaging and Communications in Medicine) is the standard

format used for the exchange of information between electronic devices and

biomedical computing. The DICOM defines the standards for storing, view-
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ing, printing and communication of biomedical information. Nowadays the

DICOM format is widely used in hospitals and is establishing itself as the

standard in both public and private health sector. The DICOM standard

has been designed in order to achieve the following objectives:

• Obtain a standard for communication between acquiring medical im-

ages devices created by different manufacturers;

• Facilitate the introduction of new services that support the medical

applications of the future;

• Where possible use existing international standards.

The DICOM standard describes:

• a set of protocols for network communications in order to establish how

the devices respond to commands received;

• the syntax and semantics of commands that can be exchanged through

these protocols;

• a range of services for storage on the file system;

• a file format for storing information biomedical;

• a directory structure that facilitates access to medical images and re-

lated information;

• the criteria for assigning to an implementation conformance to the

standard, specifying which functions have the characteristic of inter-

operability to other compatible devices.
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A DICOM file can contain a lot of information such as images, textual data,

waveforms, etc.. In most cases a DICOM file does is encapsulate an image

medical adding a variety of information from several sources. Among the

most important:

• information about the image itself: resolution (height and width), color

mode, the domain of colors, size of the voxel (volume element), etc.;

• patient information: name, age, weight, sex, etc.;

• information on the mode of acquisition: MRI, CT, ultrasound, etc.;

• information on the equipment used: manufacturer, model;

• medical information on the organization that carried out the acquisi-

tion;

• image storing in compressed or uncompressed (lossy or lossless) way.

DICOM files are generated by special medical equipment (scanners) in the

case of Magnetic Resonance Imaging (MRI), and Computerized Tomography

(CT).

1.5 Medical Data Ontologies

Most of the data in the medical field are not structured but on simple sheets

of free text. An ontology describes the semantic similarity by means of

similarity between concepts contained into unstructured text, aiding the in-

formation extraction of sensible data. Ontology-based methodologies that

determine the semantic similarity between concepts in the documents to
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compare are not limited to the lexical level but takes advantage of the rela-

tionships between concepts provided inside.

An ontology describes name, definition, properties and relationship be-

tween entities for a specific domain (i.e. medical domain). It usually use a

glossary that defines all the terms and relationships among data. Common

ontologies are composed of objects with determinate attributes and relation-

ship, and rules (the logical inferences that can be drawn from an assertion).

Axioms are statements asserted as a priori knowledge, and events are related

in the changing of relations and attributes.

In the medical field, there is some example of medical ontology. For exam-

ple, the Systematized Nomenclature of Medicine (SNOMED CT) contains

diseases, findings, procedures, microorganisms and substances, their syn-

onyms, and a wide range of relationships between concepts. Unified Medical

Language System (UMLS) joins the concepts of different terminologies and

ontologies used in biomedical systems and information services.

1.6 Thesis Outline

The remainder of the dissertation is organized as follows.

Chapter 2 describes the state-of-the-art that inspires the Smart and Fast

Medical Imaging.

Chapter 3 presents an innovative approach that combines together fin-

gerprint and iris templates for a Biometric Recognition System.

Chapter 4 presents a medical application that uses an Expert Systems

that validates a novel method with a state-of-the-art method employing an

artificial neural network (ANN).
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Chapter 5 discuss about Radial Basis Function ANNs, used for interpola-

tion (missing data reconstruction) purposes in MRI thermometry, validating

the approach with two different kinds of subjects.

Chapter 6 describes two approaches for Image Segmentation, one using

multiple-seed Region Growing approach for liver lesion, and the other one

clustering and classifying voxels of MRI T1 brain datasets for VBM purposes.

Chapter 7 discuss the proposed Ontology-Based Retrieval System for

Mammographic Reports, with test on a real mammographic dataset of 126

reports written in free text by expert radiologist.

In Chapter 8, all the experimental results are shown.

Finally, discussion and conclusion about this ph.D. path, and some pos-

sible direction for future research.
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Chapter 2

Review of the State-of-the-Art

In this section many aspects of Medical Imaging analysis and processing will

be investigated, taking into account various issues and research fields related

to computer science engineering, such as image segmentation, data analy-

sis and clustering, function and data interpolation, neural networks, expert

systems, and so on. A wide review of the state-of-the-art methodologies is

necessary in order to understand the contribution produced by the present

Thesis.

2.1 Fingerprint and Iris Biometric Recognition

E-infrastructures must support the development of heterogeneous applica-

tions for workstation network, for mobile and portable systems and devices.

In this context and relating to all collaborative and pervasive computational

technology a very important role is played by security and authentication

systems, which represent the first step of the whole process [1].

Figure 5: a) Terminal point; b) Bifurcation point; c, d) Boundary
minutiae removal.
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Biometric authentication systems represent a valid alternative to conven-

tional authentication systems providing robust procedures for user authen-

tication.

The first step for fingerprint recognition is a pre-processing phase, that

consists of:

• Normalization: it allows standardizing pixel intensity, so they can have

value in a fixed range;

• Gabor filtering: a Gabor function is realized by modulating a sine wave

or a co-sinusoid with a Gaussian function in order to obtain spatial and

frequential information. In fact, the image decomposition is carried out

through a pair of quadrature Gabor filters, the 2D Gabor wavelet;

• Segmentation: it consists in separating foreground and background

regions; foreground regions contain ridges and valleys of the fingerprint.

Generally, the background regions are characterized by a very low level

of variance in contrast to foreground that has high variance, for this

reason the variance threshold method is used ;

• Thinning: in order to reduce the ridge thickness to a single pixel (1

pixel-wide), the Zhang-Suen thinning algorithm can be used; the image

is binarized and the algorithm is iteratively applied until no pixel is

candidate for elimination. This step is necessary to minutiae localiza-

tion.

After the pre-processing phase,we can proceed to matching phase.
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Matching is the process that establishes the similarity degree between

two fingerprints using the above descripted features. The main difficulties in

the matching phase are due to changes of factors such as translation, rotation

and the epidermis that can be different during each acquisition. The most

common methods for fingerprints matching proposed in the literature are:

• Matching based on the correlation: it consists in "overlapping" two

images in order to calculate the difference of the corresponding pix-

els. This type of comparison requires a phase of fingerprint images

alignment (image registration);

• Matching based on minutiae: it is the most common used technique.

Minutiae are extracted from the fingerprint image and stored as a set of

points. The comparison consists in finding the maximum coincidence

between same types of minutiae in corresponding positions between

the online acquired and stored fingerprint.

Algorithms used for macro-features extraction are based on the patterns

analysis of singularities regions and topological information such as relations

between different regions [3]. Macro-features are generally used to classify

fingerprints in five macro- categories [4].

Iris features are random and they aren’t dependent by genetic factors (the

pigmentation color is the only genetic feature). Moreover, in each person iris

differs from one eye to another. It exhibits about 266 features against 90

of the fingerprint; the iris temporal invariance is guaranteed by cornea and

it isn’t subject to diseases that can change its appearance. The probability

to find two identical irises is one in 10^78, so the iris is a valid biometric
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identifier.

The Gabor filter is widely used in frequency-domain based approaches to

obtain and codify localized information. The Log-Gabor filter implementa-

tion, proposed by Field [5] can be used. Log-Gabor filter can be constructed

with arbitrary band. It’s a Gabor filter constructed as a Gaussian on loga-

rithmic scale. The filter frequency response is:

G(f) = exp(
�(log( f

f0
))

2

2(log( �

f0
))

2
(1)

where f0 is the center frequency and � determines the bandwidth of

the filter. In the second method implemented in [6], the iris has been en-

coded using the Log-Gabor filter. In particular has been used the algorithm

written by Libor Masek, which consists in considering each row of the nor-

malized image, as a 1D signal that is convolute with the 1D Log-Gabor filter.

The output filter is then quantized into four levels. The coding process is

illustrated in [7]. The encode function generates a biometric template of nor-

malized iris and a mask that represents noise in the image: this information

will be stored in a database and it will represent a user.

Multimodal systems can be classified in according to the number of

sources and bio- metric number of "samples" used [8]. The main feature

of a multimodal system is to combine different information to arrive at a de-

cision. We can distinguish different types of fusion and consequently different

systems architectures [9], [10]. In relation to the decision policy founding fu-

sion algorithms, there are two possible approaches: the pre_mapping fusion

strategy applied before the matching phase and the post_mapping fusion
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strategy applied after the matching phase.

Pre_mapping fusion has two subcategories: sensory data level fusion,

in which data coming from sensors are combined before the remaining pro-

cessing steps; and a features extraction fusion level, in which the extracted

biometric information coming from different modalities are fused before the

remaining processing steps.

In post_mapping fusion, there are two subcategories, as well: a matching

score level fusion (also known as level review), in which the results of two

independent matching systems are combined with a weighted rule; and the

decision level fusion, in which a decision system is used to process unimodal

system output decision. Widely-used pre_mapping fusion approaches refer

feature set fusion, while widely-used post_mapping fusion approaches refer

independent matching score fusion.

2.2 Data Clustering and Data Mapping

Clustering term indicates the task of grouping a multitude of objects into

groups (or clusters). The object will be grouped in the same group if some

similarity measure is satisfied, i.e. the object are more similar to each other

than those present in other clusters. A specific pattern inside a cluster

contains a similar pattern than a pattern belonging to another cluster.

Clustering is a difficult problem, main task of data mining, and a widely

used technique in many fields such as image analysis, information retrieval

and pattern recognition.
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Figure 6: Data Clustering.

As depicted in Figure 6, points that belongs to the same group have

the same label. The great multitude of existing techniques for similarity

measurement between data, labeling of the data, and clustering, allowed a

wide development of clustering techniques. Luckily, in pattern analysis, data

mining, image segmentation, there is always some kind of information that

make possible to the decision algorithm to make some hypothesis about data

grouping. In this way clustering becomes appropriate for assess relationships

among the data points and do the clustering process.

2.2.1 K-Means Clustering

Partitional clustering divides a given set of objects in a set of clusters, disjoint

among them. A dataset composed of N points is clustered into k clusters,

with N � k. Each k partition represents a cluster, that contains:

• at least one point, and

• each point belongs to exactly one cluster.
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K � means clustering is the simplest and most common used partitional

algorithm, and it tries to minimize an objective function, for the instance:

kX

i=1

|Ci|X

j=1

Dist(x
j

, center(i)) (2)

where |C
i

| is the number of objects in the i cluster, and Dist(x
j

, center(i))

is the distance between the point x
i

and the i� th centroid.

The partitional algorithm results in clustering the data space into Voronoi

cells. The algorithm starts choosing the number of desired cluster, and with

i random initial partition centroid, reassigning the objects to clusters until

the objective function reaches the convergence (aftern a certain numbers of

iterations).

The k � means clustering is different, for example, from fuzzy parti-

tioning, where a given point can belong to many clusters. It is widely used

because his implementation facility, but on the other hand the algorithm is

sensible to the initial random choice of centroid, that can lead minimization

function to stop in a local minima.

24



Figure 7: K-Means partitional clustering. The objects have been
divided in k=3 clusters.

The workflow of the algorithm is as follows:

1. choose randomly k cluster centroids that coincides with k random pat-

terns;

2. assign each pattern to the closest center;

3. recompute the centroids using the cluster membership;

4. and if the minimization function does not converge, repeat the steps

from 2 to 4.

2.2.2 Neural Networks

An Artificial Neural Network is a mathematical model that is created from

imitating the human though process, simulating the (human) biological neu-
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rons. The ANN is widely used in data mining, image processing, and for

approximate functions with a certain number of input, elaborating informa-

tions with the capability of learning, generalization and adaptation.

A Neural Network is composed of artificial neurons that send signals each

other. The network can approximate a function with multiple inputs and

outputs, and it is widely used for tasks like classification, clustering, function

approximation.

There are various kind of neural network, like self organizing map or

recurrent neural network, but the most common kind of ANN is the feed-

forward. In this context we will consider this kind of network, and the

back-propagation learning algorithm used to train the ANN.

In the feed-forward NN, the information goes in one only direction, start-

ing from input, passing through the hidden layer and going to the output of

the network, without any cycle or loop.

Figure 8: The structure of the A.N.N.

26



Each input and output is weighted by using weights w
ij

and shifted by a

specific bias factor. The goal of the network is to, given a function, learn the

weights and the bias factor that will shift the output result. A neuron got

an input that connects a neuron to another or directly to the input of the

network, and an output. Each neuron has an activation function associated

with it. The output of a single neuron is computed by weighting sum of

inputs, adding bias and feeding the sum as input to the activation function

of the neuron. So the output of the activation function is the output of the

neuron, according to the following Equation:

Output = A(

X

k

w
k

I
k

+ bias) (3)

where A is the activation function of the neuron, w
k

is the weight of the

k � th in-edge, I
k

is the input carried across the k � th in-edge, and bias is

the bias of the neuron. In the learning phase, the neural network will learn

weights and biases until a condition is satisfied, i.e. the error between the

training data and the output is minimum. Easily, it is possible to train data

by using couples of inputs and outputs (X
i

, Y
i

). X
i

denotes the input to

all input neurons, while Y
i

is the desired output. The training dataset is

computed as D = Union((X
i

, Y
i

)). The sum of squares error, in accord to

training data D is computed as:

SSE(D) = sum((Y
i

� Z
i

)

2
) (4)

where Z
i

is the set of desired network’s output, given a certain input X
i

.

In the back-propagation learning the algorithm trains the neural net-
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work and updates weights and biases in each step, minimizing a gradient

minimum of the error respect weights and biases. The algorithm for learning

an instance can be divided into three phases:

1. given the input set X
i

, calculate Z
i

, the output of the network;

2. calculate Blame: if Y
i

is the desired value for Z
i

, and if they are differ-

ent, there is some error that is computed as a blame for each neuron.

Blames are used to adjust weights and biases;

3. adjust weights and biases, performing the gradient descent.

After the training session, the learning is complete and the neural network

can be used for its purposes.

2.2.3 Expert Systems

Expert Systems (ES) emulate the ability of humans in decision-making pro-

cesses [11], implementing inference procedures in complex problem solving

[2], [3]. They are able to lead its expertise in a specific knowledge domain

[4]. Computational Intelligence methodologies are characterized by adap-

tivity, errors-tolerant, inspired by biological or cognitive principles, parallel

in nature, and operating in the numeric domain [5]. Nowadays people are

beginning to use Expert Systems for supporting their everyday life. The

logic implemented in ES can be based on Computational Intelligence derived

methods, such as the Artificial Neural Network, Support Vector Machine,

Bayesian Network, Fuzzy Logic.

One of the goals of Expert Systems is the implementation of inference

procedures for complex problems solving. ES can be used for analyzing and
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understanding future direction of interesting application fields, such as envi-

ronmental sciences, agricultural sciences, transportation systems, economic

sciences, life sciences.

ES can be also used for data mapping and correlation between one or

more classes of heterogeneous data.

The authors of [13] discuss the design and evaluation of an intelligent

sorting system for open and closed-shell pistachio nuts. The system includes

a feeder, an acoustical part, an electronic control unit, a pneumatic air-

rejection mechanism and a ANN classifier. A prototype system was set up

to detect closed-shell pistachio nuts by dropping them onto a steel plate and

recording the acoustic signal that was generated when a kernel hit the plate.

The recognition is based on combined PCA of impact acoustics and ANN

classifier. Authors evaluated proposed system computing the mean square

error (MSE), correct classification rate (CCR) and coefficient of correlation

(r). Experimental results establish the superior performance of the proposed

approach when compared to prior techniques reported in the literature or

used in the field.

In [14], the authors report the development of an expert system for fruit

tree disease and insect pest diagnosis based on artificial neural network and

geographic information system (GIS). A multiple knowledge acquisition ap-

proach was adopted for creating the knowledge of the system, using neural

networks to predict the development tendency of fruit tree disease and insect

pest. The system was trained with 11 years meteorological information and

occurrence status of fruit tree disease and insect pests in orchards of Yantai

city. The ring spot, a fruit tree disease, was chosen as the research object to
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compare the predicted value with the actual value in this study.

In [15] and [50], the authors exploit the Radial Basis Function (RBF)

network to provide a method for temperature change measurements dur-

ing thermotherapy. The effectiveness of the proposed approach has been

demonstrated with Magnetic Resonance guided Focused UltraSound (MRg-

FUS) sonications on ex-vivo animal muscle, and on a real dataset of female

patient undergone to uterine fibroid surgery. A significant improvement of

the referenceless thermometry method, against classical PRF thermometry

and polynomial referenceless thermometry, has been demonstrated.

In [16], the authors present an Expert System for medical diagnosis of

the most common skin disease, the scabies, using Artificial Neural Network

(ANN) based classifier. The system helps the medical professional in making

effective treatment to patient, by reducing unnecessary costs. The data used

in the implementation and testing of the ANN were collected from the leading

Skin clinics of Vadodara, India. The system achieves 95% success.

In [17], the authors describe a project work aiming to develop an Expert

System for diagnosing heart disease using neural network technique. The

Support Vector Machine (SVM) and RBF have been applied over the data

for the experiment. The authors focus on the research and development of

a web-based clinical tool designed to improve the quality of the exchange

of health information between health care professionals and patients. This

system is experimented on various medical scenarios and exhibits satisfactory

results.

In [18], the authors propose an Expert System based on ANNs and SVMs

to aid the specialist in the diagnosis of Parkinson disease. The authors
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exploit these two classifiers because they produce a good performance in the

diagnosis task. This ES is used for reinforce and complement the diagnosis

of the specialists and their methods in the diagnosis tasks. Data recorded

during 195 examinations carried out on 31 patients was used to verify the

capacity of the proposed system. The results show an high accuracy of

around 90%.

2.3 Thermometry in Magnetic Resonance Imaging

Minimally invasive thermal therapy of oncological lesions benefits from near

real-time Magnetic Resonance Imaging (MRI) guidance. MRgFUS (Mag-

netic Resonance guided Focused UltraSound) is a new and non-invasive

technique to treat different diseases in the oncology field, which uses Fo-

cused Ultrasound (FUS) to induce necrosis in the lesion. This is due to the

attractive properties of MRI, such as its non-invasiveness, lack of ionizing

radiation, and the good spatial and temporal resolution in any scan orien-

tation. However, it is the ability of MRI to construct maps of in-vivo body

temperature that make it particularly well suited for guiding and monitoring

thermal therapy.

Thermal therapy can be divided into two regimes. The first one is low-

temperature hyperthermia, where temperatures in the range of 43÷45°C are

applied for a time of several tens of minutes to kill cancer cells or to sensitize

them to cytotoxic agents and/or radiation [19]. The second one is high-

temperature thermal ablation, where temperatures in the range of 50÷80°C

(or higher) are applied for a shorter amount of time to rapidly coagulate

the tissue and induce necrosis through processes such as protein denatu-
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ration. Non-invasive temperature monitoring is feasible with MRI, based

on the temperature sensitivity to the MR parameters such as the Proton

Resonance Frequency (PRF), the diffusion coefficient, T1 and T2 relaxation

times, magnetization transfer, the proton density, as well as temperature

sensitive contrast agents.

2.3.1 Proton Resonance Frequency (PRF) Shift Thermometry Tem-

perature change measurements during ultrasound thermo-therapies can be

performed through magnetic resonance monitoring by using PRF shift ther-

mometry. It measures the phase variation resulting from the temperature-

dependent changes in resonance frequency by subtracting one phase baseline

image from actual phase. A good overview of MRI temperature methods

is shown in [20]. Proton spectroscopic imaging, like PRF shift thermome-

try uses phase mapping and the temperature-induced water proton chemical

shift. Here the frequency shift is calculated from the MR spectra. MRI-

derived temperature maps can be constructed using a Gradient-Recalled

Echo (GRE) imaging sequence by measuring the phase change resulting

from the temperature-dependent change in resonance frequency. In order

to eliminate temperature-independent contributions (e.g. due to B0 field

inhomogeneities), one or more baseline images are usually acquired before

thermal therapy and subtracted from images during heating. The phase

difference images are proportional (i) to the temperature-dependent PRF

change and (ii) to the echo time TE, and can be converted to a temperature
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change �T by the following Equation:

4T =

'(T )� '(T0)

�↵B0TE
(5)

where '(T ) is the phase in the current image, '(T0) is the phase of a

reference (baseline) image at a known temperature, � is the gyromagnetic

ratio, ↵ = �0.01ppm/�C is the PRF change coefficient, B0 is the magnetic

field strength, and TE is the echo time.

2.3.2 Referenceless Thermometry

MRgFUS thermal ablation represents an innovative approach used to treat a

wide range of diseases [21][22]. Motion of anatomical region undergone to the

MRgFUS treatment is one of the most prevalent problem for temperature

monitoring with PRF phase mapping. For temperature evaluation during

thermal treatment, motion artifacts can be divided into two categories: intra-

scan motion and inter-scan motion, based on the time scale of the motion

with respect to the image acquisition time.

Intra-scan motion is caused by movement of an object during MR image

acquisition, resulting in a poor quality image with typical blurring and ghost-

ing artifacts. These motion artifacts are not specific to PRF temperature

imaging and can be reduced by accelerating the image acquisition.

Inter-scan motion is due to motion or displacement of an object between

the acquisitions of consecutive images. Methods for temperature estima-

tion in presence of motion can be divided into two categories: (i) methods

based on a multi-baseline strategy and (ii) methods based on a referenceless
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strategy.

Multi-baseline methods collect background phase information at various

stages of the respiratory and/or cardiac cycle prior to heating, so that base-

line data exist for all positions of the organ. The baseline subtraction is

then performed by matching the image acquired during heating with the

corresponding stored baseline data in order to mitigate motion-induced mis-

registration. The selection of the corresponding baseline image is performed

by determining the organ’s position with a navigator echo [23] or based on a

similarity criterion, such as non similarity coefficients [24] or inter-correlation

coefficients [25]. The multi-baseline methods require cyclic organ motion in

order to acquire a full set of all possible baseline images and require addi-

tional setup time to assemble the baseline library. They are generally much

more robust to motion than conventional baseline subtraction, but remain

sensitive to susceptibility changes during therapy.

Referenceless methods estimate heating from a treatment image itself,

without a baseline image used as temperature reference. Operating under

the assumption that the phase image surrounding the treated region has a

soft and smoothed trend even under the heated area, referenceless or self-

referenced thermometry methods fit a set of smooth, low-order polynomial

functions to the surrounding phase [26] or to a complex magnitude image

with the same phase using a weighted least-squares fit [27].

The extrapolation of the polynomial inside the heated region serves as

background phase estimation, which is then subtracted from the actual phase

to evaluate the phase difference before and after heating caused by ultrasound

sonication.

34



2.4 Image Segmentation

The process of dividing the image into homogeneous regions, where all the

pixels that correspond to an object are grouped together, is called segmen-

tation. The regroupment of pixels into regions is based in relation to a

homogeneity criterion which distinguishes them from each other. The crite-

ria can, for example, be similarity values of attributes (color, texture, etc.),

or spatial proximity values (Euclidean distance, etc.).

2.4.1 Spatial Image Segmentation

An image segmentation is typically defined as an exhaustive partitioning of

an input image into regions, each of which is considered to be homogeneous

with respect to some image property of interest (e.g., intensity, color, or

texture).

The goal of segmentation is to simplify and/or change the representation

of an image into something that is more meaningful and easier to analyze.

35



Figure 9: An example of segmentation. Here a MRI brain dataset is segmented in its
three main tissues: Cerebro-Spinal Fluid, Grey Matter, White Matter.

The final results of image segmentation can be expressed as follow: If I

is the input image with N
r

rows and N
c

columns and measurement value x
ij

at pixel (i, j), then the segmentation is & = {S1, ..., S
k

} with the lth segment

Sl = {(i
l1, jl1), ..., (ilN1, jlN1)} consisting of a connected subset of the pixel

coordinates.

Image segmentation is typically used to locate objects and boundaries

(lines, curves, etc.) in images. More precisely, image segmentation is the

process of assigning a label to every pixel in an image such that pixels with

the same label share certain characteristics.

The result of image segmentation is a set of segments that collectively

cover the entire image, or a set of contours extracted from the image edge de-

tection). Each of the pixels in a region are similar with respect to some char-
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acteristic or computed property, such as color, intensity, or texture. Adjacent

regions are significantly different with respect to the same characteristic(s).

When applied to a stack of images, typical in medical imaging, the resulting

contours after image segmentation can be used to create 3D reconstructions

with the help of interpolation algorithms like Marching cubes.

2.4.2 Region Growing Segmentation

Region growing has shown to be a very useful and efficient segmentation

technique in image processing [28], [29]. Region growing in its simplest sense

is the process of joining neighboring points into larger regions [30] based

on some condition or selection of a threshold value. Seeded region growing

starts with one or more seed points and then grows the region to form a

larger region satisfying some homogeneity constraint. The homogeneity of a

region can be dependent upon any characteristic of the region in the image:

texture, color or average intensity.

One region-growing method is the seeded region growing method. This

method takes a set of seeds as input along with the image. The seeds mark

each of the objects to be segmented. The regions are iteratively grown by

comparison of all unallocated neighboring pixels to the regions. The differ-

ence between a pixel’s intensity value and the region’s mean is used as a

measure of similarity. The pixel with the smallest difference measured in

this way is assigned to the respective region. This process continues until all

pixels are assigned to a region. Because seeded region growing requires seeds

as additional input, the segmentation results are dependent on the choice of

seeds, and noise in the image can cause the seeds to be poorly placed.
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2.4.3 Soft Computing Based Methods

In addition to traditional segmentation methods, there are soft-computing

segmentation methods which can model some of human-like segmentation.

Soft computing is a field that involves several methodologies, such as fuzzy

logic and neural networks computing. The neural networks are widely used

in several fields, and also in image segmentation.

Neural Network segmentation relies on processing images using an artifi-

cial neural network. After such processing, the decision-making mechanism

labels the regrouped pixels of the image in accord to the category recognized

by the neural network.

In [59], the authors exploits a method based on Self Organizing Maps

(SOM) for clustering, with classification carried out by a self-organizing map

(SOM), which is employed to obtain the main chromaticities present in the

image. Then, each pixel is classified according to the identified classes. The

number of classes is a priori unknown and the artificial neural network that

implements the SOM is used to determine the main classes. The detection

of the classes in the SOM is done by using a K-means segmentation.

The authors of [60] propose a neural network approach to medical image

segmentation, based on SOM and a three-dimensional SOM architecture to

create a 3D model, starting from 2D data of extracted contours.

A neural network learns in freedom from the data that are presented,

without the obligation of having to comply to a model imposed a priori.

Reviewing many times the training set, consisting of pairs of vectors that

represent an input pattern and the desired output, the network change its
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internal parameters (weights) in order to provide, in respect of each input,

the required output.

2.5 Knowledge-Based Medical Reports Mining

Despite to the efforts of the national health care in the introduction of the

electronic health record that allows to trace the patient’s history, classifica-

tion, improved search, reports extraction related to a particular information,

control in data entry and support to the physician’s decisions of the doctor,

most of the data in the medical field are not structured but on simple sheets

of free text.

Until now several approaches have been proposed to measure the similar-

ity of documents with statistical techniques, data-mining and machine learn-

ing associated with the domain corpora. To fix these limitations, ontology-

based methodologies that determine the semantic similarity between con-

cepts in the documents to compare are used [61], [62], [63]. This semantic

comparison is not limited to the lexical level but takes advantage of the

relationships between concepts provided by ontology.

The knowledge-based approaches take advantage of the hierarchical struc-

ture of ontology and of domain knowledge modeled explicitly through con-

cepts and semantic relations that allow various deductions from those known.

These approaches typically determine the distance between two concepts of

interest using techniques such as ontological depth, shortest path and the

combination of these. The similarity is equal to the inverse of the ontologi-

cal distance (Pedersen et al. [65] and Batet et al. [66]).

In the literature there are many research works on the comparison of
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documents that use the semantic similarity.

Corley and Mihalcea [67] present a knowledge-based method to measure

the semantic similarity of texts. While the great part of the work has focused

on the search for the previous semantic similarity of concepts and words, in

the application of these methods word-oriented similarity has not yet been

explored. They introduce a method that combines a similarity word-to-word

metric with a text-to-text metric, matching those words that are more similar

to each other and by weighing their similarity with the corresponding score

of specificity by demonstrating that this method exceeds traditional metrics

of similarity on matching lexical word-oriented. The specificity of a word is

determined using the inverse document frequency (IDF) in a large corpus.

Mihalcea et al. [64] has successfully used these algorithms to identify

if two blocks are paraphrases each other. A similar system in the context

of medical documents is the system XOntoRank [68], which provides the

keyword research SNOMED on XML documents. Exploiting the ontological

knowledge an open question is when dealing separately concepts from each

other and when aggregate them. For example, the concepts for the terms

”paroxysmal cough” and ”nocturnal cough” can be aggregated into a study

of kidney disease, but should be left in a separate study of pneumonia. De-

termine if two concepts are similar enough to be combined depends on the

quantification of the similarity between concepts, resulting in a difficult and

context dependent task.

Pivovarov and Elhadad [69] combine ontological approach and corpus,

proposing a comprehensive approach that calculates a similarity score for

a pair of concepts combining data-driven and ontology-drive knowledge,
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demonstrating the method on concepts of SNOMED-CT and on a corpus

of clinical notes of patients with chronic kidney disease (based on IDF).

Combining the information from usage patterns in clinical notes and the on-

tological structure, the method can distinguish the concepts that are simply

connected by those that are semantically similar.

Melton et al. [70] explores the use of five measures of similarity to de-

terminate the similarity between patients. A database of electronic patient

records, including discharge, operative notes of radiology and of pathologies,

diagnosis and other information have been made available to experts to man-

ually evaluate documents of similar patients. The authors concluded that

the ontological principles and informative content provide useful information

for the similarity metrics, but currently do not reach optimal performance

because there is no gold standard for determining similarity between docu-

ments.
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Chapter 3

Fingerprint and Iris based Authentication

As said in paragraph 2.1, in multi-biometric systems based on the matching

score fusion level the features vector from each sensor are compared with the

respective samples (recorded separately) so that each subsystem can give its

own opinion, in the form of points (matching score), which indicates how the

features vector is similar to sample [31]. These scores are then combined into

a single result which will be forwarded to the supervisor who is responsible

of the final decision based on "matching score zone."

Figure 10: Matching score fusion level.

Figure 11: Extraction fusion level.
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In ranked list combination fusion method (which does not require a nor-

malization process), the list produced by each classifier can be interpreted as

the opinion of the classifier itself. In this way, this method can also be seen

as a fusion to matching score level (see Figure 10). In the Feature fusion

level, the information obtained from each biometric system is successively

merged into a single vector. Figure 11 shows this kind of fusion.

Two methods to obtain results are the following:

• Weighted sum: this method can be used only if the features are com-

mensurate; the fusion performs a weighted sum between the various

vectors of extracted features from respective sensors;

• Concatenation: it is used in the extraction level fusion where each

feature vector is independent from all other (i.e. they are not com-

mensurate as for example a system that works with voice and face).

In this case it is possible to concatenate these vectors into a single

features vector. The vector thus obtained will represent the identity of

a person in a different (and more discriminating) features space.

The homogeneous vector obtained by data extracted is composed by binary

sequences representing unimodal biometric models. An header and a bio-

metric template thus compose the resulting vector.

3.1 The Proposed Multimodal Recognition Systems

Many tests to verify performance of the techniques and algorithms above

described and exposed have been done. Experimental trials have been carried
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out on two recognition systems:

• Multimodal fingerprint/iris recognition system;

• Multimodal fingerprint/fingerprint recognition system.

In what follows, two multimodal recognition systems are analyzed and de-

scribed. The first one is a fingerprint/iris multimodal recognition system

operating in frequency domain. Experimental results are referred to a soft-

ware implementation. The second one is a fingerprint/fingerprint multimodal

recognition system operating in spatial domain. Experimental results are re-

ferred to a FPGA hardware implementation.

3.1.1 Fingerprint/Iris Recognition System

The proposed multimodal biometric system is composed of two main stages:

the pre-processing stage and the matching stage. Iris and fingerprint images

are preprocessed to extract the regions of interest (ROIs), i.e. singularity

regions, surrounding some meaningful points.
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Figure 12: The proposed Iris/Fingerprint authentication System.

Despite to the classic minutiae-based approach, the fingerprint-singularity-

regions-based approach requires a low execution time, since image analysis

is based on a few points (core and delta) rather than 30–50 minutiae. Iris

image pre-processing is performed extracting the iris region from eye and

deleting eyelids and eyelashes. The extracted ROIs are used as input for

the matching stage. They are normalized, and then, processed through a

frequency-based approach, in order to generate a homogeneous template. A

matching algorithm is based on the Hamming Distance (HD) to find the

similarity degree.

3.1.2 Fingerprint/Fingerprint Recognition System

An Automatic Fingerprint Authentication System (AFAS) consists of three

main processing steps: image acquisition, features extraction, and biometric
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templates matching. In the first phase, a sensor scans and acquires the finger-

print image. Successively a vector of features, containing information about

the micro and/or the macro features will be extracted. In many cases, this

step is preceded by a pre-processing phase in order to enhance fingerprint

image quality. Finally, a matching score is used to quantify the similar-

ity degree between the input image and the stored templates. Generally, a

threshold based process is used to accept or reject a user. The proposed

system architecture is composed of two AFAS modules based on micro and

macro features, respectively. Result fusion is realized combining the match-

ing score of both AFASs in order to obtain an overall matching score.

As depicted in Figure 13, the Fingerprint Singularity Points Extraction

Module processes an acquired fingerprint image in order to extract useful

information (presence, number, and position) on core and delta points. Fin-

gerprint image as well as singularity point information are used as inputs of

both Micro-CBA and Macro-CBA Modules.
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Figure 13: The proposed Fingerprint/Fingerprint authentication system.

The first one uses singularity point information for fingerprint registra-

tion and performs fingerprint templates matching using minutiae type and

position (micro-features), while the second one performs fingerprint tem-

plates matching using only the directional image of the original finger-print

and the singularity points information. Fingerprint templates are encrypted

be-fore their storage. The unimodal matching scores are finally combined

to obtain the overall matching score. However, singularity point detections

can fail, since finger-print could be corrupted, broken or the fingerprint has

not core and delta points (i.e. it belongs to the Arch class). In this case,

the Micro-CBA Module performs fingerprint templates matching using only

minutiae information without fingerprint registration, while the Macro-CBA

Module will give zero as matching. For this reason, the overall matching

score is obtained using different weights for the two AFASs.

An ideal matching system should be immune to fingerprint translation,
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rotation and non-linear deformation issues. For this reason, singularity point

information is checked before running the fingerprint matching algorithm. As

pointed out before, singularity points presence and position could be used for

fingerprint pair registration before evaluating the matching score. However,

if no singularity points are extracted, the template matching algorithm will

be performed on the set of extracted minutiae without any registration step

and fingerprint deformation reduction.

With more details, template matching algorithm is based on extracted

micro- features (minutiae spatial coordinates and ridge direction) and in-

volves a fingerprint pair composed by the acquired fingerprint and the stored

template. So, the on-line acquired fingerprint image is tentatively registered.

Successively, a window, centered in the minutiae position, is considered to

reduce deformation problems, when and only when core and delta points are

detected.

Finally a comparison between correspondent windows in each finger-

print pair is performed. The Micro_Score will be the percentage of correct

matched minutiae.

All the experimental results for both the multimodal biometric recogni-

tion systems are discussed in Chapter 7.
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Chapter 4

Data Clustering in MRI

MRI is a non-invasive way to quantify the iron overload in various organs [32]

through T2* sequences in a non-invasive way, avoiding repeated biopsies.

The purpose of this contribution is to present a novel rapid and non-

invasive method, called Liver Iron Overloading MOnitoring Thalassemic (LI-

OMOT) based on MR images that assess liver iron overload using MRI se-

quences using three different Regions of Interest (ROI) in the liver to obtain

a more accurate measurement of iron overload compared to traditional T2*

method avoiding errors caused by heterogeneity in liver iron deposition. Ob-

tained results have been validated using an Expert System (ES) that matches

the LIOMOT output with the classification of the state-of-the-art MRI T2*

method. The ES validates the results with a great agreement.

4.1 The Proposed Method

The goal of the proposed method is to train an ES for classifying liver iron

overloading in thalassemic patients. The ES investigates the use of an Artifi-

cial Neural Network (ANN) for mapping a given set of data and for extract-

ing common features and relationships among the data. The mathematical

model is trained from an input data set. After the successful training phase,

the artificial neural network will be able to perform classification, prediction,

or simulation on new data. With more details, the ANN is used for mapping

the output of the LIOMOT approach on the output of approach based on
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MRI T2* assessment for liver iron overload estimation [33].

The former is a SIR (Signal-to-Interference Ratio) based method for es-

timating the liver iron overloading in medical examinations based only on

image processing techniques.

The latter is based on relaxation time of T2* method in MRI (Magnetic

Resonance Imaging) and it can determine the degree of iron overload on

human organs such as liver. LIOMOT output is a continue value between

0 and 1, while the MRI T2* output is a classification of liver iron overload.

MRI T2* approach classifies the iron overload in four classes: Normal, Mild,

Moderate, and Severe. In this way, each entry of the database is composed

of a couple of values, i.e. a value between 0 and 1 given by the LIOMOT

method, and one of possible classes produced by the MRI T2* technique.

The neural network has been trained using the Levenberg-Marquardt

back-propagation algorithm, and it maps the continue value produced by

the L.I.O.MO.T method with the four classes produced by the MRI T2*

method. The dataset is composed of 200 samples. The 75% of the dataset

has been used for the training phase, 20% for the validation phase, while

the remaining 5% has been used for the test phase. The selected optimal

model has been evaluated considering the Mean Square Error (MSE), and

the coefficient of correlation (R), and it shows interesting performances. The

dataset used for the training-validation-testing phases is composed of real

patients of Hospital "P. Giaccone" located in Palermo, Italy, affected by

thalassemia disease. The proposed algorithm has been developed as a plugin

for OsiriX, an advanced Open-Source PACS workstation and DICOM viewer

[34], using Objective-C as programming language.
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4.1.1 The LIOMOT Approach

Liver Iron Overloading MOnitoring Thalassemic patients is a Signal-to-Interference

Ratio method [35][36]. It can be considered a non-invasive assessment done

by MR imaging. In SIR methods, the signal intensity of a target organ is

correlated with the signal intensity of a reference tissue (e.g. fat, or muscle).

In LIOMOT approach, MR imaging was performed with the following key

settings, as shown in Table 1:

Table 1: Parameters of M.R. Imaging.

Series # of Slices Slice Thickness (mm) TR (ms) TE (ms)

Axial T2* G.R.E. 11 5 225 3

Despite to the traditionally T2* relaxant methods, the LIOMOT method

requires only one acquisition. On the other hand, MR images denotes high

sensitivity to iron burden in the organ.

The paravertebral muscles are used as referenced tissues, since they com-

bine good sensitivity with low intensity variability. The LIOMOT produces

an output value between 0 and 1 that estimates the presence of iron in liver.

Values close to 1 indicate a low presence of iron, while values close to 0

indicate an high iron level [37].

4.1.2 MRI T2* Assessment for Liver Iron Concentration

Liver Iron Concentration can predict a clinical outcome, such as patients

with less LIC survive longer and have less cardiac diseases. LIC level as-

sessment can be taken by biopsy and MRI. Assessment of iron overload is
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based on T2* relaxation time decrease induced in the liver due to the para-

magnetic properties of iron. This acceleration of the T2* relaxation time

is proportional to the quantity of iron and leads to a decrease in the MRI

signal intensity from the liver. In [38] the T2* labels the presence of iron

in liver in four classes: Normal (T2* > 11.4 ms), Mild (T2* 3.8 - 11.4 ms),

Moderate (T2* 1.8 - 3.8 ms), and Severe (T2* < 1.8 ms), as shown in Table

2:

Table 2: Correlation between iron overload detected by Magnetic
Resonance Imaging (ms) and Tissue (mg fe/g dry weight).

Liver Normal Mild Moderate Severe

T2* (ms) > 11.4 3.8 - 11.4 1.8 - 3.8 < 1.8

LIC (mg FE/g) < 2 2 - 7 7 - 15 > 15

4.2 The Proposed Neural Network Model

We consider feed- forward neural networks, and the back-propagation learn-

ing algorithm will be used to train the ANN. In this work a neural network

for developing a Medical Expert System is proposed. The ANN is useful for

classifying liver iron overloading in thalassemic patients.

Figure 14: The structure of the ANN.
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As explained above, the MRI T2* approach classifies the presence of iron

in liver in four classes: normal overloading, mild overloading, moderate over-

loading, and severe overloading, while the LIOMOT approach computes a

continue value between 0 and 1 for estimating the presence of iron in liver.

The proposed ANN is composed of 10 hidden neurons and 1 output neuron

(see Figure 14). The kernel function of hidden neurons is the sigmoid func-

tion, while the kernel function of output layer is the linear function. The

training set is composed of a vector of pairs. The former is the output of

the LIOMOT method, and it is used as input for the ANN. The latter is

a class of MRI T2* method and it is used as ANN’s target. The ANN is

trained using Levenberg-Marquardt Back-Propagation algorithm, consider-

ing the maximum limit of 100 epochs.

The dataset is composed by 200 samples, both LIOMOT evaluation and

MRI T2* evaluation were acquired by three expert physician. The dataset

was divided in three bins for creating the training (75%), validation (20%)

and test (5%) sub-datasets. The Experimental Results are discussed in

Chapter 6.

4.2.1 OsiriX Plugin Implementation

The proposed method has been implemented as plugin for OsiriX (see para-

graph 1.3), an advanced open-source PACS workstation and Dicom viewer

[39]. The language used is Objective-C. The images can be produced by sev-

eral imaging equipment as MRI, CT, PET, PET-CT, etc. An OsiriX advan-

tage is to permit the development of ad-hoc plugins for particular physicians’

requests. Figure 15 shows the plugin GUI developed for liver iron overload
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estimation in thalassemic patients. To use the plugin, the physician initially

selects four regions of interest. The ROIs have a circular shape and a fixed

surface of 0.3 cm3. The ROIs are selected in order to identify the right lobe,

the left lobe, and the paravertebral space of the liver, while the last ROI is

the referenced tissue, and it is selected on the paravertebral muscle.

Figure 15: The developed OsiriX LIOMOT plugin. The Gui shows the
output after iron overload estimation.

The output of the plugin shows the class of the liver iron overload ac-

cording to the four MRI T2* classification: normal, mild, moderate, and

severe overloading. The normal class of iron overloading is represented with

the green color, mild class with the yellow color, moderate with the orange

color, and the severe class with the red color. In the above figure is shown

the output of the computation. On the left, the GUI shows the Log output

that inform the user about computational steps; in the central area, the nu-

meric values of the iron overload assessment are represented. On the right,

the GUI shows a graphical and colored representation of the liver.
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In this example the liver has a mild liver iron overloading, and it is

highlighted in yellow color. The proposed framework is useful for a clinical

practice. It is exploited for estimating the sizing of the chelation drugs based

therapy in order to control iron overloading in thalassemic patients.

Experimental results and results will be investigated in Chapter 7.
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Chapter 5

Thermometry in MRI

Hyperthermia is a type of clinical treatment in which body tissues are ex-

posed to high temperatures that can kill pathological lesion, like uterine

fibroids [39] In MRgFUS treatments [40], [41], high temperatures are ap-

plied on local and small areas by using ultrasound beams that deliver energy

to heat the tumour. MRgFUS treatment is performed using the ExAblate

2100 equipment (InSightec, Haifa, Israel), integrated with a Signa HTxt MR

scanner (GE Medical Systems, Milwaukee, WI). Thermal ablation of fibroids

tissue is done using sonication process: the tissue is heated with Focused Ul-

traSound concentrating a high-energy beam on a specific point. This allows

to reach a temperature higher than 50°C causing proteins coagulation and

consequently inducing the fibroid tissue necrosis.

The planning, treatment and evaluation processes are possible thanks to

MR Imaging (MRI) guidance, which can also be used to reconstruct maps

of tissues temperature. This makes it particularly enabling for guiding and

monitoring thermal therapies.

5.1 The Proposed Interpolation Model

In a MRgFUS treatment, a little area of the patient’s organ is heated by a

focused ultrasound beam, increasing temperature in that point. The process

is repeated several times until the whole lesion area is treated.
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Figure 16: 3D plot of temperature map after 5 seconds treatment; a) the
maximum temperature reached in the peak is about 52°C. b) the temperature
map after 15 seconds of sonication; c) the temperature map after 30 seconds
of sonication. The temperature peak is 87°C.

In Figure 16 it is possible to see a sequence of temperature maps: the

sonication burst takes about 30 second for each sonication, and the number

of sonications are related to position, type, and size of uterus fibroid.

In referenceless phase estimation, a Region Of Interest (ROI) is selected

around the area to be heated. First of all, to perform interpolation it is

necessary to select two regions (outer and inner) in the phase image. Fig-

ure 17.a shows the inner ROI containing the heated region, surrounded by

baseline (outer) region. In the proposed approach, it is possible to choose

an inner ROI with any shape, while generally other algorithms use only cir-

cular or rectangular shapes. The choice of an arbitrary shape leads to an

accurate isolation of the heating region allowing us to use real baseline data

(Figure 17.c). It is essential to choose the outer ROI outside the heated

region because temperature changes within the frame ROI will affect the

reconstruction of the background phase.

As said before, one approach to this problem is to fit the data with

a polynomial function. However, an invertible system that uniquely de-
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fines the interpolant is not guaranteed for all positions of the interpolation

points. Moreover, such a polynomial interpolant will typically display spu-

rious bumps and wiggles.

Figure 17: a) Inner selected ROI in the phase image (with the typical
cigar-shape); b) 3D plot of sonicated area (a); c) Result of sonicated area
removal.

In this work we propose a model that reconstruct background phase in

the frame ROI using a Radial Basis Function (RBF) neural network [42],

[43]. RBF approximation method offers several advantages over polynomial

interpolants:

• the geometry of the known points is not restricted to a regular grid

and there is no need to define a mesh of patches;

• the resulting system of linear equations is guaranteed to be invertible

under very mild conditions;

• polyharmonic RBFs have variational characterizations, which make

them eminently suited to interpolation of scattered data, even with

large areas of missing data.
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5.1.1 Radial Basis Function Approximation

We begin by introducing radial basis function approximation generally before

considering the specific case of approximating as a function of two variables.

Consider f : Rd ! R a real valued function of d variables that is to be

approximated by s : Rd ! R, given the values f(X
i

) : i = 1, 2, . . . , n, where

X
i

: i = 1, 2, . . . , n is a set of distinct points in Rdcalled the interpolation

nodes. We will consider approximation of the form (6):

s(X) = p
m

(X) +

nX

i=1

�
i

�(kX �X
i

k), X 2 Rd,�
i

2 R (6)

where is a low-degree polynomial, or is not present, denotes the Euclidean

norm. Thus, the radial basis function s is a linear combination of transla-

tions of the single radially symmetric function, plus a low-degree polynomial.

We will denote with the space of all polynomials of degree m at most in d

variables. Then the coefficients of the approximation s are determined by re-

quiring that s satisfies the interpolation conditions expressed in the following

equation:

s(X
j

) = f(X
j

), j = 1, 2, ..., n (7)

together with the side conditions:

nX

i=1

�
i

q(X
j

) = 0, 8q 2 ⇡d

m

(8)

Some examples of popular choices of � and the corresponding radial

function are given below:
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8
>>>>>>>>>><

>>>>>>>>>>:

�(r) = r

�(r) = r2 log r

�(r) = e�ar

�(r) = (r2 + c2)1/2

linear

thin� plate� spline

gaussian

multiquadratic

, r > 0

where a and c are positive constants. Some typical conditions on the

nodes under which the interpolation conditions (7) and (8) uniquely spec-

ify the radial basis function (6) are given in Table 3. In this context “not

coplanar” means that the nodes do not all lie in a single hyper-plane, or

equivalently that no linear polynomial in d-variables vanishes at all of the

nodes. The surveys of Powell [44] and Light [45] are excellent references for

these and other properties of radial basis functions.

Table 3: Conditions imposed on nodes for various Radial Basis
interpolants.

Function � spatial dimension d polinomial degree m restriction on nodes

Linear any 1 not coplanar

Thin-Plate 2 1 not coplanar

Gaussian any absent none

Multi-quadratic any absent none

In this paper we are particularly concerned with 2D (depth-map) data

and will consider linear, thin-plate spline and multiquadratic interpolants.

Then equations (7) and (8) imply that the coefficients of the radial basis

function and the polynomial can be found by solving the linear system:
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Q =

2

66666664

1 x1 y1

1 x2 y2
...

...
...

1 x
n

y
n

3

77777775

(9)

� = (�1,�2, . . . ,�n

)

T (10)

c = (c0, c1, c2)
T (11)

p1(x) = c0 + c1x+ c2y (12)

f = (f1, f2, . . . , fn)
T (13)

The thin-plate, or 2D bi-harmonic spline we consider models the deflec-

tion of an infinite thin plate. While the linear radial basis function will

interpolate the data, the thin plate spline is more attractive since it also

provides C1 continuity and minimizes the energy functional, expressed by

equation (14), over all interpolants for which the energy functional is well

defined.

E(s) =

ˆ
(

�2s

�x2
)

2
+ 2(

�2s

�x�y
)

2
+ (

�2s

�y2
)

2dxdy (14)

In this sense the thin-plate spline is the smoothest interpolator of f .

Higher-order polyharmonic splines achieve continuity of higher derivatives.
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5.2 The Proposed Referenceless Thermometry Method

After outer and inner ROIs selection, we obtain an image with data in outer

ROI, and no values in the inner ROI. The goal of referenceless thermometry is

to obtain reconstruction of inner ROI, in order to have an estimated baseline

image to subtract from current image that we are evaluating, obtaining a

temperature rise caused by thermal ablation.

The first task is to calculate the coefficients of interpolant function. In

our solution, the used procedure is as follows. The nodes are first scaled

uniformly in x and y, and shifted so that the new nodes lie in the unit

square. Subsequently the interpolation problem, corresponding to the trans-

formed data, is solved using the double-precision diagonal pivoting method

for symmetric indefinite systems from Lapack. The interpolant was com-

pared with the original baseline image. The natural criterion for assessing

a reconstructed phase image is how closely it matches the baseline surface

prior to the removal of the heated area.

The interpolant fitted to the incomplete depth-map was then compared

with the original baseline surface.

Firstly, it is selected the temporal instant with the maximum temperature

rise, in order to obtain the biggest possible mask to crop sonications in the

series. Before performing the calculations, wraps present in the phase image

are unwrapped using the use of Goldstein, Zebker, and Werner’s algorithm

[46].

After phase unwrapping, a part of the phase image is individuated, se-

lecting 2 ROIs: the first one, rectangular, contains a sufficient number of
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phase data of a constant region; the second one, that have an arbitrary

shape surrounds the heated region clipping phase variation data, that leads

to wrong phase estimation. The result is a mask that will be applied to each

phase image of the entire series, in order to crop each phase image.

Each outer ROI, where the inner ROI has been reconstructed using RBF

interpolation, represents the baseline data for each temporal instant. We

reconstruct the inner region in four different ways:

• interpolating data with a 5° order polynomial , as well as done in [47];

• interpolating data with Linear RBF;

• interpolating data with Thin-Plate Spline RBF;

• interpolating data with Multiquadratic RBF.

Figure 18: The structure of a neural network implementing the RBFs

as hidden layer.

The RBF network is composed of two layers, and the N training pat-

terns xp
i

, tp determine the weights directly. The hidden layer multiplies the

activation units as shown in Figure 18.
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After the interpolation, we calculate temperature rise obtained for each

type of interpolation, using Equation (5) and using a different estimation of

baseline (�(T0)) phase image. Each temperature rise is then compared with

PRF shift thermometry that is used as our gold-standard. Interpolation

results are shown in Figure 19.

Figure 19: a) 3D plot of baseline phase with no heating; b) The same
region after 20s treatment; c) Removal of sonicated area; d) RBF reconstruc-
tion of phase map of the image in c); e) Difference between RBF reconstruc-
tion (d) and original baseline (a).

The workflow of the proposed method for enhancing the referenceless

thermometry by using RBF interpolation has been implemented as follows:

1. once the series of images is acquired, we recover the original phase

from the 2p-wrapped phase images by using the Goldstein, Zebker and

Werner’s algorithm;

2. the RBF artificial neural network takes input data from the region

between the sonicated area and the uterine contour;
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3. the area to be reconstructed is iteratively interpolated by using RBF,

which represents a practical solution for the problem of interpolat-

ing incomplete three-dimensional surfaces. The implementation of the

reconstruction algorithm invokes iterative refinement to improve the

accuracy of the solution;

4. for each temporal instant the extrapolated baseline phase that is used

together with the global (currently heated) image.

Figure 20: The workflow of the proposed method.

Results and discussions for the novel thermometry method, evaluated on

two different datasets, will be shown in Chapter 7.
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Chapter 6

Image Segmentation in CT and MRI

In the following Chapter, two segmentation method are proposed. The first

one segments CT hepatic lesions for a follow-up assessment of a pharma-

cological cure; the second one quantifies the CSF, GM and WM of a MRI

T1volumetric 3D brain datasets, comparing the segmentation results with

the results of a famous used VBM software on the same dataset.

6.1 Liver Lesions Segmentation

Hepatic metastases are the most diffused secondary lesions in patients with

primitive colon and gastrointestinal stromal tumor (GIST). Recently, opti-

mal antitumor effects have been reached through molecules target dosing,

such as multi-kinase inhibitors that inhibits oncogenic kinases, angiogenesis

and stroma.

After the introduction of these target molecules, there has been a growing

concern about the usage of the traditional criteria of tumor response; Infact,

the objective assessment of tumor response became increasingly important

with rapid and continuos development of these new drugs.

The first guidelines to evaluate the response criteria tumor, stipulated

from OMS at the beginning of 1980, were based on the size of the lesions

determined from the sum of the products of 2D measurements. Since their

introduction, these guidelines were further simplified so 1D measurement of

the lesions could be used. These criteria were successively validated by RE-
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CIST group, according with the guidelines stipulated from OMS. However,

these criteria based only on measurements of 1D or 2D lesions, do not di-

rectly reflect the biological changes that occur after the administering of such

molecules. In addition, patients in advanced disease stages necessarily don’t

present an increase in the size of the lesion or the appearance of new lesions,

but may present a new phenomenon called lump-mass. All these features

are not addressed by the RECIST criteria, which are based exclusively on

the measurement of diameter axial lesions. In fact the radiological changes

induced by such drugs are heterogeneous: in particular, these target thera-

pies not only induce changes in lesion’s size but also in the structure, often

causing a decrease in density, emphasizing intra-tumoral nodules and tumor

vasculature, with subsequent size reduction.

Recently a turning point occurred with the use of Choi criteria that

simultaneously evaluates dimensional and densitometric criterias and subse-

quently biological response.

Such responses are analyzed by examination by computerized tomogra-

phy (CT) after medium contrast, which has been shown to be very sensitive

in the study of intestinal wall and for early detection of liver metastases.

Here, the necessity to study and develop a methodology that can segment

liver lesion regions, allowing the calculation of values such as tissues density,

variance, area, transverse diameter, volume, and 3D reconstruction for a

better evaluation from the anatomical point of view.

67



6.1.1 The Proposed Multi-Seed Region Growing Segmentation Method

The images in question are in DICOM format and come directly from a CT

scanner with 64 detector rows. To enable better accuracy of the segmenta-

tion, the images are initially pre-processed to reduce noise through the use

of smoothing filters [48] [49].

The liver injury in this type of images are characterized by radio-densimetric

values attributable to aqueous tissues (hypodense lesions), different from the

values belonging to a healthy liver, so the chosen segmentation method be-

longs to region growing algorithms.

The aforesaid algorithms grouping the pixels or sub-regions in gradually

larger regions based on predefined criteria. An algorithm of this type bases

its operation on the difference of the pixel values: starting from a seed re-

gion, composed of one or more pixels interior to the object to be segmented,

evaluates the neighboring pixels to determine whether they should be consid-

ered part of the object, and if so they are added to the region. The growing

process continues until there will be pixel to retent in the region, until a stop

condition is reached.

The evaluation criteria of the pixels typically depends from their Hounsfield

value, from the type of connectivity used to determine the neighbors and

from the strategy used to visit the neighboring pixels. A simple but effective

criterion to include pixels for region growing is to assess whether the inten-

sity of the pixels falls in a specific range. In hepatic injury is seen that, as

they are of hypodense type, the Hounsifield average value is around 0, with

values typically falling in the range (-50, 50).
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The segmentation software requires two operator input: a starting point

inside the lesion, which will be the seed of the region, and the range of values

which generally will be part of the lesion. The operator, by clicking on a

point of injury through mouse, set the span manually from the keyboard

or rule this interval via a slider. Once obtained input, the region growing

algorithm iterates and assesses both the pixels in the same slice of the seed

point, and also in depth and evaluating the subsequent and previous slices

to the current one (3D segmentation).

6.1.2 OsiriX Plugin Implementation

It has chosen to implement the proposed software form plug-in for the pop-

ular open-source software OsiriX.

Figure 21: The developed plug-in for OsiriX Dicom Viewer.
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Such choice is justified by the reliability and robustness of OsiriX libraries

used by, for example, the Insight Toolkit (ITK), which implement algorithms

robust and tested for the Segmentation of medical images.

6.2 Voxel Based Morphometry

The need to evaluate the brain volumetry using quantitative studies is now

predominant in neuroscience field. Using the most advanced MRI techniques,

we are able today to study many neurological disorders in degenerative dis-

eases associated with dementia, in which the neuronal depletion results in

"atrophy", accompanied by volumetric reduction of white’s and grey’s mat-

ter. The consequences of these reduction, characteristic of almost all forms

of primary and secondary demential syndromes, can be assessed through

semi-automatic analysis software that can identify and quantify the different

intracranial compartments tissues such as grey matter (GM), white matter

(WM) and cerebrospinal fluid (CSF).

The Voxel-Based Morphometry (VBM) is an analysis technique based

on segmentation of medical images able of perform a characterization of the

brain’s neuro-anatomy; datasets are split into their constituent parts. This

characterization is based on the intensity of the signal, usually weighted in

MRI T1 or T2 sequences, in different tissue compartments. The aim of

the VBM is to determine if a specific voxel has different intensity in one

group instead to another. The VBM correlates morfovolumetric variations

with the variation of strict parameters, allowing for example to compare

results between pathological subjects and healthy controls (comparison be-

tween groups) or longitudinal comparisons (in follow-up) in the same patient
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or patient groups.

Today several software allows the estimation of the VBM using different

techniques:

• FMRIB Software Library (FSL) [51] is a software developed by the

Center of Functional MRI Oxford University consists of programs for

analysis and statistical analysis of neuroradiological images. This soft-

ware, in reference to the techniques of VBM, mainly consists of three

components: BET, FAST and FLIRT. The FMRIB’s FSL is a tool that

allows many studies, and in particular FAST software is the segmenta-

tion algorithm of FSL that allows the classification of the three major

cerebral tissues: white matter, gray matter, cerebrospinal fluid. The

method is based on Hidden Markov Random Field (HMRF) model as-

sociated with an algorithm of Expectation-Maximization, which max-

imizes the posterior probability and labels the segmented tissues. The

process, for a typical volume of 120 slice of about 1 mm thick, with

a matrix of 256x256 pixels, takes about 15 minutes in most modern

computer;

• Statistical Parameter Mapping (SPM) [52] is an open source tool for

the segmentation in Matlab, which uses both functional and struc-

tural statistical methods of analysis of neuro-images, that can provide

a probabilistic classification of the brain tissues in MRI images, in-

creasing the precision of each tissue class. The used algorithm is the

voxel-based morphometry (VBM), that consists in an initial spatial

normalization, the segmentation in the respective classes of tissues, in
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smoothing and in the use of a prior to compute the statistical proba-

bility of membership of each voxel to each class. A-priori probabilistic

maps are also used, which combined with the intensity of each voxel

through the Bayes rule, return the probability a-posteriori. SPM joins

the theories of general linear model (GLM) and the Gaussian random

field (GRF) to analyze and inference indirect spatial data through sta-

tistical parametric maps.

These software applications have their limitations: the high number of pa-

rameters to be set, from which follow a more or less correct segmentation,

and the times of segmentation very high (typically from 15 to 30 minutes).

The aim of this contribution is to present a brain segmentation system,

that take in input a whole 3D T1 brain dataset, and segments the volume

in the three main brain’s matter: WM, GM and CSF. The advantage of the

method is the totally operator’s independency (parameters-free), and the

speed of execution of the entire algorithm, if compared with the most used

VBM software.

The segmentation method relies on a k-means clustering and an artifi-

cial neural network (ANN) classifier. The segmentation results have been

compared with the results obtained from the FSL segmentation, obtaining

great results. The dataset used for algorithm development, testing, and com-

parison with the other software is the Internet Brain Segmentation Reposi-

tory (IBSR) [51], that provides manually-guided expert segmentation results

along with magnetic resonance brain image data, containing the datasets

of 18 T1-weighted MR acquisitions of its patients, and segmentations per-
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formed manually by experienced radiologists in three different tissues: WM,

GM, CSF.

6.2.1 The Proposed Segmentation Method

The proposed system is able to segment a T1-weighted MRI brain acqui-

sition in White, Gray and CSF matter [55]. The method is totally auto-

matic: in input a T1 sequence is requested, and the algorithm produces the

requested segmented tissues in output. The dataset is often composed of

several hundreds of slices, with resolution of 256x256 pixels. The workflow

of the proposed system is composed of the following steps:

1. each brain slice is clustered in 3 tissues using a simple k-means algo-

rithm;

2. the output of the k-means will be the training set of the ANN;

3. the trained ANN receives the original brain dataset as input, and gives

in output three values, each one belonging to White, Gray and CSF

matter.

The system is divided in two phases: a training phase, and a segmentation

phase. The training phase classifies the input dataset by using k-means algo-

rithm; each slices is classified in six clusters, and the clusters are aggregated

in three clusters by sorting them using the mean value of each cluster. The

feed-forward neural network is composed of 30 neurons in the hidden layer,

and 3 neurons for the output layer. The 30 neuron value has been chosen af-

ter several trials on the whole dataset. The NN takes the output of k-means
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clustering as input for the training phase: after 50-100 iterations the MSE

converges and the training phase has terminated.

6.2.2 K-Means Classification Module

Is the function that performs the classification of brain tissue in the white

matter, gray matter and cerebro-spinal fluid, which constitute the target set

for the neural network training. This module takes as input the T1 volume

and makes an unsupervised classification using a classical K-means clustering

algorithm. The k-means is configured with three classes: the algorithm aims

to partition all the given voxels into k clusters, in which each voxel belongs

to the cluster with the nearest mean, serving as a prototype of the cluster.

From experimental results, the direct classification into 3 classes of the

brain volume provides poor results because the brain is not exclusively com-

posed of three distinct tissues, but there are intermediate transition zones.

These regions have not a net area of demarcation between different tissues,

indeed lead to an incorrect recognition of the contours, and then to an in-

correct tissues segmentation.
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Figure 22: The 6-class k-means voxel clustering.

To overcome this problem, it was decided to classify the voxels of the

brain volume in six different classes, performing a downstream merger of

the intermediate classes with the correct classes WM, GM and CSF. The

segmentation in six classes then takes into account the following regions:

1. CSF: the region in where there is presence of cerebrospinal fluid;

2. CSF / GM: mixed region with presence of cerebrospinal fluid and gray

matter;

3. GM: region with the prevailing presence of gray matter;

4. GM / WM: mixed region with presence of white matter and gray mat-

ter;
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5. WM: region with the prevailing presence of white matter;

6. Background: brain areas outside the region.

The intensity values of the gray scale MR images are directly related to the

type of brain tissue. For example, on T1 a high intensity value identifies

white matter, a intermediate value is the gray matter, and a low intensity

value is related to cerebrospinal fluid. In the transition’s regions we have

intermediate intensity values that identifies however the prevalence of WM,

GM, or CSF, which will be reordered in function of the average intensity

value. The classes are then unified in adjacent pairs based on the smaller

difference of in-tensity by reducing the number of classes from 6 to 3.

By applying this procedure, we can obtain a significant improvement

in the classification of brain images through K-means in the white matter

(WM), gray matter (GM) and cerebrospinal fluid (CSF), significantly reduc-

ing the presence of artifacts introduced by a misclassification.

6.2.3 Neural Network Training Module

At the end of the segmentation phase, performed by the K-means module,

the next step consists in the neural network training phase. The training

is performed taking as inputs the T1 MRI sequence and the obtained voxel

classification of the K-means module.
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Figure 23: The implemented Neural Network classifier.

The artificial neural network is of a feed-forward typology, and it consists

of two layers. The back-propagation error algorithm allows to train the net-

work starting from a training set composed of the set of inputs and the target

set. The neural network is trained to perform the classification of patterns

through the back-propagation algorithm, known as gradient descent. This

algorithm moves the weights in the direction of the negative gradient, i.e. in

the direction in which the performance function decreases more rapidly. The

training process will end when performances reach a smaller value of goals,

or when the gradient of the performance is below the minimum threshold

value.

At the end of the training phase, the neural network can classify se-

quences provided in input. Once that the NN segmentation tool is ready, is

possible to put the brain dataset in input and use the NN for the segmen-

tation purpose. After a quick elaboration phase, the output of the NN is

a logical volume, where each voxel belongs to White matter, Gray Matter,

CSF fluid or nothing.

6.2.4 Neural Network Classification Module

The segmentation is performed by the neural network, which classifies brain

tissues in the three desired classes. The input of the neural network is a
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T1 brain dataset; every slice is processed by the NN and at the end of

the process, each voxel will be labeled in one of the 4 possible values: 0

(background), 1 (CSF), 2 (gray matter), 3 (white matter). The final step is

to unify and label the result of the classification in one image. By iterating

this process for each image in the sequence we will get the whole segmented

brain volume.

Results, comparison with FSL segmentation results, and discussion are

explained in Chapter 7.
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Chapter 7

Mammographic Reports Retrieval and Classification

In the medical field it is useful to the comparison of the reports with the

presence of multiple clinical concepts, but until now, research has focused

on the control of the similarity between individual concepts. We propose an

extension to the calculation of the cosine to compare the similarity of the con-

sidered reports, that exploit the text pre-processing and the knowledge mod-

eled by radiological ontology, and add relations "is-a" and "Equivalent-to",

that show improvement if compared to both the simple matching techniques,

such as lexical comparisons based on the Levenshtein distance, and both of

the simple calculation of the same cosine [72]. The dataset is composed of

126 reports.

7.1 Mammographic Reports Dataset

Reports were randomly extracted from a mammographic reports database of

patients of the Radiological Information System of the University of Palermo

Policlinico Hospital, and classified by three expert radiologists in 12 cate-

gories.

7.2 The Proposed Ontology-Based Retrieval System

The reports have been classified by the proposed classification method, and

by a classification method based on Levenshtein distance and K-Means. We

have calculated the of sensitivity and specificity indexes in order to evaluate
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the goodness of the proposed classification method.

The system architecture is shown in Figure 24.

Figure 24: The proposed system architecture.

The free text medical reports and all nodes-concepts present in the ontol-

ogy are pre-processed through four phases, identified as blue rectangles. This

phase is required to reduce and standardize medical terms and to improve

the results of the information retrieval process. After the pre-processing

step, each report is compared with all of the ontology concepts, identified

as red rectangles. In our proposed system each report is represented by a

N- dimensional semantic vector, where N is equal to the number of ontology

concepts, with the introduction of the concepts of "is-a" and "equivalent-to",

identified as orange rectangles. In this way the carriers, in addition to having

the elements of value 1 (present) or 0 (not present), may have not-orthogonal

concepts that are proportional to the depth of the possible common ances-
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tor. The input of the system is a specific medical report, and the comparison

process with all reports is executed. The outputs of the system are all the

reports with maximum similarity. The steps of the proposed method are the

following:

Ontology and Table Depth Nodes

The ontology describes the semantic similarity as the similarity between

concepts representing report to compare. It represents a source of knowledge

where medical terms are organized and where it is possible to assess rela-

tionships between concepts. The ontology is composed of 731 concepts, or

nodes, and the maximum depth of the hierarchy tree is six. All the concepts

have been written in collaboration with three expert radiologists skilled in

breast imaging. Based on ontology a table that contains the depth of each

node within the ontological tree starting from the root has been created.

String Tokenization (Sentences Identification)

In this phase, each real clinical report is transformed in a flow of sig-

nificant words (tokens) from which stop-words are removed (terms with low

significance, such as prepositions, auxiliary verbs and other words commonly

used). Words can be easily identified by the presence of spaces, line breaks,

and punctuation marks. Once all special characters are removed (_ <> : ,

. ; ! ? / & $ ^ ’ \T \r) and a process of tokenization that recognises the

"Single Words" is done, a flow of significant words on which be able to work

is obtained.

Stop-Word Removal

The purpose of this step is to identify the meaning of the whole sentence,

starting from the meaning of each term, and the relationships between them.
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The meaning of a sentence is not only given by the words contained, but also

on the knowledge of the rules for the construction of a sentence in a given

language. The combination of words, the order in which they appear in the

sentence, and the links bind the words with other words determining the

meaning of the sentence [13-15]. Highly frequent terms highlight the words

with low discriminatory power, including prepositions, auxiliary verbs and

other words in common use: the elimination of these Stop- Words allow the

reduction of 30-50% of the used terms.

Stemming

Stemming phase is a reduction procedure of all the words that have the

same root, the stem. The procedure is then applied in order to remove words

suffixes and extract stems. Words that begin with the same character set or

have a sequence of characters in common may have the same etymological

origin and similar information content. Generally, this procedure removes

the ends of words, leaving a common stem. Because of its high efficiency,

the Italian version of the Porter algorithm [71] is used in this work. The

algorithm reduces inflections and sometimes the words derived stem or the

shape of the root.

7.2.1 Semantic Vector for Similarity Calculation

To overcome the limitations imposed by the direct combination that requires

the presence of the same exact concepts in both compared reports, in this

study we use the semantic similarity. If we consider, for example, the concept

of "fibroadenoma" extracted from the first report and the concept of "be-

nign alterations" extracted from the second report, with a direct comparison
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based on the limited syntax for keywords on the reports, and not taking into

consideration that the same word may have a different meaning depending

on the context in which it appears, there would be no relationship between

the two reports because there are no common concepts. Actually, fibroade-

noma is a specialized form of the most common benign breast alteration and

is more common in women under the age of thirty. Whereas the analysis

based on the semantics does not just search for the words on the score sheet

but makes contextualization, making analysis dependent from hierarchical

ontology that structures from relational point of view, there is a need to take

into account the semantic relationships between these concepts to calculate a

similarity, like an experienced physician correlates reports based on his back-

ground knowledge on relations between concepts. In this study, we use the

is-a relationship ("fibroadenoma", i.e. "fibroadenoma", is a kind of "benign

alterations", i.e. "alterazione benigna") and equivalent-to ("heterogeneous

absence", i.e. "assenza eteroformativa", is equivalent to "heteroplastic ab-

sence", i.e. "assenza eteroplasica"), which binds the concepts in reference

ontology. The number of these links is understood as the degree of semantic

similarity between concepts of interest. More distant are two concepts in

the hierarchical representation of the ontology, than lower the similarity be-

cause inversely proportional to the distance between the concepts, and more

precisely defined as [64,65]:

Similarity(Concept1, Concept2) =
1

path
(15)
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where path is the number of nodes on the shortest path between the two

concepts Concept1 and Concept2 (15). The goal of the proposed method is to

determine the similarity between two clinical reports that contain generally

more breast concepts. A standard approach to compare the similarity of

reports used in the vector space model is to calculate the cosine between two

vectors [67]. The cosine similarity is a heuristic technique for measuring the

similarity between two vectors generally used for the comparison of texts in

Data-mining and text analysis.

In the analysis of the texts, you will get the values 0 and 1, where 1

indicates that the same words are present in the two texts and 0 that the

word is not present in both, requiring an exact match of the not orthogonal

concepts.

We extend the standard vector space method presented by Madylova and

Oguducu [9], used by us to create a vector with the introduction of seman-

tic concepts with relations "is-a" and "equivalent-to" not envisaged by the

actual method. In the proposed system, an N-dimensional vector represents

each report, where N is equal to the number of concepts of the ontology,

and 1 indicates the presence of the concept in the report and 0 the absence

of such a concept. In this phase, our system is identical to the standard

vector space model, that however exploits the knowledge represented in the

ontology in terms of relationships "is-a" and "equivalent-to". The vector is

populated in agreement with the search of the concepts in the radiological

ontology:

• if present, the weight is equal to 1;

• if absent, the weight is 0;
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• if there is an “equivalent-to” relationship (“heterogeneous absence"",

i.e. "assenza eteroformativa", is the absence of a lesion, and "heteroplastic

absence"", i.e. "assenza eteroplasica", is the absence of an alteration of cell

growth) the weight will be 1;

• an “is-a” relationship (“fibroadenoma", i.e. "fibroadenoma", that is a

benign growth in the breast, is a kind of “benign alterations") takes between

all the concepts found in the report the one closest to the root of the ontology,

with a weight between 0 and 1 (excluded).

For each concept C that is included between the one closest to the on-

tology root and the root itself, the weight is calculated using the following

equation:

Weight(C) =

1

M
(16)

where M is the number of nodes between the root of the ontology. So

vectors can have non-orthogonal node C and the concepts proportional to

the depth of the possible common ancestor. Once semantic vectors of reports

A and B are constructed, the similarity score is expressed using the cosine

similarity equation:

Similarity = cos(✓) =
A ⇤B

kAk ⇤ kBk =

P
m

j=1Aj

⇥B
jqP

m

j=1(Aj

)

2 ⇥
P

m

j=1(Bj

)

2
(17)

where m is the union of all the concepts in the A and B reports. In

Figure 25 a fragment of the used radiological ontology, realized with the
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collaboration of experienced radiologists of Policlinic Hospital of Palermo,

that describes the implementation of the proposed method is shown.

Figure 25: A fragment of radiological ontology, realized with the collabo-
ration of experienced radiologists of Palermo Policlinico Hospital. "mammo",
i.e. "breast", "reperti", i.e. "reports", "X-ray", i.e. "X-ray", "reperti classi-
ficati base inte...", i.e. "reports classified based interest", "calcificazioni”, i.e.
"calcifications", "composizione complessiva mammella", i.e. "overall com-
position of the breast", "assenza eteroformativa", i.e. "heterogeneous ab-
sence", "assenza eteroplasica", i.e. "heteroplastic absence", "fibroadiposo",
i.e. "fibrofatty".

The discussion about experimental results are discussed in Chapter 8.
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Chapter 8

Experimental Results

The experimental results for all the previous works are discussed in this

section.

8.1 Fingerprint and Iris based Authentication in Inter-cooperative

Emerging e-Infrastructures

The measurement indexes used in [1] are the well-known False Acceptance

Rate (FAR) and False Rejection Rate (FRR) to detect false positives and

false negatives respectively. In order to compare the results with those in the

literature and have some scientific value, the protocol used to calculate the

number of tests and procedures is that of international competition FVC [43].

Even though the competition was created for fingerprints, from a year or two

its criteria became a standard for any type of biometric recognition system.

This protocol will be used both for the unimodal and multimodal systems.

The protocol provides the following practice tests for the determination of:

• FRR calculation: each sample/image that contains the biometric fea-

tures of an individual is compared with the remaining samples/images of the

same individual. If, during the comparing step the sample g image is com-

pared with the sample h image, then the reverse comparison (i.e., h against

g) is not performed to avoid an absolutely obvious and already calculated

result;

• FAR calculation: the first sample/image belonging to each individual
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is compared with the first sample/image of all individuals, and remaining in

the database. If the sample image g corresponds to h, the reverse compar-

ison/symmetric (i.e., h against g) is not performed to avoid an absolutely

obvious and already calculated result.

The tests have been performed on two official databases freely download-

able from Internet. As for the system based on fingerprints, will be used

the FVC2002 database [53], while as regards the system based on irises will

be used the BATH database [54]. From these two databases have been con-

structed others containing other pairs fingerprint/iris to simulate the acqui-

sition of two biometric features from a generic user. Both used databases are

among the most commonly used in science to assess the robustness and per-

formance of recognition systems. The FVC2002 DB2 Fingerprint Database.

The FVC2002 DB2 [53] database containing fingerprints was constructed by

acquiring images through an optical sensor. This database is divided into

two parts, DB2A and DB2B, and is composed of a total of 880 images (800

within the database DB2A and 80 within the database DB2B) belonging to

110 users. For each user 8 images with a resolution of 296x560px have been

processed.

The BATH database [44] consists of 2000 images belonging to 50 different

ethnic groups of users. For each user are considered left and right eye,

capturing 20 images for a total of 40 images for user.

8.1.1 Multimodal Database

To test the proposed fusion technique and the multimodal system various

databases were realized. In particular:
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• the FVC2002 DB2A-S1 database was generated considering the first

50 members of the original database;

• the FVC2002 DB2A-S2 database was generated by considering the last

few 50 users of the original database;

• the BATH-S1 database was generated with 10 users extracted in a

very casual way from the original full database. For each user, we have

considered the first eight acquisitions of the left eye;

• the BATH-S2 database was generated considering 50 members of the

original database. For each user was considered the first eight acquisi-

tions of the left eye;

• the BATH-S3 database was generated considering the same 50 mem-

bers of the original databases but each of them was considered member

of the 8 images acquired at the next 9 to 16.

8.1.2 Fingerprint/Iris Recognition System

Table 4 shows experimental results achieved, in terms of FAR and FRR, in

uni-modal and multimodal recognition systems. Table gives the possibility of

being able to easily and quickly compare the results obtained with different

databases, showing a good level of robustness both in terms of approach used

and obtained result:
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Table 4: Achieved Experimental Results.

For most completeness, the following shows ROC curve relative to tests

with database DBtest4. The other curves, obtained with other databases,

reported similar characteristics:

Figure 26: ROC curve relative to DBtest4 tests.

Subsequently, the strategy fusion proposal has been applied and evalu-

ated using data-bases of smaller size. The achieved results are listed the
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following Table:

Table 5: Test Databases.

Figure 27: ROC curve relative to other db tests.

The figure shows that experimental results obtained by multimodal recog-

nition system are maintained below an acceptable threshold, and also com-

parable to the previous tests, this is sign of a good robustness of system and

approach used. This result shows a good performance considering also that

for this type of fusion (the template level) there is no weight assigned to the

individual results of each multimodal system.
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8.1.3 Fingerprint/Fingerprint Recognition System

The Matching Score Level Fusion Module computes the overall matching

score combining the two unimodal subsystem matching scores. Since the

Micro-CBA Module and the Macro-CBA Module are based on different tech-

niques and parameters to determine the unimodal matching score, a weighted

sum, with two different weights, has been used to obtain the overall match-

ing score. Experimental trials have demonstrated that the best performance,

in terms of FAR and FRR indexes, is obtained using the following formula:

Global
Score

= 0.6 ⇤Micro
score

+ 0.4 ⇤Macro
score

.

The used FVC2002/DB2B database is composed by gray scale fingerprint

images captured by an optical sensor. This database is composed by 80

images of 296x560 pixels, collected from 10 people (8 acquisitions for each

people). Table 6 shows the FAR and FRR indexes obtained by the Micro-

CBA module and the Macro-CBA module, respectively. In the same table

the FAR and FRR indexes of the multimodal system are also listed. FAR

and FRR of Micro-CBA Module have been obtained using 12 coincident

minutiae for each processed fingerprint pair, as suggested by FBI.

Table 6: Recognition results of the unimodal Micro-CBA module, of the unimodal

Macro-CBA module, and of the final multimodal system.
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FAR and FRR of Macro-CBA Module have been computed when the 60%

of the directional field of each processed pair is coincident [14]. Multimodal

system enhanced accuracy is due to the possibility to correct the wrong

results of the first unimodal system using the results achieved by the second

unimodal system and viceversa.

8.1.3.1 Hardware FPGA Implementation

Embedded biometric sensors could be a solution to exceed the security lim-

its of the conventional software recognition systems, hiding the most com-

mon attack points of a biometric authentication system [56]. An embedded

biometric sensor is composed of a biometric scanner for traits acquisition

and a hardware processing core. The use of FPGA technology for systems

prototyping leads to an acceptable accuracy, great potential speedup, and

interesting power consumption feature [57], [58].

The algorithms implementation on FPGA achieves the performance of

highly competitive systems. The proposed recognition system takes advan-

tage of FPGA technologies and introduces interesting characteristics con-

sidering algorithms used and performance achieved. Table 7 shows the ex-

ecution times necessary to perform every single authentication task with a

working frequency of 25.175 MHz.
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Table 7: Execution times of each phase and the relative speed-up factor.
The working frequency is 25.175 MHz.

The speed-up factors are referred to the number of cycles of a general

purpose Intel P4@3.00GHz with 2 GB of RAM. The low working frequency

suggests interesting considerations for the employment on the embedded rec-

ognizer in portable devices, since one of the techniques used to reduce device

power consumption is to have a low working frequency with an adequate

processing time for the device.

8.1.4 Discussion

In this chapter a multimodal biometric identification system in contrast

to the majority of work published on this topic and based on matching-

score-level fusion or decision-level fusion has been presented. In fact a

template-level fusion method for a multimodal biometric system based on

fingerprints and irises has been described. The used approach for finger-

print and iris segmentation, coding, and matching has been tested using the

official FVC2002 DB2A fingerprint database and the BATH iris database.

Even if, the frequency-based approach, using fingerprint (pseudo) singularity

point information, introduces an error on system recognition accuracy, the

achieved recognition results have shown an interesting performance if com-

pared with the literature approaches on similar datasets. On the other hand,
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in the frequency-based approach, it is very difficult to use the classical minu-

tiae information, due to its great number. In this case, the frequency-based

approach should consider a high number of ROIs, resulting in the whole fin-

gerprint image coding, and consequently, in high-dimensional feature vector.

In order to test the effectiveness of the described multimodal approach, sev-

eral datasets have been used. First, two different multimodal systems have

been tested and compared on the standard FVC2002 DB2B fingerprint im-

age database and the BATH-S1 iris image database: the former was based

on a matching-score-level fusion technique, while the latter was based on the

proposed template-level fusion technique.

The obtained results show that the proposed template-level fusion tech-

nique carries out an enhanced system showing interesting results in terms of

FAR and FRR. The aforementioned result suggests that the template-level

fusion gives better performance than the matching-score-level fusion.

Concerning the iris identification system, the achieved performance can

be considered very interesting when compared with the results of different

approaches found in literature on the same dataset or similar dataset.

The fingerprint/iris multimodal biometric system has been tested on dif-

ferent congruent datasets obtained by the official FVC2002 DB2 fingerprint

database and the BATH iris database. The first test conducted on ten users

has resulted in FAR = 0% and FRR = 5.71%, while tests conducted on the

FVC2002 DB2A and BATH databases resulted in an FAR = 0% and an

FRR = 7.28% ÷ 9.7%. The embedded bio-metric system has been tested on

the official FVC2002 DB2B fingerprint database resulting in FAR = 1.07%

and FRR = 10.71%.
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The described embedded recognizer, using FPGA technology, a smart-

card read/write device, and the AES algorithm to cipher the biometric tem-

plate, shows interesting results in terms of recognition rates.

8.2 A Novel Expert System for Non-Invasive Liver Iron Over-

load Estimation in Thalassemic Patients

The contributions [35] [36] investigate an ES for classifying liver iron over-

loading in thalassemic patients. The ES relies on a ANN for mapping a given

set of data and for extracting common features and relationships among the

data. The mathematical model is trained from an input data set. After

the successful training phase, the artificial neural network will be able to

perform classification, prediction, or simulation on new data. With more de-

tails, the ANN is used for mapping the output of the LIOMOT approach on

the output of approach based on MRI T2* assessment for liver iron overload

estimation [37].

The former is a SIR (Signal-to-Interference Ratio) based method for es-

timating the liver iron overloading in medical examinations based only on

image processing techniques. The latter is based on relaxation time of T2*

method in MRI (Magnetic Resonance Imaging) and it can determine the

degree of iron overload on human organs such as liver. LIOMOT output is a

continue value between 0 and 1, while the MRI T2* output is a classification

of liver iron overload. MRI T2* approach classifies the iron overload in four

classes: Normal, Mild, Moderate, and Severe. In this way, each entry of the

database is composed of a couple of values, i.e. a value between 0 and 1

given by the LIOMOT method, and one of possible classes produced by the
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MRI T2* technique.

The neural network has been trained using the Levenberg-Marquardt

back-propagation algorithm, and it maps the continue value produced by the

L.I.O.MO.T method with the four classes produced by the MRI T2* method.

The dataset is composed of 200 samples. The 75% of the dataset has been

used for the training phase, 20% for the validation phase, while the remaining

5% has been used for the test phase. The selected optimal model has been

evaluated considering the Mean Square Error (MSE), and the coefficient of

correlation (R), and it shows interesting performances. The dataset used for

the training-validation-testing phases is composed of patients of Hospital "P.

Giaccone" located in Palermo, Italy.

8.2.1 Patients Dataset Description

The proposed method has been tested on real dataset composed of tha-

lassemic patients. The dataset has been collected in the period from October

2010 to August 2011. 131 consecutive patients (64 men and 67 women, mean

age 34 ±11 years) affected by thalassemia-major (TM) treated with regu-

lar blood transfusion underwent upper abdominal MRI exam to assess liver

iron overload between October 2010 and August 2011. MRI was performed

using a 1.5-T scanner (GE Excite HDxt, Milwaukee, WI). An eight-element

phased-array receiver surface coil was used for signal reception. We used a

T2* gradient-echo sequence for liver and pancreas. The scan time for each

breath-hold was about 25 seconds (2-3 single end-expiratory breath-holds)

and the total scan time was less than 90 seconds. The sequence parameters

were as shown in Table 8:
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Table 8: Correlation between iron overload detected by Magnetic Resonance Imaging
(ms) and Tissue (mg fe/g dry weight)

Matrix FOV T.R. T.E. Flip Angle Slice Thickness Spacing Bandwidth

256 × 192 pixels 40 × 28 cm 225 ms 3.4 ms 20° 3.0 mm 0 31.2 KHz

8.2.2 Experimental Results

Signal intensity (SI) was measured on a single slice, passing through the

portal vein, and it was obtained calculating the mean values of four fixed re-

gions of interest (ROIs) of 0.3 cm2 placed in the liver and paraspinal muscle

in order to obtain the liver-to-muscle SI ratio. Three ROIs were selected in

the liver, in order to identify the right lobe, left lobe and periportal space,

while the last ROI was placed in the paravertebral muscle (referenced tissue)

avoiding artifacts, particularly the decrease of SI adjacent to the posterior

lung bases, liver vessels, and heterogeneous areas. Then, we calculated the

average of the measurements and the liver-to-muscle SI ratio for each patient.

In our statistical evaluation three expert physicians have executed the LI-

OMOT method. We have estimated the intra and inter-operator variability,

as discussed in Section 7.1.3.

The proposed LIOMOT approach has been validated with the use of an

Expert System. For each patient, MRI T2* and LIOMOT method have been

used for assessment for liver iron overload. The results have been classified

through the use of the proposed Expert System, mapping each LIOMOT

output with the corresponding MRI T2* class.
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The parameters measured for evaluating the performances is the Mean

Squared Error (MSE). MSE was computed for training, testing, and valida-

tion phases. In addiction, the linear regression of targets relative to outputs

has been computed. The proposed ANN was created with the maximum

limit of epochs equal to 100, while it converges at epoch 45. In Figure 28 it

is possible to see that the MSE for training, testing, validation and global

phase is plotted. In particular, the minimum MSE is reached at epoch 39,

with value 0.1195.

The four classes of the state-of-the-art method, based on MRI T2* assess-

ment, are shown on x-axes, while L.I.O.MO.T bandwidth values are shown

in y-axes. The black line shows the ideal model, while the blue, green, red,

and magenta lines indicate the output of the used ANN. The total weighted

average in system accuracy was 93%, that is, only 7% of cases were misclas-

sified.
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Figure 28: Training, Validation, Test and Overall Mean Square Error. The four classes
of the state-of-the-art method, based on MRI T2* assessment, are shown on x-axis, while

L.I.O.MO.T bandwidth values are shown in y-axis.

8.2.3 Statistical Analysis

The estimation of the inter-operator variability is calculated with Cronbach

alpha coefficient, whereas the Intra-class Correlation Coefficient (ICC) for

the intra-operator agreement has been used. The Tables 9 and 10 show the

statistical values for Cronbach alpha coefficient and the coefficient for ICC.
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The values computed show that the proposed approach has high value of

inter and intra-operator variability.

The values computed show that the proposed approach has an high value

of Inter and Intra-operator variability. In particular, the high Cronbach’s

alpha means that the probability of patients misclassification is low, whereas

the ICC asserts that the quantitative measurements made by same physician

are highly reproducible.

Table 9: Evaluation of inter-operator variability (Cronbach alpha).

Physician 1 Physician1 Physician 2

Physician 2 Physician 3 Physician 3

Dropping 0.8718 0.8685 0.9593

Total 0.9281

Table 10: Evaluation of intra variability (Cronbach alpha).

Intra-operator variability (ICC)

0.9101

8.2.4 Discussion

A novel Expert System based on Artificial Neural Network for non-invasive

Liver Iron Overload Estimation in Thalassemic Patients has been presented.

The ES validates the output of the LIOMOT method through the output

obtained from the MRI T2* method. We have achieved this scope using the
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proposed Expert System based on Artificial Neural Network. The system

validates the LIOMOT method bringing back each case to a specific class

of the MRI T2* method, obtaining successful classification in 93% of cases,

highlighting the reliability of the proposed algorithm and enabling it as a

comparable alternative for investigating liver iron overload with a novel non-

invasive method.

8.3 An OsiriX Plugin for Liver Lesion Segmentation

It has been developed a plug-in for a free widespread DICOM viewer software

based on a personal computer configured in server function [48], [49]. Images

of 50 metastatic patients are been taken from the PACS system using a

local high speed network connection, and hepatic findings are been used for

scientific purposes. All focal liver lesions were studied both at conventional

CT workstation, by an expert radiologist, and by the software automatic

evaluation. We analyzed CT images of 50 patients with liver metastases

and for each patient was analyzed up to a maximum of three lesions. For

each lesion was considered the dimensional and the densitometric criteria

and were obtained 3D reconstructions. Results was compared by an other

expert radiologist that saw all the images and the software reports.

8.3.1 Patients Dataset

A dataset composed of 50 patients, age between 45 and 75 y., that show

liver methastasis have been evaluated. The images have been acquired from a

multidetector CT scanner (Brilliance 64, Philips Medical System, Cleveland,

Ohio, USA), using the acquisition parameters shown in Table 11:
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Table 11: Acquisition Parameters.

Collimation Gantry Rotation Time Slice Thickness Overlap Reconstruction Image

64 x 0.5 mm 420 ms 1.5 mm 0.7 mm 1 mm

In CT imaging, the lesion’s density reflects an intra-tumoral attenuation,

expressed in Hounsfield units (Hu). For the RECIST and CHOI criterias,

the effectiveness of the evaluation is obtained assessing the affected area,

segmenting it from the healthy tissues, and calculating statistical parameters

such as mean value, standard deviation and so on.

8.3.2 Experimental Results

A total of 50 patients were evaluated, for an assessment of 190 liver lesions.

These lesions were analyzed by two experienced gastrointestinal oncology ra-

diologists, both using an advanced computer station (Agfa HealthCare NV)

as well as through the evaluation of the axial images, also of multiplanar

reconstructed images (MPR), maximum intensity projection (MIP) and vol-

ume rendering (VR), and through the usage of the OsiriX plug-in. Detection

and evaluation of dimensional and densitometric changes liver metastases are

a time-expensive proceedings in clinical practice. Using an automated soft-

ware is possible to be better accurate in evaluation of measure and density of

focal liver lesions in less time than using the conventional CT workstation.

This tool performs the automatic segmentation of regions of damaged

liver, allowing the calculation of values as an average density of the tissues,

variance, area, transverse diameter, volume, and reconstruction in 3 dimen-

sions for a better evaluation from the anatomical point of view, and the
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generation of a report in spreadsheet format. The strength of a software of

this type is the reduction of the intra and inter-operator error, including a

significant speedup in the vision and analysis of such images.

8.4 Referenceless Thermometry using Radial Basis Function

Interpolation

In this contribution [15] we have compared classical PRF thermometry,

Referenceless thermometry, and our novel RBF Referenceless thermometry

method. The proposed RBF kernels that we have compared are: Linear

RBF, Thin-Plate Spine RBF and Multiquadratic RBF.

8.4.1 Ex-Vivo Thermal Treatment Temperature Assessment

In this trials [15], we have acquired a MRI dataset from a MRgFUS trial

treatment on a ex-vivo porcine muscle.

Table 12: MR dataset characteristics used for experimental results.

Dataset Characteristics Acquisition Protocol TE/TR Slice Thickness Matrix Size

Ex-Vivo animal muscle Gradient Recall Echo 12.5/25.4 3 mm 256x256

The characteristics of used datasets are showed in Table 12. All the MR

images are taken from a GE Sigma HDtx 1.5T scanner, and the ultrasound

sonications are performed by an InSightec ExAblate 2100 system. Each

sonication takes several seconds to focus high power ultrasounds in the chosen

focal point. During each sonication, 9 series of morphological/real/imaginary

images are taken, one for each temporal instant. The real and imaginary part

are combined together and unwrapped to obtain a phase image.
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8.4.2 Experimental Results

The RBF methods have been compared with the polynomial method, using

classical PRF shift method as our gold-standard. For each of them has been

calculated the Root Mean Square Error (RMSE) between PRF and recon-

structed images, and the mean temperature difference against classical PRF.

As introduced above, our tests have been conducted performing ultrasound

sonication on a ex-vivo porcine muscle (Figure 29). Obtained results are de-

picted in Tables 13 and 15. In this experiment the RMSE shows that RBF

reconstructions has better results with respect to polynomial reconstruction.

Figure 29: Sonication detail in a porcine muscle. The bright part on the left shows the
induced protein denaturation.

These results are confirmed in Tables 14 and 16, which show the mean

values of the temperature reconstructions compared to PRF mean tempera-

ture values. In many cases the RBF reconstruction is better than polynomial

one. In Figure 29.a, it is possible to see background noise outside to sonicated

area (because of PRF shift is affected by relevant noise due to misregistra-

tion of phase images). Figure 30 shows the temperature graphs obtained

with several reconstructed on sonicated area.
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Figure 30: PRF shift classical reconstruction: the typical noise induced by misregis-
tration between different temporal instants is noticeable; b) 5° degree polynomial recon-
struction; c) Linear RBF reconstruction; d) Thin-Plate Spline reconstruction.

It shows the temperature calculated with standard PRF shift, polynomial

method, linear RBF, thin-plate spline RBF, and Multiquadratic RBF for a

chosen point along the successive temporal instants of the treatment.

Polynomial reconstruction over-estimates the temperature: this can lead

to stop the sonication before reaching the temperature established with the

risk of not producing the proteins denaturation as desired.
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Figure 31: Temperature rise for each method in the chosen point.

Figure 32 shows the differences between the referenceless methods com-

pared with classical PRF.

Figure 32: Temperature differences obtained from each interpolation method.

107



Table 13: MR dataset characteristics used for experimental results.

Temporal Instant 5° Degree Polynomial Thin-Plate Spline RBF Linear RBF Multiquadratic RBF

1 0.034 0.001 0.017 0.022

2 0.041 0.017 0.025 0.036

3 0.070 0.053 0.060 0.065

4 0.086 0.064 0.073 0.062

5 0.066 0.046 0.055 0.043

6 0.065 0.045 0.059 0.066

7 0.075 0.060 0.075 0.058

8 0.119 0.117 0.120 0.123

Table 14: Mean �T (°C) With Respect to PRF Approach in #1 Ex-Vivo
Sonications.

Temporal Instant 5° Degree Polynomial vs. PRF Thin-Plate Spline RBF vs. PRF Linear RBF vs. PRF Multiquadratic RBF vs. PRF

1 -2.865 -0.121 -1.377 -1.412

2 -3.002 -0.962 -1.661 -1.692

3 -4.208 -2.827 -3.365 -3.397

4 -4.726 -2.890 -3.649 -3.687

5 -4.203 -2.491 -3.230 -3.268

6 -4.114 -2.428 -3.611 -3.647

7 -4.892 -3.653 -4.884 -4.921

8 -5.839 -5.477 -5.732 -5.766
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Table 15: R.M.S.E. for #2 Ex-Vivo Experiment

Temporal Instant 5° degree polynomial thin-plate spline RBF linear RBF multiquadratic RBF

1 0.011 0.012 0.011 0.011

2 0.020 0.005 0.002 0.006

3 0.047 0.032 0.034 0.042

4 0.075 0.075 0.070 0.059

5 0.092 0.099 0.086 0.088

6 0.121 0.123 0.117 0.118

7 0.140 0.150 0.140 0.137

8 0.150 0.148 0.145 0.149

Table 16: Mean �T (C°) with respect to PRF approach in #2 Ex-Vivo
Sonications.

Temporal Instant 5° degree polynomial vs. PRF thin-plate spline RBF vs. PRF linear RBF vs. PRF multiquadratic RBF vs. PRF

1 -0.759 0.840 0.800 0.776

2 -1.190 -0.153 0.072 0.043

3 -1.615 -0.483 -0.643 -0.670

4 -2.246 -2.227 -1.830 -1.852

5 -2.784 -3.282 -2.350 -2.378

6 -3.555 -3.745 -3.311 -3.338

7 -4.201 -4.958 -4.216 -4.245

8 -4.515 -4.329 -4.110 -4.139

As demonstrated, there is an high improvement in Referenceless ther-

mometry using Radial Basis Functions instead of simple Polynomial inter-

polator.

8.5 RBF Interpolation for Referenceless Thermometry En-

hancement

Using the know-how learned and developed in using RBF interpolator for

Referenceless thermometry[15], an extension of the method for evaluation
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of temperature during real MRgFUS treatments on female patients under-

gone to uterine fibroma ablation has been proposed [50]. In this contribution

classical PRF thermometry, polynomial referenceless thermometry, and the

proposed referenceless RBF thermometry have been compared. As afore-

said, Polynomial reconstruction can over/under estimate the temperatures:

this can lead to break the sonication before reaching the temperature es-

tablished. The risk is the missing proteins denaturation, pain inducted in

patients, and damage to surrounding tissues. RMS errors and temperature

differences show a huge increase of precision in comparison with other kind of

interpolators. The obtained results are very promising and suggest that RBF

are valid instruments to reconstruct unknown pieces of a surface, estimating

coefficients from the data surrounding the sonication area.

8.5.1 In-Vivo MRgFUS Patients Dataset

Ten MR datasets related to ten female patients undergone to MRgFUS treat-

ments for ablation of intra-uterine fibroid have been processed and evaluated.

All the MR images are acquired by a GE Signa HDxt 1.5 Tesla scanner, and

the ultrasound sonications are performed by an Insightec ExAblate 2100

system. Each hyperthermia sonication takes several seconds to focus high

power ultrasounds in the chosen focal point. During each sonication the MR

scanner records about 8-12 temporal instants, and each of them is composed

of a tern of morphological-real-imaginary images. The real and imaginary

parts are combined together to reconstruct phase maps.
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8.5.2 Experimental Results

The evaluation of our approach was performed by calculating Root Mean

Square (RMS) errors between the original baseline and each reconstructed

(Polynomial and our Radial Basis Functions) interpolation, and calculating

the differences (in C°) of the mean temperature value between the original

PRF temperature and those provided by polynomial and our RBF approach.

The kernels here used are the Euclidean, Thin-Plate Spline and the Multi-

Quadratic one (Fig. 19).

The natural criterion for assess a reconstructed phase image is how closely

it matches the baseline surface prior to the removal of the heated area. The

interpolator fitted to the incomplete phase-map is then compared with the

original baseline surface. Obtained temperature assessments in a MRgFUS

treatment for the ablation of a uterine fibroid are shown in Figure 33.
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Figure 33: Temperature reconstruction for a temporal instant dur-
ing MRgFUS treatment: a) the morphologic MR image; b) tempera-
ture assessment using the classical PRF shift method; c) temperature
assessment using the Polynomial method; d) temperature assessment
using the Linear RBF method; e) temperature assessment using the
Multi-Quadratic RBF method; f) temperature assessment using the
Thin-Plate Spline RBF method. The depicted values are in °C.

In this figure the RMS error shows that RBF reconstructions (Linear and

Multi-Quadratic) has better results with respect to Polynomial reconstruc-

tion, assuming that the PRF temperature is the gold standard. Results show

a huge increase of precision on the whole reconstructed area.

These results are confirmed in Figure 34, where all the mean tempera-
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tures of the treated areas related to thermal treatments of all patients have

been compared to PRF temperature.

Figure 34: RMS errors for different kind of reconstruction methods compared to classical
PRF Shift thermometry.

In Figure 34 is depicted to see the temperatures evaluation in a ran-

dom chosen point of the treatment area. All the RBF-based reconstructed

temperatures (the blue, cyan, and black lines) runs very close to the gold

standard PRF temperature (red line); we cannot say the same for the poly-

nomial interpolation (green line).

This demonstrates that radial basis functions are a very good kind of

interpolator for this type of noisy data, even if there are large regions with

missing data.
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Figure 35: Mean temperature errors (°C) of the whole area hit by thermal treatment.

Figure 36: Temperature rise (in °C) for a treatment of about 32 seconds. The red line is
the reference PRF temperature, the green line is the Polynomial reconstructed

temperature; the black (Thin-Plate Spline), blue (Linear) and cyan (Multi-Quadratic)
lines are the RBF-based reconstructed temperatures.
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The goodness of the RBF reconstruction is confirmed, for example, in

the ninth temporal instant, the PRF temperature is 73.04°C. The RBFs

temperatures differs of 3-4°C, while the Polynomial temperature is about

10°C. less. In a MRgFUS treatment, this can lead to continue the sonication

process even if it is not necessary, surely causing pain to the patient and

possible damages in surrounding tissues.

Figure 37: The variation (error) of reconstructed temperatures compared with the PRF
temperature.

In conclusion, the RBF reconstruction method gains all the advantages

of referenceless thermometry avoiding lacks of precision of the Polynomial

interpolation temperature reconstruction.

8.5.3 Discussion

In this work classical PRF thermometry, polynomial referenceless thermom-

etry, and the proposed referenceless RBF thermometry have been compared.
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The proposed interpolation method has been applied to 2 typologies of

datasets: one dataset is relative to an ex-vivo animal muscle, that has been

hit by various FUS beams in order to reach high temperatures; the other

one is related to several female patients undergone to MRgFUS treatments

of uterine fibroma. Polynomial reconstruction can over/under estimate the

temperatures: this can lead to break the sonication before reaching the tem-

perature established. The risk is the missing proteins denaturation, pain

inducted in patients, and damage to surrounding tissues. RMS errors and

temperature differences show a huge increase of precision in comparison with

other kind of interpolators. The obtained results are very promising and

suggest that RBF are valid instruments to reconstruct unknown pieces of

a surface, estimating coefficients from the data surrounding the sonication

area.

8.6 Voxel-Based Morphometry

The contribution [55] proposes a novel method that measures the brain’ mat-

ters (WM, GM, and CSF) in order to assess and quantify their volumetries.

The goal of VBM is to assess the presence and the follow-up of matter’s

reduction, especially in presence of neurodegenerative diseases (i.e. cortical

atrophy, dementia, Alzheimer disease). The segmentation and volumetry

results has been compared with the results of another widely-used VBM

software, FSL. The dataset used for the tests is the IBSR dataset.
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8.6.1 IBSR Dataset

The public available IBSR dataset (v2.0), freely downloadable, composed of

18 MR T1 patient acquisitions and the respective manual segmentation has

been used in order to evaluate the goodness of the proposed segmentation,

not only on the Ground Truth manual segmentation, but also in comparison

with the state-of-the-art software used in literature for VBM evaluation. The

results are calculated as follows:

• True Positives - TP = voxel considered matter both in reference seg-
mentation and in considered segmentation;

• False Positives - FP = voxel considered to belong to the matter but
not considered as such in the segmentation reference;

• False Negatives - FN = voxel excluded from the matter but considered
to belong to the matter in the reference;

• True Negatives - VN = voxel excluded both from the reference seg-
mentation, and the calculated segmentation.

The sensitivity, specificity, Dice and Jaccard are calculated as follows:

Sensitivity =

TP

TP + FN
(18)

Specificity =

TN

TN + FP
(19)

Jaccard =

TP

TP + FN + FP
(20)

Dice =
2TP

2TP + FN + FP
(21)
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Figure 38: In pink, all the voxel correctly labeled from the proposed algorithm; in cyan,
all the ground-truth reference voxel. Their intersection are the TP.

Image resolutions are as depicted in Table 17.

Table 17: Image Resolutions.

# patient Voxel size (mm3) X Y SLICE

1 1,32 0,9375 0,9375 1,5

2 1,32 0,9375 0,9375 1,5

3 1,32 0,9375 0,9375 1,5

4 1,32 0,9375 0,9375 1,5

5 1,32 0,9375 0,9375 1,5

6 1,32 0,9375 0,9375 1,5

7 1,50 1 1 1,5

8 1,50 1 1 1,5

9 1,50 1 1 1,5

10 1,50 1 1 1,5

11 1,50 1 1 1,5

12 1,50 1 1 1,5

13 1,32 0,9375 0,9375 1,5

14 1,32 0,9375 0,9375 1,5

15 1,05 0,8370 0,8370 1,5

16 1,05 0,8370 0,8370 1,5

17 1,05 0,8370 0,8370 1,5

18 1,05 0,8370 0,8370 1,5
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Table 18: The ground-truth volumetry for all the 18 IBSR patient’ brains.

# C.S.F. Grey Matter White Matter Brain

1 78.201 725.132 354.126 1.157.459

2 101.948 675.954 425.432 1.203.334

3 66.265 605.843 287.071 959.179

4 60.644 695.921 323.756 1.080.321

5 109.282 596.162 340.165 1.045.609

6 127.566 575.260 379.514 1.082.340

7 81.379 483.523 305.733 870.635

8 106.942 478.704 287.058 872.704

9 93.645 555.150 358.523 1.007.318

10 120.956 541.347 324.199 986.502

11 82.859 524.859 354.394 962.112

12 113.485 559.844 286.316 959.645

13 68.983 728.698 282.996 1.080.677

14 81.380 694.738 370.382 1.146.500

15 90.750 858.640 433.175 1.382.565

16 92.423 951.201 422.869 1.466.493

17 98.295 1.012.620 464.786 1.575.701

18 113.822 1.051.975 514.842 1.680.639

Each dataset has been segmented by using FSL, SPM, and the proposed

system. Sensitivity and specificity indexes, and Jaccard and Dice similarity

coefficients have been calculated comparing the output of each software with

the ground-truth segmentation provided by the IBSR dataset.

8.6.2 Experimental Results

The proposed segmentation method has been compared with the FSL soft-

ware, segmenting all the 18 patient’s dataset and comparing the obtained

results with the ground-truth manual segmentation provided from IBSR

dataset. The Table 19 report all the ground-truth volumetry for each matter
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that compounds the brain, WM, GM, CSF. The values are expressed in vox-

els. For the FSL segmentation, the standard segmentation parameters have

been used, in order to compare the FSL segmentation with our proposed

segmentation. The FSL segmentation results have been compared with the

ground-truth segmentation, calculating the sensitivity, specificity, Jaccard,

and Dice indexes.

Table 19: The Sensitivity and Specificity indexes of FSL segmentation, compared
to Ground-Truth segmentation.

# Sensitivity CSF Specificity CSF Sensitivity GM Specificity GM Sensitivity WM Specificity WM

1 97,69 97,58 60,47 99,65 91,46 99,00

2 96,95 97,93 69,11 99,38 88,67 99,52

3 95,95 98,76 67,93 99,79 94,31 98,94

4 94,88 98,58 65,87 99,78 94,74 98,62

5 96,17 98,39 67,40 99,56 90,09 99,27

6 96,38 98,31 67,77 99,53 90,63 99,44

7 96,58 98,27 66,52 99,38 83,84 99,78

8 93,54 98,49 68,01 99,54 88,39 99,66

9 95,30 98,12 66,18 99,36 86,53 99,63

10 94,50 98,30 69,15 99,41 87,13 99,70

11 93,17 98,12 66,21 99,41 87,51 99,74

12 94,88 98,16 64,62 99,64 91,23 99,47

13 95,06 98,54 63,05 99,81 94,85 98,41

14 97,07 98,60 73,97 99,68 93,18 99,23

15 91,75 97,89 71,54 99,62 94,20 99,13

16 91,76 98,15 70,41 99,73 96,26 98,42

17 91,38 97,68 67,47 99,67 95,13 98,30

18 94,23 97,53 68,88 99,58 94,37 98,54

The depicted values in Table 19 show that there is a poor segmentation

for the Grey and White matter, because sensitivity indexes are not so strong.

The Jaccard and Dice indexes confirms the segmentation results (Table 20).

In Table 21, we have summarized the segmentation results of the novel

method, calculating also in this case the sensitivity and specificity indexes
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when compared with the manual segmentation provided by the IBSR ground-

truth.

Table 20: The Jaccard and Dice indexes of FSL segmentation, compared to
Ground-Truth segmentation.

# Jaccard CSF Dice CSF Jaccard GM Dice GM Jaccard WM Dice WM

1 27,36 42,96 58,30 73,66 74,51 85,39

2 36,18 53,14 64,56 78,47 81,33 89,70

3 37,54 54,59 66,11 79,60 72,62 84,14

4 32,10 48,60 64,30 78,27 70,56 82,74

5 43,28 60,41 63,70 77,82 76,83 86,90

6 45,99 63,01 63,69 77,82 81,00 89,51

7 34,88 51,72 60,37 75,29 79,20 88,39

8 43,07 60,21 63,19 77,44 80,57 89,24

9 35,76 52,68 60,71 75,55 79,91 88,83

10 43,64 60,77 63,72 77,84 81,09 89,56

11 32,29 48,82 60,84 75,66 82,69 90,53

12 40,50 57,65 61,57 76,21 79,25 88,43

13 34,40 51,19 61,80 76,39 65,19 78,93

14 39,95 57,09 71,46 83,36 79,88 88,82

15 31,33 47,71 69,22 81,81 81,25 89,65

16 34,48 51,28 68,97 81,64 74,18 85,18

17 30,94 47,26 65,90 79,44 73,80 84,92

18 33,70 50,41 66,91 80,18 77,13 87,09

We want to highlight that the method is totally automatic and no pa-

rameters are provided to the segmentation system. The Table 21 shows the

improvement in terms of sensitivity and specificity indexes, showing how the

WM recognition, and mainly the GM recognition it has been improved.

The previous results are confirmed in Table 22, where the Jaccard and

Dice indexes show the improvement in the correct matter labeling of our

method compared to FSL segmentation method.
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Table 21: The Sensitivity and Specificity indexes of the proposed segmentation
method, compared to Ground-Truth segmentation.

# Sensitivity CSF Specificity CSF Sensitivity GM Specificity GM Sensitivity WM Specificity WM

1 91,74 98,70 80,09 99,05 80,70 99,65

2 87,65 99,18 85,75 98,99 84,39 99,66

3 89,34 99,48 79,43 99,65 92,73 99,09

4 90,59 98,91 78,79 99,53 89,91 99,41

5 86,38 99,51 75,94 99,60 94,73 98,77

6 77,15 99,79 66,05 99,55 97,98 97,81

7 89,14 99,03 69,78 99,77 96,12 99,20

8 87,75 98,97 69,36 99,69 95,19 99,25

9 86,41 99,09 69,78 99,65 95,28 98,90

10 88,18 98,98 67,20 99,72 96,98 98,88

11 88,33 98,88 65,71 99,76 96,40 98,93

12 88,45 98,89 70,08 99,72 96,20 99,11

13 86,21 99,38 82,32 99,48 88,75 99,31

14 91,36 99,44 85,87 99,51 91,43 99,41

15 85,44 98,55 84,23 98,63 78,51 99,82

16 82,94 98,97 80,88 99,09 87,21 98,84

17 79,58 99,10 87,45 98,83 85,11 99,43

18 84,18 99,21 83,92 98,76 85,47 98,81

Table 22: The Jaccard and Dice indexes of the proposed segmentation method,
compared to Ground-Truth segmentation.

# Jaccard CSF Dice CSF Jaccard GM Dice GM Jaccard WM Dice WM

1 38,47 55,56 72,80 84,26 74,75 85,55

2 52,62 68,96 76,90 86,94 79,39 88,51

3 53,88 70,03 76,04 86,39 73,71 84,86

4 36,31 53,27 74,90 85,65 78,41 87,90

5 63,01 77,31 72,13 83,81 73,43 84,68

6 67,78 80,80 62,27 76,75 66,99 80,23

7 44,88 61,95 67,22 80,40 79,32 88,47

8 48,88 65,66 66,01 79,52 78,63 88,04

9 47,74 64,62 66,45 79,85 76,39 86,62

10 51,98 68,40 64,58 78,48 75,79 86,23

11 41,54 58,70 63,40 77,60 77,60 87,39

12 48,83 65,62 67,47 80,57 76,82 86,89

13 49,26 66,01 78,08 87,69 74,04 85,09

14 58,24 73,61 81,48 89,80 81,13 89,58

15 36,75 53,75 75,17 85,83 76,04 86,39

16 43,05 60,19 75,51 86,05 71,52 83,39

17 45,17 62,23 80,58 89,25 77,57 87,37

18 53,55 69,75 77,23 87,15 72,35 83,95

Finally, the advantages of our method compared to FSL method are

depicted in Table 23 and 24.
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Table 23: The Sensitivity and Specificity gain of our method compared to FSL

Method.

avg. Sensitivity Gain avg. Standard Deviation Sensitivity Gain avg. Specificity Gain avg. Standard Deviation Specificity Gain

+0,227 -4,254 +0,233 -0,290

Table 24: The Dice and Jaccard gain of our method compared to FSL Method.

avg. Dice Gain avg. Standard Deviation Dice Gain avg. Jaccard Gain avg. Standard Deviation Jaccard Gain

5,550 -4,290 +6,302 -4,196

8.6.3 Discussion

The FSL software is a wide used segmentation software for volumetric brains

dataset. It suffers however of almost two defects: (i) the high number of pa-

rameters for the system tuning, that increase the segmentation misclassifica-

tion if the software is used from people that don’t know the used algorithms

and parameter’s choice (e.g. physicist); and (ii) the whole process is rather

slow: on modern computers a brain composed of 300-400 slices is segmented

at least in 25-30 mins.

Our method employs about 5 minutes for the whole process: 4.30 min

for the k-means and training processes, and just 20-30 seconds for the voxel

labeling executed by the artificial neural network.

Results are highly comparable and furthermore better than FSL segmen-

tation; the proposed system doesn’t require any input parameter. Experi-

mental results shows that the sensitivity and specificity of the system are
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absolutely comparable with the FSL results: moreover, many results are su-

perior because closer to the ground-truth values. Dice and Jaccard similarity

coefficients confirm the previous results, showing also an improvement in the

majority of cases.

8.7 An Ontology-Based Retrieval System for Mammographic

Reports

The ontology describes the semantic similarity by means of similarity be-

tween concepts contained into unstructured reports . It represents a source

of knowledge where medical terms are organized in a hierarchical tree and

where it is possible to assess relationships between concepts. The dataset

used in this work is composed of 126 unstructured mammographic reports,

randomly extracted from the available reports in the Radiological Informa-

tion System of the University of Palermo Policlinico Hospital. They are

written in Italian language.

The developed ontology is composed of 731 concepts, or nodes, having 6

as maximum hierarchy tree depth. The ontology has been developed with

the collaboration of three breast imaging expert radiologists. The proposed

system computes the report’s cosine similarity exploiting semantic vectors

and the "is-a" and "equivalent-to" relations [72]. The proposed method

shows great improvements if compared against the syntactic classical method

8.7.1 Experimental Results

By locating "fibrofatty", i.e. "fibroadiposo", in the radiological ontology, its

depth (shortest distance) in the ontology based on the report "is-a" is shown
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in Table 25.
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Assigning to the nodes in the ontology a weight calculated by applying the

Eq. (16), we obtain the weight of the node "fibrofatty", i.e. "fibroadiposo",

as reported in Table 26. When a report has more concepts in the ontology,

such as "fibrofatty", i.e. "fibroadiposo", and "heteroplastic absence", i.e.

"assenza eteroplasica", the calculation will be done on both nodes, as shown

in Table 26, for all the concepts present in the examined reports. Once the

weight for each concept of the report present in a node of the ontology is

calculated, the semantic vector for the report will be completed, populating

it with weights equal to 1 for concepts having relationship "equivalent-to"

and with weights between 1 and zero excluded all the ancestors between the

concept and the root of the ontology, calculated using Eq. (17) to set the

minimum distance between the ancestor and any concept in the document.

So vectors can have non-orthogonal concepts proportional to the depth of

the possible common ancestor.

Table 27 shows the semantic vectors of the four reports of breast shown

in Table 26. The similarity between the vectors of semantic reference to

compare (PG601923) and three semantic vectors (PG286598, PG60058 and

PG287361) is calculated using Eq. (17). In Table 28 we reported that the

similarity values were calculated for some reports containing respectively

one, two and three concepts present between the nodes of radiological ontol-

ogy proving that the calculated similarity value is indicative of the closeness

of the semantic content of the two compared reports. In fact, this similarity

is equal to 1 by comparing the report PG601923 with himself and with the

report PG600585 as submit a report "equivalent-to" between nodes "hetero-

plastic absence", i.e. "assenza eteroplasica", and "heterogeneous absence",
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i.e. "assenza eteroformativa", that makes these two identical concepts. You

can see that the similarity between PG601923 and PG287361 is higher but

not equal to 1 (0.94 for instance) since they differ only for the "calcifications"

concept, that is very close to the root. Finally, the similarity between the

PG601923 and PG286598 report is 0.60, because they differ in the concept

of "heteroplastic absence", i.e. "assenza eteroplasica", that is much deeper

than the root.

The proposed method has been tested on a dataset composed of 126 re-

ports randomly taken from a mammographic report database in the Radio-

logical Information System of the University of Palermo Policlinico Hospital,

Italy. They are written in Italian language and they are classified by three

expert radiologists in 12 categories (Table 29). To validate the proposed

methodology we use semantic vectors to compare reports. The report are

classified with values equal to 1 if there is a identical report, according to Eq.

(17), obtaining 13 different classes, each of which contains reports identical

between them. In order to assess the improvement, the proposed method

system has been compared against a standard literature system based on

lexical methodology uses Levenshtein distance and k-means clustering with

twelve different classes, each of which contains identical reports (such as the

classification made by three expert Radiologists in Table 29).

System performances have been evaluated by using several indexes. In

Information theory, the reliability of a binary classification test (True/False,

Positive/Negative) is generally assessed in terms of Sensitivity (Se) and

Specificity (Sp). The two indexes are defined by means of four parame-

ters: True Positive (TP), False Positive (FP), False Negative (FN), and
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True Negative (TN):

• True Positive is the number of reports present both in a class of the

proposed method and in a class of the classification made by three expert

radiologists (gold standard);

• False Positive is the number of reports not present in a class of the

proposed method but present in a class of the gold standard;

• False Negative is the number of reports present in a class of the proposed

method but not present in a class of the gold standard;

• True Negative is the number of reports not present both in a class of

the proposed method and in a class of the gold standard.

Sensitivity measures the percentage of actual positives, which are cor-

rectly identified as such, while Specificity measures the percentage of actual

negatives. In numerical terms, the two parameters are calculated as follows:

Sensitivity =

TP

TP + FN
(22)

Specificity =

TN

TN + FP
(23)

To test the reliability of the method proposed, Sensitivity (22) and Specificity

(23) have been used, considering two different classification methods.

With the first classification method (Levenshtein distance and k-means

clustering), reports with the same distance are selected. Specificity and

Sensitivity average values for 12 classes are 53,52% and 100%, respectively

(Table 30).
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The second classification method (proposed method), the system selects

the reports with similarity equal to “1” with the reference report. The average

values of Sensitivity and Specificity for 12 classes are 91,29% and 100%,

respectively (Table 31).

The conducted trials show relevant values of Sensitivity if compared

against the syntactic classical method, giving rise to the Sensitivity rate

of +37,77%. i.e. the developed classifier correctly labels the report in the

right gold standard class; moreover, the classifier presents excellent values of
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Specificity, i.e. the developed classifier have zero false positives.

8.8 Discussion

In health care domain and in particular in mammography it is important to

evaluate the similarity between unstructured clinical reports, allowing the

search for similar relevant clinical cases, for instance, to find similar reports

for a patient related to the current clinical situation. In this paper a text

based indexing system for mammographic similar reports retrieval has been

proposed.

The whole system shows interesting results and provides a real-time use-

ful Medical Decision Support System to be used during the referral process.

With more detail the method shows great improvements if compared to syn-

tactic classical methods, showing an improvement in Sensitivity of 37,77%

and while maintaining a Specificity of 100%. Future directions will aim to

integrate heterogeneous clinical data, such as biopsy reports, surgery data,

follow-up reports, etc. to build a complete knowledge base addressing the

breast pathologies domain. The new data will increase knowledge-based

consistency in order to develop innovative Big Data based Medical Decision

Support Systems.

This work was partially supported by the Italian “Ministero dell’Istruzione,

dell’Università e della Ricerca” under the project PON Smart Cities PON04a2_C

“SMART HEALTH - CLUSTEROSDH - SMART FSE - STAYWELL” and

under the projects PON PAC "BD4BREAST", project code PAC02L1_00106.
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Discussions and Conclusions

In this ph.D. Thesis a series of contributions involving the design, the devel-

opment, and the implementation of innovative data elaboration techniques

coming from heterogeneous imaging sources have been presented.

A part of the activity was focused on medical image segmentation with a

significative improvement in some research topics of current interest. At the

same time, the developed systems represent improved targets for diagnostic

purposes, rising the quality of the work performed by the physician (e.g.

reduced errors of measurement, ease/speed of execution of some tasks, etc.).

In biometrics field, two multimodal authentication systems have been

investigated, with the combined use of fingerprint and iris biometrical tem-

plate. The systems are based on matching-score-level fusion or decision-level

fusion, and using the official FVC2002 DB2A fingerprint database and the

BATH iris database. The obtained results show that the proposed template-

level fusion technique carries out an enhanced system showing interesting

results in terms of FAR and FRR. The aforementioned result suggests that

the template-level fusion gives better performance than the matching-score-

level fusion.

For diagnostic purposes, tools for segmentation of medical images from

CT liver scans, integrating smart segmentation techniques based on region

growing algorithms, has been developed as OsiriX plugin. A dataset com-

posed of 50 patients, for an assessment of 190 liver lesions has been evaluated.

The reduction of the intra and inter-operator error, including a significant

speedup in the vision and analysis of such images, is the strength of this
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contribution.

A novel VBM application for the quantification of cortical atrophies has

been proposed. The method clusters and classify the brain’ voxels with the

use of k-means and neural networks in a totally unsupervised way. The pro-

posed segmentation method has been compared with the FSL VBM software,

segmenting all the 18 official IBSR patient’s dataset and comparing the ob-

tained results with the ground-truth manual segmentation provided. There

is an high improvement of the execution speed of the task, if compared to

other VBM software, taking only few minutes to segment a whole T1 MRI

brain scan composed from 300 to 400 slices. Results are highly compara-

ble and furthermore better than FSL segmentation; the proposed system

doesn’t require any input parameter. Experimental results shows that the

sensitivity and specificity of the system are absolutely comparable with the

FSL results: moreover, many results show high quality since they are closer

to the ground-truth values. Dice and Jaccard similarity coefficients confirm

the previous results, showing also an improvement in the majority of cases.

It was developed an expert system for data mapping, that investigates

the concentration of iron in the liver by imaging methods, and classifies with

the use of an ANN. The proposed method has been tested on real dataset

composed of 131 consecutive patients affected by thalassemia-major, under-

went upper abdominal MRI exams to assess liver iron overload. For each

patient, two methods have been used for assessment for liver iron overload.

The results have been classified obtaining a system accuracy of 93%, that

is, only 7% of cases were misclassified. The proposed system has been also

developed as an OsiriX plugin.
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An application of Radial Basis Functions neural networks, to achieve a

substantial improvement in the problem of measuring body’ organs temper-

ature using MRI performed during surgery ablation (MRgFUS), have been

developed and tested on two different kind of datasets. RMS errors and tem-

perature differences show a huge increase of precision in comparison with

other kind of interpolators. The obtained results are very promising and

suggest that RBF are valid instruments to reconstruct temperature, avoid-

ing possible sonication’s break before reaching the temperature established,

with the risk of missing proteins denaturation, pain inducted in patients,

and damages to surrounding tissues.

A text based indexing system for mammographic similar reports retrieval

has been proposed. The whole system shows interesting results and provides

a real-time useful Medical Decision Support System to be used during the

referral process. With more detail, the method shows great improvements if

compared against the syntactic classical methods, showing an improvement

in Sensitivity of 37,77% while maintaining a Specificity of 100%.

Future directions will aim to investigate smart techniques for the medical

imaging problematics, but also for the managing and elaboration of Big Data

coming from a wide kind of heterogeneous sources, bringing the computer

science field increasingly closer and transversal to the medicine science.
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