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Abstract—In today’s Internet, mobile devices are connected
to multiple access networks, e.g., WiFi/DSL and LTE. To take
advantage of the networks’ diverse paths characteristics (delay,
bandwidth, and reliability) and aggregate bandwidth, we need
smart strategies for choosing which interface(s) to use for what
traffic. In this paper, we present an approach how to tackle
this challenge as part of the Operating System (OS): With the
concept of Socket Intents, applications can express what they
know about their communication pattern and their preferences.
Using our Socket Intents Prototype and our modified BSD Socket
Interface, this information is used to choose the most appropriate
path or path combination on a per message or per connection
basis. We evaluate our system based on the use case of Web
browsing: Using our prototype and a client-side proxy, we show
the feasibility and benefits of our design. Using a flow-based
simulator and a full factorial experimental design, we study a
broad range of access network combinations (based on typical
DSL and LTE scenarios) and real workloads (Alexa Top 100 and
Top 1000 Web Sites). Our policies achieve performance benefits
in more than 50% of the cases and speedups of more than factor
two in 20% of the cases without adding overhead in the other
cases.

I. INTRODUCTION

TODAY, mobile devices can usually access the Internet
over more than one access network. For example, mobile

phones often have the choice between WiFi and cellular
networks. By using the paths provided by these networks
at the same time, it is possible to aggregate their band-
width or switch between them to increase overall network
availability. Moreover, applications can take advantage of the
different characteristics of these paths, e.g., delay, bandwidth,
and expected availability, by using the most suitable path(s)
according to the application’s demands.

To illustrate why these characteristics matter, we take a
look at two use-cases: If a user fetches news headlines or
stock market quotes, quickly loading small objects ensures
responsiveness; so the user prefers a path with low latency.
If a user streams a TV series over HTTP, high throughput is
most important to provide high video quality. Therefore, if
the available paths vary in bandwidth and latency, both use-
cases benefit from assigning their communications to the path
with the most suitable characteristics. Similarly, there is often a
choice between multiple destinations, e.g., CDN nodes hosting
the same content.

Despite the possible benefits, the available diversity is usu-
ally not exploited. While the application knows its demands,
selecting the path and destination within the application is
impractical most of the time. This stems from the fact that
information required for an appropriate selection is often not
available, such as detailed characteristics of the available paths

or information about cross-traffic from other applications. In
addition, implementing path selection strategies is a rather
complex task which touches resource management and, thus,
belongs to the domain of the operating system (OS). At the OS
level, all necessary information including path characteristics
and traffic information are available. But when a socket gets
connected, the OS is not able to distinguish between different
application demands. Consequently, there is no way for the
OS to know what to optimize for.

So far, application-aware OS support for multiple paths,
the focus of this paper, is still very limited. Most related
research [1]–[3] or commercial systems [4], [5] focus on WiFi
off- or onloading at the network layer or application layer for
well-defined use cases. Multi-Path aware transport protocols,
including SCTP [6] and Multipath TCP (MPTCP) [7], [8]
allow to aggregate bandwidth across multiple access networks
and provide fallback in case of network failures, but are
agnostic to applications’ needs.

To this end, we introduced the concept of Socket Intents [9].
Socket Intents allow applications to share their knowledge
about their communication pattern and express performance
preferences in a generic and portable way. Thus, an application
developer can inform the OS about what the intent of the com-
munication is and what she knows about the communication:

• Preferences whether to optimize for bandwidth, latency,
or cost

• Characteristics expected packet rates, bitrates or size of
the content to be sent or received.

• Expectations towards path availability or packet loss
• Resiliences whether the application can gracefully handle

certain error cases

None of these are hard requirements, e.g., transport protocol
guarantees or QoS style reservation. However, they are crucial
for the OS to do path and destination selection on behalf of
the application.

In this paper, we demonstrate how Socket Intents can be
implemented on top of vanilla BSD Sockets by designing a
system that enables automated path and destination selection
within the OS and evaluate the impact of Socket Intents on
Web performance.

Our prototype implementation extends the BSD Socket API
to support path and destination selection for two communica-
tion granularities: streams and messages. It demonstrates the
feasibility of automated path and destination selection within
the OS but also reveals major limitations of the BSD Socket
API.
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The main contributions of this paper are:
• We extend our original prototype [9] to support message

granularity communication units, e.g., HTTP requests.
Guided by the application needs provided by Socket In-
tents and path characteristics, we realize connection
caching and implicit connection pools in the OS. In
addition, we enable our prototype to take control over
MPTCP.

• We introduce the Earliest Arrival Time (EAF) policy as
informed path selection strategy for Web objects. Based
on the information provided by the Size to be Received
Intent , EAF assigns each request to the path it is predicted
to complete on first.

• We demonstrate applicability of our prototype by imple-
menting a client side HTTP proxy. With only 20 lines of
additional code, the proxy takes advantage of connection
caching, Socket Intents and the EAF policy.

• We evaluate the benefits of using Socket Intents with
the EAF policy in two ways: A small testbed study
using our proxy and an extensive simulator study using
a custom flow-based simulator. Our simulation uses a
full factorial experimental design and covers the Alexa
Top 100 and Top 1000 Web sites over a wide range
of network characteristics resembling typical residential
broadband and cellular network characteristics.

II. SOCKET INTENTS CONCEPT

To perform path and destination selection within the OS,
the OS needs to know what to optimize for – the application
demands. Therefore, we introduced the concept of Socket
Intents [9]. Socket Intents allow applications to share their
knowledge about their communication patterns and express
performance preferences in a generic and portable way. Intents
are hints for the OS, pieces of information, that allow an
application programmer to express what they know about the
application’s needs or intentions for each communication unit.
They indicate what the application wants to achieve, knows,
or assumes. In contrast to transport features or QoS-style
reservations, they are not requirements but only considered
in a best-effort manner, e.g., as input to path and destination
selection heuristics within the OS. Possible intents, as shown
in Table I, include Traffic Category, Size to be Sent/Received,
Timeliness, Duration, or Resilience of connectivity.

Applications have an incentive to specify their intents as
accurately as possible to take advantage of the most suitable
resources. We expect applications to selfishly specify their
preferences. Since the OS knows about the available network
resources and the intents of multiple applications, it can
balance the different requirements and penalize misbehaving
applications.

Socket Intents are independent of the actual Socket API and
can be applied to message granularity communications, e.g.,
UDP messages or HTTP requests, as well as stream granular-
ity communications, e.g., TCP connections. The information
provided by the application is structured as key-value-pairs.
The key is a simple string representing the type of a Socket
Intent. Values can be represented as an enum, int, float, string,

TABLE I
SOCKET INTENTS TYPES

Intent Type Data Type Applicable Granularity
Message Stream

Traffic Category Enum X
Size to be Sent Int (bytes) X X
Size to be Received Int (bytes) X X
Duration Int (msec) X
Bitrate Sent Int (bytes/sec) X
Bitrate Received Int (bytes/sec) X
Burstiness Enum X
Timeliness Enum X X
Disruption Resilience Enum X X
Cost Preferences Enum X X

or a sequence of the aforementioned data types. Table I gives
an overview of Socket Intent types as specified in our recent
IETF draft [10]. Despite the variety of Intents we define in
this section, the remainder of this paper focuses on how to
realize Socket Intents as an extension to the BSD Socket API
and the benefits of using the Size to be Received Intent .

III. CHALLENGES IMPOSED BY BSD SOCKETS

In Unix-like OSes, BSD Sockets are the standard interface
between applications and the network stack. Typically, appli-
cations that want to connect to a server first resolve the server’s
hostname using getaddrinfo(), then create a socket file
descriptor using socket() and call connect() to establish
the connection. To each of these calls information obtained
from getaddrinfo() is passed.

With Vanilla BSD Sockets, taking advantage of multiple
paths or choosing among several destinations is complicated.
One reason is that the BSD Socket API designers consid-
ered multi-homed hosts a corner case. The bind() socket
call allows applications to choose the source address of an
outgoing communication1. If the system is configured with
a routing policy to send traffic with a specific source address
over an associated paths, application can set the source address
to implicitly choose the outgoing interface and next-hop and,
therefore, large portions of the path.

Besides this hack, Vanilla BSD Sockets do not offer support
for multiple access networks: Applications that want to use
multiple interfaces usually have to have their own heuristics
for selecting paths. Choosing among paths is difficult as the
necessary information is often difficult to gather and may
require special privileges. Moreover, it differs greatly by Unix
flavor.

Another complication occurs when selection a destination:
When resolving the hostname to obtain a destination address,
applications need to ensure not to mix results for the same
hostname resolved via a different interface. For example,
CDNs and major Web sites often rely on DNS-based server
selection and load balancing. These mechanisms are most
useful if the DNS query is sent via the same interface as the
actual traffic. If the application sends the traffic over another
interface, the chosen server may be suboptimal, which can
lead to significant performance degradations. Yet, the resolver

1 Otherwise, the OS uses the IP address of the interface via which it routes
to the given destination.
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library of the vanilla BSD Socket API does not allow us to
isolate results acquired via multiple paths. For a more detailed
discussion, see [11].

Furthermore, the communication units used by vanilla BSD
Socket API are implied by the transport protocol and must
match the socket type passed to the socket() call. Thus,
for stream-based communication protocols like TCP, the ap-
plication can only choose a path and endpoint for the whole
stream. But communication units of actual applications are
often not aligned with the communication granularity of the
transport protocol. For example, requests in HTTP —the
dominant protocol on the Internet [12], [13]— correspond
to a message based communication performed over a stream
transport. An HTTP based application can choose for each
request to either open a new TCP connection or reuse an
existing one. The former allows choosing among multiple
interfaces using bind(). The latter saves 2 RTTs for the
TCP handshake, a few 100 KB for the TLS handshake (if
applicable), and time spent in TCP slow-start. Therefore, the
abstraction provided by the vanilla BSD Sockets does not
assist the application in distributing traffic among multiple
paths. Rather, it puts a huge burden on applications that want
to do so.

In conclusion, these problem areas demonstrate that the
vanilla BSD Socket API is not well suited to enable multiple
access connectivity in an easy and portable way. In the
next Sections Section IV and Section V, we describe how
our Socket Intents Prototype overcomes these limitations and
provides path- and destination selection as an extension to the
BSD Socket API.

IV. SOCKET INTENTS PROTOTYPE DESIGN

We build a prototype implementation to demonstrate the
feasibility of path selection and destination selection as fea-
tures of the client’s OS. Despite the limitations outlined in
Section III, our Socket Intents Prototype extends BSD Sockets
to use Socket Intents and moves the selection logic into the
OS. In this section, we first discuss the overall design choices
(Section IV-A) and prototype architecture (Section IV-B).
Then, we describe the designs of the individual prototype
components.

A. Design Objectives and Choices

The prototype is based on the following design objectives
(shown in bold) and design choices (shown in italics).

As we want insights about the deployability in today’s
OSes, we decide to build our prototype as an extension of the
BSD Socket API, which is the base of almost all networking
APIs used today.

Since different applications have different requirements, the
system should allow them to specify their “intent” for a
given communication unit as hint for the OS what to optimize
for. Since there is not always a universally “best” interface,
the system enables choosing an appropriate path for each
communication unit, i.e., for each message or connection, The
system also allows choosing a destination for each communi-
cation unit from the alternatives provided by name resolution.

2
3Socket API1

4b
Socket API

Kernel
4a Policy

Multi-Access
 Manager

Fig. 1. OS Network Stack with Socket Intents.

To realize these objectives, we provide three separate API
variants to address the trade-offs imposed by integration with
the BSD Socket API.

To improve deployability, we chose to explicitly not require
or suggest changes to the server or the network. As a
consequence, our means of choosing a path are limited to
choosing the source address, the interface, and/or the first
hop for each communication unit.

To evaluate different selection strategies, which we call
policies, we realize them as exchangeable modules. These
entities decide which access network to use in a given situation
based on the available information. To enable joint opti-
mization across all applications that use the Socket Intents
Prototype, these policies are hosted in a central place.

We want our prototype to support path and destination
selection for the applications’ native communication units,
e.g., an HTTP request. In today’s Internet, these are often
not aligned with the communication units of the underlying
transport, e.g., TCP streams. An HTTP-based application
will typically try to reuse a TCP stream for multiple HTTP
requests to reduce overhead and latency. This connection reuse
logic has to be implemented by each application individually,
although it is, typically, not application-specific. We decided
to move this logic into the OS and integrate it with our
path and destination selection by providing implicit connection
pools. For each communication unit, our system needs to map
communication units to the appropriate connection pool
and decides whether to reuse an existing connection or
to set up a new one. As we can only choose a path and
destination for new connections, we choose to tightly integrate
the connection reuse logic with the path and destination
selection logic.

Finally, to split large communication units and being
able to distribute them over an appropriate set of paths,
we enable the use of MPTCP and control of MPTCP’s path
selection.

B. Prototype Architecture

Our Socket Intents Prototype consists of three components,
see Fig. 1: Our extended socket API (white), a Multi Ac-
cess Manager (gray) and a policy modules it hosts (light
gray). In a typical use case, an application specifies its Intents
through the API (1), then our socket library queries the policy
within the Multi Access Manager (2). The policy decides
which path(s) to use and communicates this decision back (3),
and finally the socket library applies the decision by selecting
a path by binding to an appropriate source address (4a/b).
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C. APIs

As there is no easy way to integrate application-aware path
and destination selection into the BSD Socket API, we provide
three different API variants. While maintaining the UNIX file
descriptor as abstraction of a connection, each of these variants
takes different trade-offs to overcome the challenges described
in Section III:

• The augmented socket-calls variant, see Section V-A,
follows as close as possible to the call sequence of BSD
Sockets. It links all socket calls by using an additional
context parameter to hold the state needed for path
selection beyond the regular parameters. It is meant as
a baseline to explore which aspects of automated path
and destination selection can be integrated into the vanilla
BSD Socket API without changing the application logic
(besides providing Socket Intents).

• The augmented name resolution variant performs auto-
mated path and destination selection as part of the name
resolution, see Section V-B. This minimizes the changes
to the BSD Socket API, but requires the application logic
to change to use the results from path and destination
selection.

• The message granularity variant, see Section V-C, adds
support for access selection at message granularity, e.g.,
HTTP requests. It moves the connection setup into a
single API call. Thus, it completely replaces the usual call
sequence of BSD Sockets in order to enable automated
connection caching along with implicit connection pool-
ing. This variant is the most powerful one, and therefore
used in our evaluation.

For all variants, name resolution is off-loaded to the
Multi Access Manager and handled by the policy module to
work around limitations of the standard resolver library. See
Section III for an extensive discussion about the limitations
BSD Sockets impose on implementing automated path and
destination selection and their consequences for the imple-
mentation of the individual API variants.

D. Policy Design

Socket Intents Policies are entities that decide which access
network to use for a given communication unit. They range
from simple static configurations up to complex dynamic
algorithms that try to take full advantage of the available
information.

To enable informed decisions, these policies need to know
about the intents of an application as well as interface pa-
rameters and statistics, including byte counters and transport
protocol state. Within its decision logic, the policy needs to
respect the optimization of external communication partners,
i.e., it should only rely on DNS replies of the same interface
(see Section III).

For the sake of simplicity, we chose not to support per-
application policies, but rely on the information provided by
Socket Intents This also enables us to treat communication
units of a single application with different communication
needs appropriately.

As a first application-aware policy, we introduce the EAF
policy: This policy is based on the idea that downloading
objects of different sizes can benefit from different path char-
acteristics, as download time largely depends on the object’s
file size as well as the RTT and available bandwidth on the
path. We use the Size to be Received Intent , which allows an
application to hint for the expected size of a communication
unit, e.g., allowing an HTTP client to hint about the size of
an object to be transferred. Assuming that there are at least
two access networks and they vary in RTT and bandwidth,
our intuition is that if the communication unit is small, the
policy should choose the interface with the shorter RTT. If the
communication unit is large it should prefer the interface with
the larger available bandwidth. Thus, each unit is scheduled
on the interface with the earlier arrival time, resulting in a
shorter overall completion time.

V. SOCKET INTENTS PROTOTYPE IMPLEMENTATION

In this Section, we present the implementation and technical
challenges of the three components of our Socket Intents
Prototype in more detail: the extended socket APIs, the
Multi Access Manager, and the policy modules. The source
code of all components consists of about 15k lines of C and
is available under BSD License2.

First, we will explain our extended socket API variants
introduced in Section IV-C in more detail. All three variants
are implemented within a common wrapper library for the
BSD Socket API and are portable across Linux and MacOS.
Then, we will dive into the implementation of the Multi Ac-
cess Manager (Section V-E), and the policy (Section V-F).

A. Augmented Socket-Calls API

With this API variant, we try to stick as close as possible
to the call sequence of vanilla BSD Sockets. Support for
Socket Intents is provided by adding an INTENT socket option
level and thus allowing to specify Socket Intents as socket
options. The challenge of implementing this design is that
there is no mechanism to pass state needed for path and
destination selection between the vanilla BSD Socket API
calls, that is not part of their explicit parameters3. To overcome
this limitation, we it adds an additional parameter to all socket
calls including getaddrinfo().

With this API variant, we can support informed path and
destination selection with very few modifications to the ap-
plication. However, due to our way to pass resolver and
selection state, the selection process becomes in-transparent
to the application and does not work with applications that
want to perform mechanisms like Happy Eyeballs [14].

B. Augmented Name Resolution API

This API variant realizes path selection and endpoint se-
lection within a modified variant of getaddrinfo(). For

2https://github.com/fg-inet/socket-intents/
3 A kernel based implementation could pass information between all

socket calls except getaddrinfo() by extending backing struct for file
descriptors.

https://github.com/fg-inet/socket-intents/


TIESEL et al.: SOCKET INTENTS: OS SUPPORT FOR USING MULTIPLE ACCESS NETWORKS AND ITS BENEFITS FOR WEB BROWSING 5

TABLE II
MESSAGE GRANULARITY SOCKET INTENTS API

Call parameters (excerpt) in/out

socketconnect int *socket in,out
const char *host in
size_t hostlen in
const char *serv in
size_t servlen in
struct socketopt *sockopts in,out
int domain in
int type in
int proto in

socketrelease int socket in
socketclose int socket in

all other socket API calls, the application uses the vanilla
BSD Socket API. Socket Intents, alongside with other rel-
evant socket options, are passed directly to our modified
getaddrinfo() as part of the hints parameter. To do so,
we extended the addrinfo struct to include a list of socket
options and the source address for the outgoing connection.
We also provide a new socketopt struct to pass a list of
socket options as part of our extended addrinfo struct. The
name resolution implementation of getaddrinfo() is done
by the Multi Access Manager, which makes all decisions and
returns them in the result parameter as list of endpoints
ordered by policy preference. Each endpoint is annotated with
the source address the application should bind to and socket
options that should be set on the socket. Applications use this
information as parameter to the vanilla BSD Socket API call
or other APIs. We provide helpers to set all socket options
from the result data structure on a given socket.

With this API variant, applications can benefit from in-
formed path- and destination selection provided by the
Multi Access Manager while maintaining full control over the
connection setup, e.g. to perform Happy Eyeballs [14]. This
comes at the cost of having to modify the application to bind
to a source address and pass socket options through our API.

C. Message Granularity API

This API variant offers path and destination selection for
message granularity communication units, e.g. HTTP requests,
using stream transports, e.g. TCP. As stated in Section IV-C,
we decided to realize this together with implicit connec-
tion pooling to enable connection reuse. As our focus is
on supporting simple request/response type protocols, e.g.,
HTTP/1.1, we presume sequential reuse of connections by the
same application. We do not yet support multiple concurrent
requests on the same TCP connection as in HTTP/2, since this
would also require to implement explicit message extraction
like [15] or [16] and does not provide us with insights for
path- and destination selection.

To expose the functionality, we extended the BSD Socket
API by adding three new calls: socketconnect() to get a
new socket or reuse an existing one, socketrelease() to
mark a socket as available for reuse, and socketclose()
to close a socket (see Table II). Since it realizes the complete
connection handling, it moves functionality needed by many
applications into the OS.

When an application wants to send a request, it uses
socketconnect() to asks our Socket Intents Prototype

for a socket for a specific host, service, and socket options
(including Socket Intents) tuple. The in/out parameter for the
socket file descriptor allows to explicitly request a new socket
or reuse one of a set of sockets. The return value informs the
application whether the socket is a new one or an existing
one. This allows the application to decide if it needs to add
any per-connection actions, e.g., if a new TLS handshake has
to be started for a new connection. Future work will remove
this complication by integrating TLS into the transport stack.
Once the application is done, it can either release or close the
file descriptor using the second or third new call. The former
enables reuse, the latter does not.

The Socket Intents Prototype manages an implicit pool of
active sockets per destination host/service pair. The imple-
mentation of socketconnect() checks whether there are
currently unused open sockets to the same host and port. It
then checks with the Multi Access Manager if any of these
existing sockets satisfy the needs of the request according to
the Socket Intents4. If not, the Multi Access Manager chooses
an interface for a new socket to be created. The call then either
returns the chosen existing socket or the newly opened one.

Using this API variant is very convenient for writing
request/response style applications designed around it, but
re-writing applications turned out complicated as it totally
changes the way connections are handled in an application.

D. Lessons Learned for the APIs

Adding path and destination selection to BSD Sockets is
hard; Its API calls are not designed to defer choices to a
moment where all necessary information is available. Our API
variants address this problem by choosing different trade-offs:

If limiting path and destination selection to the granularity
BSD Sockets typically provide today (TCP connections), the
Augmented Name Resolution API variant seems to be a
good compromise. Still, it forces applications to change and
implement a lot of connection management.

To do path and destination selection at message granularity,
we have to make more concessions: We need to add con-
nection caching and pooling to our API. In student projects
using this API variant, we encountered a surprising behavior:
sockets returned by socketconnect() returned failures on
write. This happens if the remote side has already closed the
connection while it is still in the pool for re-use. As vanilla
BSD Sockets do not provide an explicit mechanism to notify
an application about the closure of a socket, we mitigate this
behavior by testing the connection before scheduling it for
reuse. This API still uses file descriptors as socket abstraction,
but otherwise largely diverges from the vanilla BSD Socket
API and requires heavily modifying existing applications.

Besides that, the integration of BSD sockets into file I/O
system provided us with many implementation challenges and
required many shadow state-keeping and other hacks [17].
Retrospectively, it seems easier to move to a new API like
the one we design in the IETF Taps Working Group [18].

4 We assume that the policy takes connection setup time into account for
this decision.
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E. Multi Access Manager
The Multi Access Manager runs as a user space service

that does not require special kernel support. It runs as a
service available to all applications on the client and is
implemented using libevent. Our API uses Unix domain socket
to communicate with the Multi Access Manager. After start up,
the Multi Access Manager creates a list of all local interfaces
with their network prefixes assigned and loads the policy.

The Multi Access Manager does not keep any per request
state, but does not prevent the policy to do so. A module imple-
menting a policy consists of a set of callback functions which
are triggered by our socket library, the Multi Access Manager,
and DNS replies. It can use all functionality provided by
libevent as well as the evdns resolver library that is pre-
configured for each interface in the Multi Access Manager.

1) Estimating Path Characteristics: To make decisions, the
policy uses various network statistics from the Multi Ac-
cess Manager. Hereby, the Multi Access Manager periodically
queries the OS for smoothed round-trip times (SRTTs) of all
current TCP connections to calculate the median and minimum
RTT over each available prefix. Also, based on the interface
counters it computes the currently used network bandwidth for
each interface. The query interval is configurable. Our empiri-
cal observations suggest that an interval of 100 ms works well.
The Multi Access Manager also gathers additional passive
measurements, such as bit error statistics and current channel
utilization as reported by the WiFi access point (if available).
More data about the current network performance can easily
be integrated by adding code to the Multi Access Manager or
the policy. All information is stored on a per interface basis
within the Multi Access Manager.

2) Resolver Integration: The Multi Access Manager has to
guarantee that DNS replies are kept separate on a per-interface
basis and, therefore, should only be cached and used for
communication on the same interface from which they were
acquired. This separation is necessary to avoid interference
with DNS-based server selection and load balancing as laid
out in [11]. As DNS caching is essential for the performance
of applications such as Web browsers, we consider this func-
tionality an integral part of the Multi Access Manager and not
of the application.

3) Controlling Multipath TCP with Socket Intents: We
use MPTCP to split a TCP stream across multiple paths.
This allows bandwidth aggregation for large transfers and
thus complements the per-request scheduling. As a result,
Socket Intents can choose appropriate interfaces for both small
communication units—which the policy can distribute—as
well as large ones—which MPTCP can handle. In addition,
controlling MPTCP from the Socket Intents Policy avoids
opening subflows on already crowded interfaces or on inter-
faces with a high RTT, which can lead to head-of-line blocking
for small objects.

To enable the Socket Intents Policy to control the usage
of MPTCP we added an additional path manager to the
Linux MPTCP implementation. Our user-space Multi Ac-
cess Manager uses Netlink [19] sockets to communicate with
the kernel-space MPTCP path-manager. If a policy decides to
use MPTCP it selects an interface for the initial subflow. If

MPTCP is feasible the path-manager notifies the Multi Ac-
cess Manager, so the policy can choose on which interfaces to
add subflows. MPTCP can then distribute the TCP stream over
all these interfaces. For more details on our implementation,
we refer to [20].

F. Policy

The policy implements the logic for deciding which inter-
faces, and, thus, which source and destination address pair
to use. The actual Socket Intents Policy is implemented as
modules for the Multi Access Manager. It is shared by all
applications of a host that use our socket interface, as their
individual needs are communicated using Socket Intents and
are not realized via individual policies. The policy picks a
suitable interface for each communication unit. Then, if a set
of open sockets is given, the policy tries to reuse one of them
by selecting a socket which uses the chosen interface from the
given set. If no set is given or if no suitable socket is found,
the policy advises the application to open a new connection
and suggests an IP address of the chosen interface as source.
When the policy has decided which source and destination
address pair to use, it instructs the Multi Access Manager to
send this information back to our socket library. With MPTCP,
the policy may have to keep track of the requests to aid, e.g.,
the setup of MPTCP subflows.

We implement the following polices in our prototype:
1) Single Interface Policy: This policy always chooses a

particular, statically configured interface.
2) Round Robin Policy: This policy uses multiple interfaces

on a round robin basis.
3) EAF Policy: The EAF policy uses the Size to be Re-

ceived Intent to predict the completion time for each available
interface. It then chooses the one where the communication
unit will arrive first. For EAF the Socket Intents Prototype uses
estimates of the minimum SRTT per prefix and the available
bandwidth on the interface. The object size for the Size to
be Received Intent is determined via a two-step download
that is described in detail in Section VI-B. EAF estimates
the available bandwidth by dividing the maximum observed
bandwidth on an interface by the number of already scheduled
objects on the same interface. We divide the file size by the
estimated available bandwidth to approximate the download
duration. We add one RTT if a connection can be reused and
two RTTs if a new connection has to be established. Finally,
the interface with the shortest predicted arrival time is chosen.
We do not consider TLS handshakes.

VI. EVALUATION METHODOLOGY

To evaluate the benefits of Socket Intents for Web browsing,
we use the following methodology

A. Challenges

When evaluating the Socket Intents Prototype to showing
performance implications in a generic manner we face several
challenges: First, the evaluations have to be conducted in a
realistic environment, including realistic application behavior
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and network settings. Second, reproducibility of the gained
results has to be assured. Third, we have to evaluate a large
number of different application and network settings to gain
meaningful results. We address these challenges as described
in the following. As application scenario for the evaluation we
select Web browsing. To achieve a high degree of realism, we
use the Firefox Web browser. Due to the high complexity and
optimization level of a browser we decided to implement a
client side Socket Intent proxy instead of extending the Web
browser. As network settings we decided to rely on typical
smartphone settings, i.e., two disjoint paths between the client
and the server.

Reproducibility of the results is achieved by excluding most
uncontrollable influence factors for the chosen Web browsing
scenario. We have to cope with problems like changing Web
page content over time, content distribution over various Web
pages, and varying backend performance. Accordingly, we
crawl different Web pages and mirror them in a local testbed.
Thus, most uncontrollable influence factors except for varying
execution times of the JavaScript are excluded. To eliminate
the impact of JavaScript we also rely on synthetic workloads
without JavaScript.

To evaluate a large number of different settings we conduct
evaluations with around 1000 different Web pages and more
than 300 different network configuration. Given the large
amount of different settings, we opt for evaluating Socket In-
tents in two ways.

First, we run a Socket Intents Prototype enabled client-side
proxy, which we describe in Section VI-B, in a testbed emulat-
ing typical network characteristics, see Section VII-B. Second,
we run a simulator, which we describe in Section VI-C,
across a wide range of network characteristics and Web pages,
see Section VII-C. To ensure consistency of the results, we
validate the runs in the testbed against the simulator, see
Section VIII-B, and the simulator against the actual download
times in the wild, see Section VIII-C. Finally, our results for
the proxy are shown in Section VIII-A and for our simulator
in Section VIII-D - VIII-F.

B. Web Proxy

To explore to which extent the possible benefits are viable
in practice we implemented a Socket Intent enabled HTTP
proxy5. Our HTTP proxy consists of 2.300 lines of C code.
Enabling the Socket Intents Prototype took only 20 lines.

The proxy uses the Size to be Received Intent for the objects
it downloads, see Section V-F. Since the proxy does not know
the size of the objects in advance, we use a two-step download.
First, the proxy issues a range request for the first m bytes6

to get the initial part as well as the size of the object. If the
object is not completely transferred, the remainder is retrieved
via a second range request7.

5In the future, our Socket Intents Prototype can also be implemented in a
Web browser.

6 Here, m enables a trade-off between RTT and network bandwidth. We
see good results for values between 4-8K; values that fit within the initial
TCP window of today’s Web servers.

7The proxy is able to handle various answers including the full object or
the remaining part of the object, with and without chunked-encoding.

C. Web Transfer Simulator

To evaluate the benefits of seamlessly using multiple inter-
faces and scheduling requests according to our policies at scale
across a wider range of network properties and Web pages,
we build an event-based data transfer simulator. As evaluation
metric we use page load time8, which has a high influence on
the end-user Quality of Experience [21]. Additional metrics
can easily be implemented in the simulator, e.g. [22].

The simulator takes a Web page including all Web objects
and their dependencies (represented as a HAR files — see
Section VII-D), the Socket Intents Policy, and a list of net-
work interfaces with their path characteristics as input. The
simulator replays the Web page download by transferring all
Web page objects while respecting their inter-dependencies.
It uses the policy to distribute the object transfers across the
interfaces and calculates the total page load time.

Since our simulator has global knowledge, it knows all
object inter-dependencies a priori. Thus, it can decide when
a transfer can be scheduled, i.e, whether all objects that it
depends upon have already been loaded. To schedule a transfer
we assign it to a connection. This is the job of the policy
module which returns either an existing TCP or MPTCP
connection, an interface, or a list of interfaces to use to open
a new connection, or postpones the transfer if the limit of
parallel connections has been reached. A connection is reused
if the host name matches and it is either idle or it is expected
to become idle before a new connection can be established.

The simulator then determines the next event for this
connection, such as the completion of a transfer. When a
transfer completes, the simulator records the time, marks all
transfers that depend on it as enabled, and schedules them.
After the last transfer, the total page load time is reported.

The simulator supports persistent connections with and
without pipelining for TCP as well as MPTCP connections
across multiple interfaces. It uses a default connection timeout
of 30 seconds and limits9 the number of parallel connections
per server to 6 and the overall number of connections to 17. We
simulate TCP slow-start using a configurable initial congestion
window size with a default value of 10 segments [23]. Our
motivation for simulating slow-start is to get more realistic
load times especially for small objects, which are common on
Web pages, when they are downloaded on high latency links,
which are common in access networks. To simulate slow-
start and fair bandwidth sharing, we keep track of the current
throughput for each connection. This is updated according
to TCP slow-start and capped by the congestion window
or the available bandwidth share of that interface to assure
TCP fairness10. Our underlying assumption is that TCP tries
to fairly share the available bandwidth between all parallel
connections [24]. Rather than fully simulating the congestion
avoidance of TCP we assume instantaneous convergence to the

8Here we focus on network time, i.e., the total time to download the objects
of the Web page. The complete time to display a Web page also includes times
for DNS resolution, page rendering and possibly client-side JS computation.

9These values correspond to the defaults of the browser we use to retrieve
our workload.

10In our simulator, a connection leaves slow-start once it reaches the
available bandwidth share and never returns to slow-start.
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appropriate bandwidth share. The available bandwidth share of
each interface is potentially adjusted by each connection event
for that interface. If needed the time of the next event is then
adjusted accordingly. Note that for MPTCP, our simulator ag-
gregates the bandwidth of the subflows by simulating them as
separate TCP flows. We do not implement coupled congestion
control because it does not apply to the network scenario we
use in our evaluation, see Section VII-A.

D. Simulator Implementation

We implemented our data transfer simulator as a heap-based
discrete event simulator. It consists of 3k lines of Python code
and is available under a relaxed CRAPL license11. It models
the process of loading a Web page by keeping track of the
status of the transfers, connections and interfaces.

Each transfer corresponds to a Web object which contains
the object size, its relationship to other transfers, if the object
was transferred via HTTPS, and the server hostname. The
connections are responsible for estimating and updating the
completion times of the transfers which are assigned to them
and for simulating (MP)TCP. In case of MPTCP, we maintain
a master connection and per-interface subflows. The interfaces
bundle the connections and are used to calculate the available
bandwidth shares.

The transfer-manager keeps track of all transfers and
informs the policy if a transfer can be scheduled. The policy is
the main decision-making entity of the simulation. The policy
determines which interface(s) to use or which connection to
re-use for each transfer by choosing the most appropriate one.
The policy then notifies the transfer-manager to schedule the
transfer.

To schedule objects in the appropriate order, we derive
their interdependencies from the HAR files we gather, see
Section VII-D. While identifying all objects of a Web page
from the HAR files is straightforward this does not apply to the
object dependencies. Some object dependencies are obvious
from the base page, the HTML document, and the client-side
DOM. However, JavaScript or other Web objects can modify
the DOM, by adding or removing Web page objects, at any
point during the page load. For example, when a Web site uses
JavaScript to dynamically load pictures the simulator should
not start downloading these pictures before the JavaScript
object has been retrieved. After all, the browser first has to
parse the JavaScript before it can download the pictures.

We decided against using sophisticated systems to derive
interdependencies, e.g., [25], since their focus is on finding
the true dependency tree to speed up future downloads. Thus,
using these dependencies often leads to much more optimistic
results compared to the capabilities of current browsers. Thus,
to ensure compatibility we use a more conservative heuristic.
We identify the dependencies from the download times con-
tained in the HAR files. This method is feasible since we use
a non-bandwidth limited client to gather the HAR files.

We implement our EAF policy, see IV-D, for the simulator.
Since the simulator tries to provide an upper bound of the
benefits it relies on its global knowledge about all currently

11https://github.com/fg-inet/dtsimulator

Internet

Web Servers

Client Path A
[RTT, Bandwith]

Path B 
[RTT, Bandwith]

Fig. 2. Simplified Network Scenario.

active transfers. The RTT and maximum interface bandwidth,
as well as the size of the objects for the Size to be Received
Intent , are known a priori. Within the simulation, we add
one RTT if a connection can be reused, two RTTs if a new
connection has to be established, and two additional RTTs for
each TLS handshake.

Since Socket Intents Policies can use transfer predictions,
policies can reuse the simulator logic to obtain an estimate
of the completion time given the current state and an inter-
face/connection option. This is realized by partially cloning
the simulator’s state, including all currently active transfers,
and simulating the completion time for that transfer.

For MPTCP, the simulator presumes that MPTCP subflows
can be opened on all local and remote interfaces. With two
network interfaces at the client and one interface at the server,
the policy establishes two subflows. The interface for the initial
subflow is configurable. We considered two variants: starting
the initial MPTCP subflow on the same statically chosen
interface (MPTCP if1) or always on a different, randomly
chosen interface (MPTCP rnd).

Finally, EAF_MPTCP combines EAF with MPTCP. In ad-
dition to predicting the arrival time for each interface, it also
considers MPTCP for all possible interface combinations. The
intuition here is that MPTCP is beneficial for some cases but
not all cases. For example, this policy can avoid scheduling
small communication units on a high RTT interface. The
simulation of EAF_MPTCP is analogous to the EAF policy, but
it includes predictions with MPTCP for all interface combina-
tions, therefore using the interface for the first subflow that is
predicted to give the best results. This policy considers neither
the Socket Intents nor the current network performance.

We test the basic functionality of the various simulator poli-
cies using various traffic patterns that can take advantage of
MPTCP, EAF, and EAF_MPTCP, with and without connection
reuse. For these cases we manually calculate the expected page
load times and check the simulator results against them. In
addition, we use extensive assertions and cross checks within
the simulator to ensure the consistency of the results.

VII. EVALUATION SCENARIO

To evaluate Socket Intents using the approach presented
in Section VI-A, we assume the following network scenario,
which serves as the basis for both our testbed setup and our
simulator.

A. Network Scenario

The motivation for our network scenario is that, for mobile
devices, access networks almost always dominate performance

https://github.com/fg-inet/dtsimulator
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Fig. 3. Testbed setup used in the emulation.

as the bandwidth bottleneck is likely to be located there
and access networks often introduce major delays12. Thus,
our network scenario, see Fig. 2, consists of a client, Web
servers, and the paths between them. We presume that all
Web servers are reachable via both network paths. Moreover,
we choose to neglect the RTT variability introduced by the
Internet since queuing delays on Internet core links (≥10 Gbit/s
bandwidth) are negligible [26]. Therefore, we capture the path
characteristics as “interface” RTT and bandwidth. To model
connection reuse, we assume a separate server per hostname.

B. Testbed Setup

To evaluate the benefit of Socket Intents in the Web proxy
using the Socket Intents Prototype under different access
network characteristics we setup a testbed according to our
network scenario, see Fig. 3. It consists of three physical
machines: Web server, traffic shaper, and Web client. The Web
client has two network paths to the Web server via two separate
network interfaces. The network characteristics are emulated
by the traffic shaper and include three scenarios of access
network characteristics. The characteristics range from fully
symmetric to asymmetric, see Table III, and are representative
of access network characteristics found in literature [27]. On
the Web client, we run a Web browser along with the proxy
and the Multi Access Manager. Our Multi Access Manager
supports EAF as discussed in Section V-F, which we compare
against the use of a single interface.

We automate a browser13, which we restart for each mea-
surement to ensure that the cache is cold. We run the DNS
server on the Web client to ensure that name resolution does
not add delays. Furthermore, since the two-step download does
not work with HTTPS, we use HTTP.

The Web server hosts our workload. It consists of hand-
crafted pages, each with a different number of objects (ranging
from 2 to 64) of various sizes (between 1 KB and 1 MB), as
well as mirrored versions of several Web pages from the Web
workload, see Section VII-D. We select a range of Web pages
that represent our workload in terms of numbers and size of
objects and hosts.

We use a single Web server since we assume that Web
performance is dominated by the different access networks.
However, we set up a virtual host per host name to restrict
connection reuse appropriately. As we want a lower bound of
the performance benefits, we tune the TCP parameters of the

12Internet backbone delays are in the order of a few milliseconds while
access delays are typically significantly larger. With increasing access network
capacities, the bottleneck might be in the core in some cases. However,
capacities are not increasing in all regions of the world.

13We use Mozilla Firefox 52.5 Web browser with the Selenium browser
automation framework.

TABLE III
TESTBED SHAPER: NETWORK PARAMETERS.

Interface 1 Interface 2
RTT Down Up RTT Down Up
ms MBit/s MBit/s ms MBit/s MBit/s

Symmetric 45 10.0 1.0 45 10.0 1.0
Asymmetric 20 6.0 0.768 70 13.0 6.0
Highly Asym. 10 3.0 0.768 100 20.0 5.0

Web server to conservative values14. On the shaper we emulate
a given maximum bitrate using tc and latency with netem and
we restrict queue sizes to avoid buffer bloat.

C. Experimental Design for Simulator Evaluation

To evaluate the potential benefits of using Socket Intents
across a wide range of parameters, i.e., with different policies
under different network scenarios and for different Web pages,
we use a full factorial experimental design. Each factor can,
in principle, influence the page load time. For each factor, we
consider multiple values that cover the possible value ranges.
By simulating all combinations, see Table IV, we run 9M
simulations.

In our experimental design, the primary factor is the Policy
used with all of our Socket Intents Policies, see Section VI-D,
as levels. The Web pages of our workloads, see Section VII-D,
are the second factor: Here, the levels are the different Web
pages (with their 26 repeated crawls for Alexa Top 100 and
one crawl for the Alexa Top 1000).

The remaining four factors describe the network scenario:
Since our simplified network scenario as illustrated in Fig. 2
consists of one client using two access networks and various
Web servers which are reachable via both interfaces, these
factors are: Interface 1 RTT and Bandwidth as well as
Interface 2 RTT and Bandwidth. The levels for these were
chosen to reflect typical interface characteristics: We consider
mobile devices that have WiFi as well as cellular connectiv-
ity. Interface 1 should resemble the possible characteristics
of home broadband connectivity (e.g., DSL or cable) and

14 We use TCP/Reno with an initial congestion window size of 10 MSS.
We disable TCP metrics saving to prevent congestion window caching as
well as TCP segmentation off-loading to eliminate interference with the NIC
firmware.

TABLE IV
LEVELS OF THE FACTORIAL EXPERIMENTAL DESIGN.

Factor Levels

Policy: Interface 1, Interface 2
Round Robin (starting on if 1),
MPTCP starting on Interface 1 (MPTCP if1)
or on a random interface (MPTCP rnd),
Earliest Arrival First (EAF), or
EAF with MPTCP (EAF_MPTCP).

Web page: Alexa Top 100 and Top 1000.

Interface 1 RTT: 10, 20, 30, or 50 ms.
Interface 1 Bandwidth: 0.5, 2, 6, 12, 20, 50 Mbit/s.
Interface 2 RTT: 20, 50, 100, or 200 ms.
Interface 2 Bandwidth: 0.5, 5, 20, or 50 Mbit/s.
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Interface 2 should resemble the range of possible 3G/LTE
coverages15. This results in the levels shown in Table IV.

D. Web Workload

To get a wide range of Web pages we crawl the landing
pages of the Alexa Top 100 Web sites on 26 consecutive days
starting on December 07 2015 and the Alexa Top 1000 Web
sites on October 10 201616. We focus on the mobile version of
the pages by overriding the user-agent of our Firefox browser,
impersonating a generic Android mobile device.

As browser we use Firefox version 38.4.0 automated with
Selenium and the Firebug 2.0.13 and NetExport 0.9b7 plugins
to retrieve the objects and to record the crawled Web pages
in the HTTP Archive (HAR) format. Each HAR file contains
a summary of all objects of the page as well as their sizes,
types, origins (remote sites), and timings. We use a single
vantage point with a high available network bandwidth, a
virtual machine within a university network.

While most of the pages comprise between 1 and 50 objects
there are some with more than 100 objects or even up to
260 objects. Moreover, many Web pages have a low median
object size. Furthermore, the number of hosts that have to
be contacted ranges from a single one to more than 20 with
a median of 7. The total size of the Web pages is between
23.1 KB (5th quantile) and 1.8MB (95th quantile) with a large
fraction of pages below 300 KB. These results are in line with
previous work [28], [29].

For comparison with less complex Web workload, we add
handcrafted Web pages to our workload. These pages consist
of different number of objects (ranging from 2 to 64) of various
sizes (1 KB to 1 MB), and a mix of these objects.

VIII. EVALUATION

To explore the benefits of seamlessly combining multiple
access networks for speeding up Web page load time, we
evaluate Socket Intents in two ways, see Section VI.

A. Socket Intent Benefits in Testbed

We setup our testbed as described in VII-B. For each of our
Web pages we repeatedly download each page 7 times, using
a single interface as well as using EAF, see Section V-F. We
compute the load time of the individual objects, and aggregate
the times during which objects were downloaded to compute
the total page load time17. The resulting page load times are
shown in Figure 4 using a logarithmic y-axis. It includes all
three policies: Interface 1, Interface 2, and EAF. The mixed
handcrafted workload shown here consists of 16 objects of
1KB, 8 objects of 10KB, and 4 objects of 100KB.

We see that Interface 1 is the better choice if the Web objects
are small and the network scenario is asymmetric. Interface 2 is
the better choice if the objects are larger or if there are more

15Costs or restrictions of the data plan are beyond the scope of this paper,
but could easily be taken into account by an elaborate policy.

16 http://www.alexa.com/topsites
17The total display time includes page rendering and client-side JavaScript

computation, which we exclude here.
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Fig. 4. Proxy: Page load times.

objects. Using both interfaces is, in particular, beneficial for
the symmetric scenario. While there is still a benefit of using
both interfaces it gets smaller for more asymmetric scenarios.

The EAF policy takes advantage of the multiple access
networks seamlessly. It either uses both interfaces or the better
one of the two with only a slight increase in page load
time variability. For pages with many objects such as the
handcrafted workload of 32 objects of 100 KB, our EAF policy
outperforms the better of the two interfaces with speedups
from 25% to 50%. For some of the actual Web pages that
we mirror on our testbed, including amazon.com, we get
speedups in the range of 20–45%. For other Web pages such
as aliexpress.com, we only get a speedup of up to 10%.

The reason for the “decreased” benefits compared to the
handcrafted pages are that the mirrored Web pages fetch
content from different servers, which limits connection reuse.
Furthermore, even for mirrored versions of the same Web
page, load times vary based on optimizations in the contained
Javascripts, as the Alexa 100 pages are heavily optimized.

Nevertheless, our results highlight the potential of
Socket Intents: Even with a proxy the page load times improve.
Including Socket Intents within the browser rather than a proxy
is likely to yield even better performance.

B. Validation of Proxy and Simulator

We validate our simulation results against the proxy by
measuring the Web page load time of our workload in the
testbed with similar shaper settings as the interface parameters
we use in the simulator. In Figure 5 we compare the simulated
and the actual load times for the handcrafted workloads of
different sizes, showing the median load time and the 95%
confidence intervals. The mixed workload consists of 32
objects of 1KB, 16 objects of 10 KB, 2 objects of 100 KB
and 2 objects of 200 KB. Using a single interface with an
RTT of 50 ms and a bandwidth of 6 Mbit/s, see Figure 5a,
we see slightly higher load times on the testbed both with

http://www.alexa.com/topsites
amazon.com
aliexpress.com
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Fig. 5. Comparison of simulated load time and actual load time in the testbed with different synthetic workloads.

and without the proxy, especially for large workloads. Using
a single interface with only 0.5 Mbit/s, see Figure 5b, we do
not get a page load time for the workload with 32 objects of
100 KB because the browser times out after 10-20 seconds,
so we do not show it in this plot. Using our EAF policy with
symmetric shaping (50 ms and 6 Mbit/s on one interface, 50ms
and 5 Mbit/s on the other), we cannot test the case without
proxy, as we cannot use EAF without the proxy. Both our
simulator and the proxy in the testbed show speedups, see
Figure 5c. Note the differences between the y axes, which
reflect the speedups observed in Section VIII-A. We get similar
results for RTTs up to 200 ms and bandwidths up to 50 Mbit/s.

We get similar load times with and without the proxy.
This shows that the two step download in our proxy does
not have a major influence on the load time. Overall the
simulator is more optimistic than the testbed. However, the
differences are quite small. The differences to the simulator
can be explained by the following observations: First, the gzip
transfer encoding conflicts with range requests: Sometimes the
server sends the whole object even though only the initial part
is requested. Moreover, disabling compression for the initial
request is not feasible as it eliminates compression also for
the second request since the content-range refers to the range
after compression. Second, the simulator presumes that all
independent transfers start immediately, which is not always
the case in practice. This can skew timings, in particular for
small workloads. These effects are independent from the use
of our Socket Intents Prototype. Accordingly, we can use the
simulator to conduct a realistic comparison between scenarios
with and without Socket Intents.

C. Simulator vs. Actual Page Load Time

We compare the actual page load time to the simulated
one for all Web pages of our workload. Given that our crawl
uses a machine with a single interface we also use a single
interface with the policy “Single Interface”. To determine the
interface parameters we estimate the available bandwidth as
well as the RTT to the servers from the actual download. To
estimate the available bandwidth we use all objects larger than
a minimum size of 50 KB. Hereby, we take into account that
several of these can occur in parallel. Using the median of the
estimated bandwidth results in a typically used bandwidth of
67.13 Mbit/s – this suggests that none of the transfers were
actually bandwidth bound. To estimate the RTT the simulator
issues a series of pings for each Web page. The median RTT
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Fig. 6. Simulator validation: Relative and absolute difference of simulated
vs. actual page load time.

of all servers of that Web page is then used as an estimator
for the interface for the validation run for that Web page.

The simulator as well as the validation uses several simplifi-
cations. First, the simulator assumes that all Web objects share
a single network bottleneck and that the RTT is the same for
all servers. In reality, some embedded objects of Web pages
are fetched from hosts with different network bottlenecks and
RTTs. We use ICMP ping rather than TCP ping and the pings
are not executed while the HAR files are gathered.

Figure 6 shows the absolute as well as the relative differ-
ences of the simulated vs. the actual page load times for all
Alexa Top 100 Web pages from Section VII-D. The main
mass of both distributions is around zero indicating that the
simulated page load times are very close to the actual ones.
This is confirmed by the median value which is 0.3548/1.5%
for the absolute/relative differences. This highlights that the
simplifying assumptions of the simulator still enable us to
approximate the actual page load times and that we capture
most of the intra Web page dependencies.

There are some differences for some Web pages. We
manually checked them and find a majority is caused by
differences in the estimated bandwidth, server delays, and
name resolution overhead. These are, e.g., related to Web
back-office interactions [30]. Overall, the results are rather
close and show that our simulations result in reasonable
approximations of the actual Web page load time.
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Fig. 7. CDF of Speedups vs. Interface 1 for the Alexa Top 100 workload.
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Fig. 8. CDF of Speedups vs. Interface 1 for the Alexa Top 1000 workload.

D. Benefits of Combining Multiple Access Networks

To explore the benefits of combining multiple access net-
works by using Socket Intents, we compare the speedups of
the page load times against the baseline policy Interface 1. The
baseline policy Interface 1 resembles what most current mobile
OSes do: Use only WiFi and, therefore, the home broadband
if available.

Fig. 7a shows the empirical cumulative distribution func-
tions (ECDF) of the speedups achieved using a simulated
Socket Intents Policy relative to only using Interface 1, all
other parameters being equal. Thus the ECDF shows speedups
across all network scenarios outlined in Table IV based on the
Alexa Top 100 Web pages and categorized by the Socket In-
tents Policy used. We see that in more than 42% of the cases
for EAF and 63% of the cases for EAF_MPTCP these policies
provide a speedup of more than 1, which means that loading a
Web page using these policies is faster than using Interface 1 in
the same scenario. In the remaining cases, they almost always
provide a speedup of 1, which means that they neither gain nor
lose from using multiple interfaces. In these cases, the page
load was not bandwidth limited and simply loading the page
over Interface 1 was the fastest option. Thus using the other
interface in addition did not provide any speedup. Therefore,
EAF and EAF_MPTCP simply choose to use Interface 1 in
these cases. We also see that in about 1.5% of cases EAF and
EAF_MPTCP is slower than Interface 1 which turned out to be

a limitation of the simulator18. Overall these results show that
using EAF and EAF_MPTCP is a good choice in any case.

The speedups of both MPTCP policies are very dissimilar:
When establishing the first subflow over Interface 1 (MPTCP
if1), it shows a speedup greater than 1 in 78% of the cases and
neither improvement nor penalty in the other cases. In contrast,
if starting the first subflow for MPTCP over a randomly chosen
interface (MPTCP rnd), MPTCP performs worse than Interface
1 in 48% of the cases and can be up to 10x slower. We take
a closer look at these effects in Section VIII-E.

The other baseline policies, Interface 2 and Round Robin,
unsurprisingly show a penalty in about 70% of cases as in
most network scenarios Interface 2 has a much higher RTT
than Interface 1.

Figure 7b shows the speedups between 1 and 5 from Fig-
ure 7a in more detail. From our data, we find that EAF was up
to 2x faster than Interface 1 in about 23% of the cases and from
2 to 5x faster in about 11% of the cases. We even see speedups
of more than 5x in 8.5% of the cases. EAF_MPTCP and MPTCP
if1 shows negligibly higher speedups than EAF. Overall, all
three policies perform similarly and can take serious advantage
of combining multiple access networks. Even with similar
benefits, EAF has the advantage over MPTCP that it does
not need to be supported by the server and that it cannot be
blocked by middleboxes.

Finally, Fig. 8 shows the ECDF of the speedups against
Interface 1 for the Alexa 1000. These look similar to the ones
for Alexa 100 in 7a. This gives us confidence that our benefits
are stable for a wide variety of different Web pages.

E. Benefits of Using the Socket Intents Prototype with MPTCP

As described in Section VIII-D, for our dataset MPTCP if1
and MPTCP rnd behave very differently. While both show gains
in almost all cases, MPTCP rnd is at a disadvantage in 48% of
the cases while MPTCP if1 almost never imposes a penalty.

In Fig. 9, we compare speedups of our policies for all
scenarios and Web pages against MPTCP if1. The curves for

18 In these cases, the simulator fetches a single huge object via the less
suitable interface while the connection limit prevents starting a new connection
on the more suitable one.
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Fig. 9. CDF of Speedups vs. MPTCP if1 for the Alexa Top 100 workload.

EAF and EAF_MPTCP are close to 1, which means that the
page load times are similar to MPTCP in most cases and
never considerably worse. In contrast, if establishing the first
subflow for MPTCP over a randomly chosen interface (MPTCP
rnd), MPTCP performs worse and can be up to 10x slower
than using Interface 1 and about 30x slower than MPTCP if1.
The reason for that is that Interface 1 has a shorter RTT in
most network scenarios. As many Web page downloads in
our workloads were short and not bandwidth bound, MPTCP
will often perform most of the download over the initial
subflow. Thus, not picking the most suitable one in 50% of the
cases bears a considerable performance penalty. EAF_MPTCP
can always choose the most suitable interface for the first
subflow and, therefore, can improve over MPTCP if1 in cases
where Interface 1 is not the most suitable interface for the
first subflow. Note that EAF shows a similar performance as
MPTCP if1. The cases where EAF and EAF_MPTCP perform
slightly worse than MPTCP if119 seem negligible to us given
the benefits.

F. Explaining Page Load Time Speedups

To understand how the factors of the scenario and Web page
affect the speedups of our policies, we take a closer look at the
cases when EAF is slower, similar to, or faster than Interface 1.

In Fig. 10 we bin the simulation results of EAF into six
categories of benefits and show how these distribute among
the total Web page sizes and Interface 1 bandwidths. Note that
these categories contain different numbers of observations, i.e.,
EAF is slower for just 1.5% of all cases while EAF is equal
to Interface 1 for 56.6% of all cases.

The CDF in Figure 10a shows the frequency of the speedup
categories over the different levels of Interface 1 bandwidths
from Table IV. In cases when EAF was slower or equal to
Interface 1, higher values for the Interface 1 bandwidth are
more prevalent, while high speedups mostly occur when the
Interface 1 bandwidth is low. Similarly, we tend to see high
speedups for higher levels of Interface 2 bandwidth and for
lower levels of Interface 2 RTT (plots omitted).

19These cases occur because EAF and EAF_MPTCP do not take future
transfers into account. They cannot change their decision whether to use
MPTCP, while always using MPTCP allows to rebalance traffic between
subflows later.
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To explore what kind of Web pages can benefit from our
EAF policy, we plot the CDF of the speedup categories over
the total Web page size in Fig. 10b. As high speedups occur
much more frequently for large Web pages, we conclude that
unsurprisingly these take most advantage of using multiple
access networks. For the median object size and the number
of objects in a Web page we see similar results, with high
speedups occurring more frequently in cases with high median
object sizes.

Both analyses show that our multi-access policies are most
useful when Web page download is bandwidth limited.

IX. RELATED WORK

We next review related work regarding multipath support
in general and on the end host’s Operating System (OS) in
particular. We then focus on how application needs are taken
into account. Finally, we discuss the benefits of using multiple
access networks in the context of WiFi offloading and MPTCP.

1) Multipath: For a comprehensive survey of network layer
multipath solutions see Qadir et al. [31]. They present a
detailed analysis of the design choices of how to compute
and select routes as well as how to split the flow across the
chosen paths.

A survey of multipath approaches in some current OSes [32]
points out several problems that we also discuss in Section III.
Many OSes support mechanisms for source and destination
address selection for IPv6 multihoming [33], [34] and there are
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proposed Socket API extensions that enable applications to set
preferences [33]. However, these address selection algorithms
focus on reachability, while we consider bandwidth aggrega-
tion and performance improvement. Some OSes implement a
central connection manager to choose the appropriate access
network, as is also proposed in current research such as
by Kiefer et al. [35]. The latter uses policies controlled by
the application and the user and relies on observations of
the current network performance, which is similar to our
Multi Access Manager. However, it only works on a per-flow
basis and not per communication unit. Also, their application
policies specify flow prioritizations and constraints, but not
different characteristics of the traffic.

2) Application Needs: Previous work where an application
can specify its requirements and needs often focuses on
QoS, e.g., QSockets [36]. We use the best-effort approach
of Socket Intents. The term Intents has its origin in Inten-
tional Networking [37], an attempt to explore mobile network
diversity by letting applications specify traffic characteristics
via an extended Socket API. However, they use a per-packet
approach, which introduces complications and overhead, while
we use a per-socket/per-flow or per-request approach. More-
over, they imply guarantees while we suggest best-effort. Other
approaches include ideas from machine learning to guide
application choices, e.g., Deng et al [38].

3) Socket APIs: Alternative socket APIs move parts of
the application logic to the socket API, e.g., by requesting a
service rather than a protocol, port, and address in the protocol-
independent transport API [39] or by exposing all protocols
and auxiliary information of the application in a tree-like
structure [15]. In contrast, our Socket Intents Prototype takes
transport protocols as given. Thus, the idea of Socket Intents
is complementary to the before-mentioned work.

4) Offloading: Multi-access connectivity enables one to
balance traffic, e.g., from the mobile network to the WiFi—
offloading—or from WiFi to the mobile network—onloading.
Recently, both variants have gotten a lot of attention in the
research community, e.g., [1]–[3], [40], as well as in industry,
e.g., [41], [42]. For a survey on offloading, we refer to, e.g.,
Aijaz et al. [1]. For a summary of multi-access connectivity,
we refer to, e.g., Schmidt et al. [4]. Examples of recent
work on offloading include the work by Lee et al. [40],
who demonstrate via a quantitative study the performance
benefit of offloading 3G mobile data to WiFi networks, and
Balasubramanian et al. [2], who propose Wiffler to augment
mobile 3G capacity with WiFi. For onloading, we, e.g., point
to Vallina et al. [3]. For an analysis of the economics of
offloading see Lee et al. [41]. Offloading typically implements
support for using multiple access networks within the network
or on the application layer, while we provide support for it
within the end-host OS.

5) MPTCP: There have been many studies exploring how
an end host can benefit from multiple paths using MPTCP.
Chen et al. [43] evaluate MPTCP performance in the wild
by comparing its use over a home WiFi network and several
different cellular providers to the use of a single path. They
find that for small files, using a single path over WiFi is
best, while larger files benefit from MPTCP’s aggregated

bandwidth. This observation is shared by Raiciu et al. [44]
and Deng et al. [45], who emphasize that the choice of the
interface to establish the first subflow is important, which is
in line with our observations.

Han et al. [46] evaluate page load times of HTTP and SPDY
over WiFi and LTE using a proxy-based setup. They find that
SPDY over MPTCP is always beneficial. This is in contrast
to HTTP over MPTCP which in some cases performs even
worse than plain TCP. Similarly, Nikravesh et al. [47] observe
a performance penalty and energy consumption overhead for
apps with small flows in the wild. As a solution, they propose
a proxy with persistent connections over multiple paths.

A similar approach for controlling MPTCP (see Sec-
tion V-E3) has been proposed by Hartung and Milind [48]
to use MPTCP for LTE bandwidth management.

6) SCTP: Dreibholz et al. propose an advanced stream
scheduling policy for SCTP [49] and achieve performance
benefits in asymmetric path scenarios using a simulation. It
would be possible to integrate such an advanced scheduler
into our policies in future work.

X. CONCLUSION

Our Socket Intents Prototype is a system to provide seam-
less OS support for multiple access networks. It achieves
this goal by allowing applications to express their intents and
expectations for each communication unit, e.g., HTTP request
or TCP connection, toward the OS. The OS then can match the
applications’ needs and the diverse access networks available
in a best effort way.

We evaluate Socket Intents in a testbed and confirm that our
Socket Intents Prototype can speed up page load time by up to
50% in typical scenarios. We then use a simulator to explore
speedups across a wide range of Web pages and network
characteristics. Our simulations demonstrate that Socket In-
tents with the EAF policy can improve Web page load time in
about 50% of the cases without incurring penalties. Therefore,
without kernel modification, we can achieve about the same
speedups possible by using MPTCP. In cases where the access
networks characteristics are very different, our EAF_MPTCP
helps MPTCP pick the right interface for the initial subflow
and therefore prevents performance penalties that can occur
from using the "‘wrong"’ interface.

Socket Intents are a first step for sharing information
between applications, the OS, and the network. This idea is
not limited to the use case of multiple access networks, but
can also be beneficial to automatically choose among transport
protocols and can give valuable input to traffic management
systems for datacenter networks. Therefore, we are trying to
contribute the key ideas of Socket Intents to the IETF TAPS
working group [50] as means to address the complexity arising
from today’s transport layer diversity.
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