18 research outputs found

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it "in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better result

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it “in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better results

    Characterizing and Improving the Reliability of Broadband Internet Access

    Full text link
    In this paper, we empirically demonstrate the growing importance of reliability by measuring its effect on user behavior. We present an approach for broadband reliability characterization using data collected by many emerging national initiatives to study broadband and apply it to the data gathered by the Federal Communications Commission's Measuring Broadband America project. Motivated by our findings, we present the design, implementation, and evaluation of a practical approach for improving the reliability of broadband Internet access with multihoming.Comment: 15 pages, 14 figures, 6 table

    Open and Regionalised Spectrum Repositories for Emerging Countries

    Get PDF
    TV White Spaces have recently been proposed as an alter- native to alleviate the spectrum crunch, characterised by the need to reallocate frequency bands to accommodate the ever-growing demand for wireless communications. In this paper, we discuss the motivations and challenges for col- lecting spectrum measurements in developing regions and discuss a scalable system for communities to gather and provide access to White Spaces information through open and regionalised repositories. We further discuss two rele- vant aspects. First, we propose a cooperative mechanism for sensing spectrum availability using a detector approach. Second, we propose a strategy (and an architecture) on the database side to implement spectrum governance. Other aspects of the work include discussion of an extensive mea- surement campaign showing a number of white spaces in de- veloping regions, an overview of our experience on low-cost spectrum analysers, and the architecture of Zebra − RFO, an application for processing crowd-sourced spectrum data

    Transparent Bandwidth Aggregation for Residential Access Networks

    Get PDF
    We propose, implement, and evaluate a bandwidth aggregation service for residential users that allows to improve the upload throughput of the asymmetric digital subscriber line connection by leveraging the unused bandwidth of neighboring users. The residential access gateway adopts the 802.11 radio interface to simultaneously serve the local home users and to share the broadband connectivity with neighboring access gateways. Differently from previous works, our aggregation scheme is transparent both for local users, who are not required to modify their applications or device drivers, and for neighboring users, who do not experience any meaningful performance degradation. To evaluate the achievable performance and tune the parameters driving the traffic balancing, we developed a fluid model that was shown experimentally to be very accurate. Our proposed scheme is amenable to efficient implementation on Linux networking stack. Indeed, we implemented it and tested in some realistic scenarios, showing an efficient exploitation of the whole available bandwidth, also for legacy cloud storage applications

    Virtualizing the access network via open APIs

    Full text link
    Residential broadband consumption is growing rapidly, in-creasing the gap between ISP costs and revenues. Mean-while, proliferation of Internet-enabled devices is congesting access networks, frustrating end-users and content providers. We propose that ISPs virtualize access infrastructure, using open APIs supported through SDN, to enable dynamic and controlled sharing amongst user streams. Content providers can programmatically provision capacity to user devices to ensure quality of experience, users can match the degree of virtualization to their usage pattern, and ISPs can real-ize per-stream revenues by slicing their network resources. Using video streaming and bulk transfers as examples, we develop an architecture that specifies the interfaces between the ISP, content provider, and user. We propose an algo-rithm for optimally allocating network resources, leveraging bulk transfer time elasticity and access path space diver-sity. Simulations using real traces show that virtualization can reduce video degradation by over 50%, for little extra bulk transfer delay. Lastly, we prototype our system and validate it in a test-bed with real video streaming and file transfers. Our proposal is a first step towards the long-term goal of realizing open and agile access network service quality management that is acceptable to users, ISPs and content providers alike

    Socket Intents: OS Support for Using Multiple Access Networks and its Benefits for Web Browsing

    Get PDF
    In today's Internet, mobile devices are connected to multiple access networks, e.g., WiFi/DSL and LTE. To take advantage of the networks' diverse paths characteristics (delay, bandwidth, and reliability) and aggregate bandwidth, we need smart strategies for choosing which interface(s) to use for what traffic. In this paper, we present an approach how to tackle this challenge as part of the Operating System (OS): With the concept of Socket Intents, applications can express what they know about their communication pattern and their preferences. Using our Socket Intents Prototype and our modified BSD Socket Interface, this information is used to choose the most appropriate path or path combination on a per message or per connection basis. We evaluate our system based on the use case of Web browsing: Using our prototype and a client-side proxy, we show the feasibility and benefits of our design. Using a flow-based simulator and a full factorial experimental design, we study a broad range of access network combinations (based on typical DSL and LTE scenarios) and real workloads (Alexa Top 100 and Top 1000 Web Sites). Our policies achieve performance benefits in more than 50% of the cases and speedups of more than factor two in 20% of the cases without adding overhead in the other cases.Comment: Submitted to IEEE/ACM Transactions on Networkin
    corecore