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Summary

Increasing sophistication of on-board sensors and computing capabilities avail-

able in smartphones and their proliferation, have made them an important

platform for content generation. Such User Generated Content (UGC) from

smartphones, enriched with descriptive meta-information, is gaining signifi-

cance for its in-situ value in ad-hoc events which have limited infrastructure.

User experience is enhanced if the generated content can be shared even as the

event is happening. However, smartphone battery and bandwidth constraints

makes sharing of UGC challenging.

Existing research in UGC sharing focuses on processing content and en-

riching its description with the sensor data, but does not take into account

network resources required to share the content. Additionally, existing work

rely on infrastructure support such as ubiquitous wireless network and GPS

localization to select and share UGC.

The contributions of our work includes the design and development of

three techniques to share UGC by utilizing subjective (such as user feedback)

or objective (sensory data, spatio-temporal conditions) content characteristics

under resource constraints. These three techniques are organized in the context

of a system called UGCSelect and described below:

(i) Mobile Video Sharing On-Demand (Movisode): In ad-hoc
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events, people generate large quantities of videos. The naive approach of

uploading all videos over infrastructure networks becomes impractical when

the bandwidth of the network is limited.

Movisode proposes pull-based, on-demand mobile video sharing that ac-

cepts user queries for video matching certain spatial and temporal features,

and selects a subset of videos matching the query, from available video set us-

ing small quantity of metadata uploaded by smartphones. Movisode balances

the trade-off between query result visual quality and upload cost of the videos.

(ii) Automatic Image Linker (AutoLink): Attendees in ad-hoc events

share photos captured in the event venue. Such unstructured photo collections

make navigation and content discovery difficult for the user. This problem is

compounded by the noise introduced by diverse views, occlusion, and abnormal

lighting effects.

AutoLink addresses the problem of organizing such unstructured images

by leveraging spatial sensor features and content features to automatically

generate content-based links between images efficiently, such that users could

navigate between high context images to high detail images.

(iii) Collaborative Filtering Gel (CoFiGel): When infrastructure

is unavailable, infrastructure-less mobile-to-mobile (m2m) communication can

be used to share content. Limited m2m contact capacity has to be managed by

sharing only content of potential interest to users. Processing content to infer

interest is challenging due to limited processing power and communication

bandwidth of smartphones.

CoFiGel proposes a content sharing mechanism which eliminates the need

for processing content by leveraging subjective user feedback to predict user

interest and push relevant content to users. In distributed m2m networks, user

feedback has to be accumulated incrementally. Under bandwidth constraints,

v



CoFiGel content sharing facilitates faster feedback accumulation so as to im-

prove user interest prediction accuracy, while pushing interesting content to

users in a timely manner.

Performance evaluation of the techniques demonstrate significant resource

savings while achieving effective UGC sharing. The study also reveals new

research avenues to improve the performance of UGC selection.
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Chapter 1

Introduction

1.1 Overview

Smart personal devices such as smartphones, tablets have seen a rapid prolif-

eration in recent times. These devices are also equipped with sensors for lo-

calization and tracking, high quality cameras, microphone/speakers and high

power CPU and GPU capabilities. These developments have made them an

ideal platform for producing, consuming and processing video/image content.

Such User Generated Content (UGC) produced using these devices is poised to

dominate the Internet of the future [90]. The quantity of content such as high

definition images (up to 5MB [43]) and videos (for example, around 100 Hours

of video is uploaded every minute to YouTube [9]) produced and consumed is

increasingly becoming resource intensive.

1.1.1 Ad-hoc events

An important source of UGC are ad-hoc events. Ad-hoc events are charac-

terized by lack of prior information such as event schedule, venue layout and
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lack of infrastructure support. Ad-hoc events can take place indoor, outdoor

or semi-outdoor environments. Examples of ad-hoc events can be exhibitions,

street performances, mishaps, and other social events.

1.1.2 Applications

Recently, a number of applications, which make use of UGC from ad-hoc

events, have been deployed. Some of these applications include crowdsourced

surveillance [2], content analytics [1], scene discovery/recommendation [3].

Existing content-sharing platforms (e.g., YouTube) do not suffice for these

applications because, these platforms typically require content tagged with

keywords. Analyzing content collection using keywords is often insufficient as

the content may not be tagged or tagging may be inaccurate and/or at too

coarse a granularity. These emerging applications process UGC based on at-

tributes such as location, view orientation, region of scene captured, time of

capture, distance of camera from the scene, viewer interest in the content and

relationship between content captured by people in the same context.

1.1.3 Challenges

Challenges in sharing UGC in ad-hoc events can be classified into two cate-

gories: (1) infrastructure challenges (2) content characteristics.

1.1.3.1 Infrastructure challenges in ad-hoc events

In the context of this thesis, infrastructure support includes: (1) network to

share content and (2) localization mechanism to identify the source of content.

The challenges arising from the lack of these infrastructures in the context of

ad-hoc events are discussed below:
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Network infrastructure. Smartphone is the dominant platform for

UGC publishing. Mobile networks like 4G/3G/HSDPA and wireless networks

(WiFi access points) provide the principle means by which smartphones can

share UGC. WiFi is not ubiquitous, but it has higher energy efficiency com-

pared to 3G/4G. On the other hand, 3G/4G networks have higher coverage,

but are less energy efficient. Data transfer using mobile and wireless networks

on smartphones is constrained by two factors: available bandwidth and battery

capacity of smartphone.

1. Bandwidth bottleneck in mobile networks arise due to the rapid increase

in user population [10, 8]. In many crowded events upload and down-

load of large UGC put a considerable load on mobile network. For in-

stance, the download to upload capacity ratio of the network infrastruc-

ture which is usually 9:1, was observed to be 1:1 during the 2013 Super

Bowl XLVII. During this event, an 80% increase in mobile broadband

data usage compared to previous year’s event was reported, with about

388 GB data exchanged [33] at the event venue. Most of the upload

traffic included videos and pictures, showing that there is a tremendous

user interest in real-time sharing of the event experience.

In addition to limitation on bandwidth, many mobile service providers

impose usage based charging, which reduces the incentive to share con-

tent from smartphones using cellular network.

2. Battery capacity Wireless communication is the second largest source of

power consumption in smartphones. CPU power consumption can also

be significant depending on its usage. Power becomes a critical resource

situationally. For instance, if one is walking in a park or watching a street

show and wishes to upload a video recording, one has to worry about
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the remaining battery capacity. The urgency of sharing such video clips

in-situ is because, such UGC tend to have more value “at the moment”

and lose popularity as time progresses. This reveals a trade-off between

energy and the need to share content in a timely manner.

Localization infrastructure. For outdoor localization, Global Posi-

tioning System (GPS) is the predominant solution. However, GPS does not

work indoors. Even in outdoor environments, the error in GPS is 5 meters or

more. This error can result in incorrect labelling of content.

1.1.3.2 UGC characteristics in Ad-hoc events

UGC generated in ad-hoc events have characteristics which affect relevant

content selection. They are as follows:

1. Attendees generating the content share the same event context. This

results in redundant content

2. Event is captured from diverse views under varying lighting conditions

3. Crowds could cause occlusion (blocking of view) in the content

4. People might capture different moments during the event, but not the

entire event itself.

5. There is diversity in the regions of interest captured in the UGC

In order to systematically address the problem of UGC sharing, we clas-

sify the UGC characteristics in ad-hoc events into two attribute categories:

objective and subjective.

1. Objective attributes can be inferred from the content without the viewer

feedback, e.g., location, view orientation, etc.

4



2. Subjective attributes are inferred from viewer feedback. For example,

viewer’s interest (like/dislike) in a particular video.

To summarize, the challenge in achieving UGC sharing in ad-hoc events

is to allow the applications to select relevant UGC captured by several event

attendees in spite of the limitations and resource bottlenecks in the infrastruc-

ture.

1.2 Research goals and contributions

This thesis addresses the following problem:

Given an application query in the form of subjective/objective UGC at-

tributes, how do we “select” matching UGC, while reducing the consumption

of resources and infrastructure.

Our solution is based on the conjecture that effective content selection

can be achieved if we can make selection algorithms “resource-aware” and

“content-aware”. Making selection resource-aware ensures retrieval of UGC

that results in less resource usage to the smartphone user and the mobile/wireless

network. On the other hand, content-awareness ensures that UGC relevant to

the application are retrieved.

We broadly divide the design space for the problem into four categories

based on the availability of network infrastructure and UGC attribute type as

shown in Table 1.1. The design space is organized in the context of a system

called UGCSelect which facilitates UGC sharing in ad-hoc events. UGCSelect

operates in two modes. In the first mode, UGC selection is performed assum-

ing availability of network infrastructure. The second mode facilitates UGC

selections in infrastructure-less mode. Research contributions of this thesis are

5



Table 1.1: Design space for UGC selection under resource constraints

UGC at-
tribute
category

With network infrastructure Without network
infrastructure

Objective

Existing work:

1. Localization-based selection ([55,
39, 72]): Depends on localization
infrastructure.

2. Content-based selection
([41, 16]): Depends on prior
information such as training data
and localization infrastructure

Contribution #1 and #2: Multi-
source UGC selection. Does not re-
quire training data, localization infras-
tructure:

1. Movisode (for videos)

2. AutoLink (for images)

Future work

Subjective Existing work: Recommendation sys-
tems [94] in connected networks which
have deployed by large enterprises such
as Amazon.

Existing work:None

Contribution #3:
CoFiGel, a trans-
mission scheduling
mechanism to share
content in m2m net-
works using subjective
user feedback

discussed below in the context of these two modes-of-operation of UGCSelect.
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1.2.1 With network infrastructure

When network infrastructure is available, the straight-forward approach to

share UGC is to upload all UGC generated by event attendees. However,

this approach is challenging because of the network bandwidth bottleneck.

Therefore, mechanisms to select a subset of the available UGC is required.

The first approach to selecting content in a infrastructure network would be to

use viewer feedback (subjective). This is handled by recommendation systems.

There is already a large body of existing work [94] covering this area.

When user feedback is not available, objective content selection is done

using location and content based attributes. Localization based solutions use

geo-tags [55, 39, 72] to retrieve content. In addition to dependence on lo-

calization infrastructure, these schemes do not leverage UGC from multiple

sources to balance the trade-off between resource constraints and query re-

sult quality. Content based information retrieval methods [41, 16] use features

in the image/video to compute the matches to application query. Content

based techniques are computation intensive, depend on camera deployments,

training data, and require all UGC to be uploaded to server before processing.

We propose two UGC selection mechanisms which address the limitations

of localization and content based UGC selection. Both mechanisms do not

make assumptions on camera deployment (such as location and movement

pattern of the camera) and operate without any training data. They are listed

below:

Contribution #1: Mobile Video Sharing On-demand (Movisode).

In an event where the attendees capture and share videos of a common scene,

uploading all videos consumes resources. Movisode proposes an on-demand

mobile video sharing mechanism which avoids uploading user generated videos
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unnecessarily.

In response to user application query which specifies the desired spatial and

temporal attributes of the required video, Movisode computes the minimum

set of matching videos that need to be uploaded under resource constraints,

by estimating the view properties of the video relative to the scene, using only

a small quantity of metadata obtained from smartphone inertial sensors and

video features. Since, absolute location of the video is not required for com-

puting query result, dependency on localization infrastructure is eliminated.

This addresses the limitation of localization-based techniques (Table 1.1).

Contribution #2: Automatic Image Content Linker (AutoLink).

In an event context with multiple scenes, attendees move from one scene to

another, capturing photos of scenes they are interested in. Photos could be-

long to different scenes, or different regions of the same scene. When image

collection is large, organizing images per scene, and within each scene becomes

necessary especially for small-factor display devices such as smartphones.

Using the metadata obtained from smartphone inertial sensors and image

features, AutoLink clusters the photos for each scene and organizes photos

of a scene into an image hierarchy enabling viewers to navigate from images

farther from the scene, to images which capture parts of the scene at a closer

distance.

This hierarchy also enables images to be retrieved only when the viewer re-

quests more details of the scene, thus achieving an on-demand retrieval similar

to Movisode. It also does not localization.
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1.2.2 Without network infrastructure

If the network is intermittently connected, or if there is a need to offload traffic

load from the mobile/wireless network, then infrastructure-less content shar-

ing becomes necessary. We illustrate the advantage of using infrastructure-less

mobile-to-mobile (m2m) links, with a simple measurement of performance dur-

ing file transfer between a mobile device and a central server using 3G/HSPA

network and between two mobile devices directly using WiFi. To quantify the

performance of mobile-to-server (m2s) transfer, we upload and then download

a 14.3 MB video clip to YouTube using a HSPA network. The HSPA service

provides maximum download and upload rate of 7.2 Mbps and 1.9 Mbps re-

spectively. The average download and upload throughputs measured (average

of 5 trials) are 1125.2 kbps and 57 kbps respectively. To quantify the perfor-

mance of m2m transfer, we use two Samsung Nexus S phones that support

IEEE 802.11n (link rate is 72.2 Mbps) to exchange the same video file directly

over a TCP connection. The measured throughput is 22.6Mbps (average of 5

trials). The large difference between m2s and m2m in measured throughput

can be attributed to the differences in link rate and Round Trip Time (RTT)

observed (70ms for mobile-to-server and 5.5ms for mobile-to-mobile).

Disruption Tolerant Network (DTN) architecture has been proposed to

support content dissemination over infrastructure-less m2m links. In DTN,

node mobility and intermittent connectivity between nodes is factored in while

disseminating content. By leveraging m2m ad-hoc communication links, in-

formation is disseminated over multiple links opportunistically. One typical

instance of DTN is smartphone users using WiFi ad-hoc mode, bluetooth or

WiFi Direct to communicate with neighbouring devices. When a pair of de-

vices are in proximity, they can exchange information, and link disconnections
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occur when the devices move out of communication range.

Selecting UGC using content features in DTN is challenging because of

the limitations of processing power of mobile nodes. Additionally, viewer is

not aware of all the content available in DTN because of its distributed and

intermittent characteristics. This makes selection based on content features

difficult. These limitations motivate the use of recommendation systems with

subjective attributes to predict user interest in the content, rather than pro-

cessing the content itself.

For recommendation systems in infrastructure networks, all content is

available for the viewer to watch and provide feedback. This feedback is then

used to recommend more content to the viewer accurately. In DTN, the viewer

is not aware of all the content in network. In order to provide feedback, content

has to first reach the viewer over DTN. This results in higher resource con-

sumption. However, if more content is disseminated, more viewer feedback is

received, which improves accuracy but consumes more resources. To facilitate

recommendation systems to function in DTN context, we propose:

Contribution #3: Collaborative Filtering Gel [86] (CoFiGel), a

mechanism that performs content selection and dissemination by balancing

the trade-off between recommendation system accuracy and resource usage in

mobile-to-mobile (m2m) DTN network.

We leave UGC selection based on objective attributes as future work.

1.2.3 UGCSelect: System overview

This section provides an overview of UGCSelect. Chapter 2 discusses the

related work and positions UGCSelect with respect to existing UGC sharing

techniques. Limitations of UGCSelect and future directions to improve it are

10



discussed in Chapter 6.

Figure 1.1 1 shows how the UGCSelect system works. Participants in an

event capture UGC using their smartphones. UGCSelect supports two modes

of sharing as mentioned previously. First mode is through infrastructure based

Mobile-to-Server (m2s) connection. Second mode is infrastructure-less using

Mobile-to-Mobile (m2m) communication links. The decision to select UGC is

made by one of the three decision modules: Movisode (Chapter 3), AutoLink

(Chapter 4) and CoFiGel (Chapter 5) during the transfer of data.

When content selection has to be performed based without infrastructure,

CoFiGel module handles the decision making for selection. When infrastruc-

ture is available, and if video UGC has to be retrieved using objective at-

tributes such as spatial and temporal characteristics, then Movisode deter-

mines content selection. If UGC is image, then AutoLink is used for content

selection based on spatial features of image.

UGCSelect consists of two components: Mobile agent and server. Following

sections provide description of these two components.

1URLs of icons used in the images. Last retrieved on September 6, 2014.

1. http://theresadelgado.com/wp-content/uploads/2011/11/Compass.png

2. http://www.wpclipart.com/computer/PCs/more computers/server.png

3. http://tinyurl.com/n8yebuj

4. http://poulingail.edublogs.org/files/2012/09/laptop-kid-18fhs8b.jpg

5. http://gpsmaestro.com/wp-content/uploads/2012/05/smart-phone-icon.jpg

6. http://pndblog.typepad.com/.a/6a00e0099631d08833013486239200970c-800wi

7. http://tinyurl.com/qdsqvpl

8. http://tinyurl.com/q5g26e5
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Figure 1.1: Overview of the UGCSelect System
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1.2.3.1 Mobile client

There are four submodules which form the mobile client. GUI, sensor module,

m2s module and m2m module.

GUI. The GUI allows user to capture media through the embedded cam-

era service. Captured content are stored in inbox of media items which allows

the user to watch, rate and share content. Users can also tag media as belong-

ing to particular events (from a list downloaded from the server), or register

for a particular event, which will let the app automatically tag media as be-

longing to a particular event if they are taken within a specified time period.

As soon as a video/image gets tagged (either manually or automatically), cor-

responding metadata is uploaded to the server periodically.

Sensor module. The sensor logger runs in the background and records

acceleration, location and orientation readings to file along with their times-

tamps. When the media is created, it is processed based on its type. If it is

video, then all sensor data logged within start and end timestamps of the video

are extracted and segmented. Average values for sensors for each segment are

computed and uploaded to server. If the media is image, sensor logs between

two image captures are uploaded to the server. In addition to the sensor data,

image/frame features, time of capture are also uploaded.

M2M module. It detects peer mobile devices, schedules and transfers

content. It is also responsible for maintaining an history of past device contacts

(e.g., time and duration of contact, frequency of contacts).

M2S module. It uploads metadata to server, checks for new application

queries and uploads requested video segments and/or images.

13



1.2.3.2 Server

The server communicates with mobile agent only when m2s connection is avail-

able. Movisode and AutoLink have server components which receive the meta-

data from the mobile device, and for each application request decide the video

segments or images to be uploaded. Movisode processes spatio-temporal query

and AutoLink retrieves image depending on the user’s navigation through the

image hierarchy. As user navigates deeper into the image hierarchy, more

detailed images for the scene are retrieved.

1.3 Summary

In this chapter, we have introduced UGC as an important source of information

which could be exploited by real-world applications. We have identified ad-

hoc events as major venues for UGC publication. Further, we have discussed

the challenges in sharing UGC in the context of ad-hoc events and presented

three contributions of this thesis in the context of system called UGCSelect to

address these challenges.
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Chapter 2

Background

We survey the existing literature associated with UGC sharing in mobile net-

works and compare and contrast with UGCSelect. The related work is classi-

fied into three main categories based on the technique used to achieve UGC

sharing. They are as follows:

1. Resource management in mobile networks (Section 2.1), which discusses

content-agnostic methods of managing network resources

2. Sensor and content based techniques (Section 2.2), which deals with tech-

niques that use objective attributes such as sensor and content features

to retrieve content

3. Recommendation techniques (Section 2.3), which elaborates on tech-

niques that use subjective attributes such as user feedback to retrieve

content

Figure 2.1 graphically positions UGCSelect with respect to the state-of-the-

art. A discussion on the novelty of UGCSelect with respect to the above

techniques is presented in Section 2.4.
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Figure 2.1: Survey of techniques used for UGC content selection and retrieval

16



2.1 Resource management in mobile networks

Research in resource management for mobile networks could be broadly classi-

fied into infrastructure based and infrastructure less. Infrastructure based so-

lutions focus on making the conventional network protocols resource-aware, or

distribute the traffic load on different network types, or leverage infrastructure-

less means of communication to transfer data. All the techniques discussed

here are not content-aware. I.e. they do not consider the content attributes

to manage resources.

2.1.1 Infrastructure based solutions

2.1.1.1 Modified conventional protocols

A plethora of research effort has been directed towards managing smartphone

battery and mobile bandwidth. One direction is to improve existing protocols

like TCP, save energy based on traffic patterns and understand the sources of

energy consumption. In [45], energy consumption of 3G/4G networks was an-

alyzed and the study indicates a predominance of tail energy (interface is kept

on for some time after all data transfer is complete [20]) in these two interfaces

and also observes the high energy-per-bit consumption of 3G/4G compared to

WiFi through measurements. Energy conservation is also attempted using the

screen-off and on states of the smartphone in [46], and by predicting traffic

burst patterns and knowledge of the tail energy phase of 3G/4G in [29, 67].

GreenTube adopts a similar method to optimize the download of video-stream

while reducing the active periods of the 3G/4G interface. Some proposals at-

tempt to modify and improve the TCP protocol to be more energy efficient.

In [78], TCP connection closure using FIN/RST packets is avoided to save
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battery power. Smartphone device configuration is optimized for energy effi-

ciency based on the user context and usage using historical usage patterns in

[32]. Caching based on viewer behaviour, i.e., how long a video is watched by

mobile user, is proposed in [42] to save energy during stream pre-fetching.

2.1.1.2 Off-loading

The second popular approach to augment bandwidth and save energy is Mo-

bile data offloading. It is done in two ways: (1) using multiple interfaces

(2) through collaboration between neighbouring devices. A study in perfor-

mance measurements and feasibility of multipath TCP over 3G/4G and WiFi

is undertaken in [26, 81] for three commercial service providers in USA. Cool-

Tether [88], COMBINE [15] use the neighbouring devices to exchange data

with the web. This collaborative approach aims to reduce energy consumption

and increase aggregate bandwidth in the process. DozyAP [38] demonstrates

that using WiFi tethering for Internet connection sharing allows for putting

the interface to sleep to conserve energy. Catnap [31] puts the NIC to sleep

between packets to save energy. In [19], a framework called Wiffler is pro-

posed which predicts WiFi connectivity in vehicular networks and uses it for

delay-tolerant data exchange. In [59], a measurement study of 97 iPhone users

reveals that delay-tolerant use of WiFi for offloading benefits when the data

can sustain a delay in the order of tens of minutes. In [99, 83], 3G onloading is

proposed to augment the bandwidth of wired network using 3G. BlueStream-

ing [70] achieves video streaming to mobile devices by using Bluetooth for

delay-sensitive control traffic and WiFi for data traffic. Micro-Cast [53] uses

mobile-to-mobile 1-hop collaboration to effectively increase video streaming

throughput to mobile devices.
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2.1.2 Infrastructure-less solutions

2.1.2.1 DTN

When the collaboration of mobile devices extends to multiple hops and allows

for delay-tolerance and disruption tolerant links, another class of solutions be-

come available in the form of Disruption Tolerant Network or DTN routing.

There are many unicast mobile-to-mobile routing schemes designed to improve

point-to-point delivery probability and/or minimize delay [60, 64, 56, 18, 101].

These protocols, however, do not address the issue of information dissemi-

nation. When the content is such that it loses value over time (eg. news),

content freshness becomes an important criteria. Disseminating fresh content

is solved in [44, 47, 82, 14]. These techniques usually involve downloading

content from the Internet to a subset of mobile nodes, which then distribute it

among themselves with the objective of maximizing content freshness. There

are also proposals [47] which deal with caching content in DTN so that it

could be retrieved on request. In such schemes, Mobile devices run caching

algorithms which refresh/reshuffle their cached content based on a voting pro-

cess. Pre-defined preference [50] or tags [71] are also used to route content to

users. Tag-based routing allows users to declare their interest in the form of a

set of keywords. These keywords are disseminated into the network. When a

node encounters a user with matching interest keywords, it forwards the infor-

mation with matching tags to interested users. VStore [63], PhotoNet [98], and

CARE [103] address picture dissemination in mobile-to-mobile networks where

transmission bandwidth and storage are the main concerns. HORUS [36] use

the vehicle trajectory as the camera trajectory and determines most relevant

clips that capture a target area and retrieves it over vehicular DTN.
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2.2 Sensor and content based techniques

Media content features have long been used for organizing and selecting con-

tent. But they require that all content be uploaded to a central server or cloud

for processing. Section 2.2.1.1 elaborates on content-based content selection

methods.

Sections 2.2.1.2, 2.2.1.3 elaborate on sensor-based and hybrid content-

sensor based proposals to select content. Smartphone sensors are used for a va-

riety of applications like localization, augmented reality, tracking, health mon-

itoring. A survey of these mobile sensing applications is available in [54, 58].

These sections focus on the use of sensors for enriching media content. How-

ever, discussed techniques are similar to content-based techniques in that they

also rely on cloud or a central server for processing sensor-annotated media,

and hence are not resource-aware.

Section 2.2.2 discusses geo-tagged media management. This area focuses

on leveraging GPS and compass sensors to construct a view model of the

media. The view model is used to finding matching videos for user query.

Geo-tagged media management retrieves media on-demand.

2.2.1 Media processing in cloud/server

2.2.1.1 Content-based techniques

GigaSight [91] performs filtering and indexing videos on a cloud infrastructure.

This system tries to identify privacy-sensitive information from crowdsourced

video and uses it for retrieval from cloud. MediaScope [49] allows the cloud

to retrieve images using image features extracted on mobile phones. Features

are used to retrieve most common images, or dissimilar images to maximize

20



available information to the user. ImageWebs [41, 5] uses Bag-of-visual-words

based CBIR to filter images before applying affine co-segmentation which ap-

plies affine transform to feature points (filtered by RANSAC) and then com-

putes feature similarity. Brachmann et al [25] uses image webs to build graph

between images and uses the connectivity information with known labels to

propagate visual words to unknown labels of images.

2.2.1.2 Collaborative sensor based techniques

In recent years, there have been a number of research works that attempt

to incorporate collaborative techniques into media capture. iSense [112] ap-

plies multi-modality clustering using context information (e.g. location, time-

stamp) and content information (e.g. color, texture) to search for matching

images in mobile phones while CrowdSearch [106] uses crowdsourcing via Ama-

zon Mechanical Turk for image search. On the video side, TelosCAM [95] and

VirtualLock [107] use camera sensors to collaboratively provide video surveil-

lance. The capture event is triggered by either users or the proximity sen-

sors. Photo Tourism [93] uses SfM to compare images pairwise to get relative

co-ordinates of cameras. Absolute GPS co-ordinates are required to overlay

images on maps. Heng et al [66] proposes GPS error correction by combining

SfM, GPS and visual vocabulary. VIRaL [51] uses GPS and 3D reconstruc-

tion to cluster images for visual search. Gozali et al [35] builds hidden markov

model by combining content and time gap features from training data and

uses it to predict cluster boundaries for a event photo stream.

Geo-tagged images have been used to identify good-scenic quality routes

from community driven geo-tagged images in GPSView [111, 13]. Localiza-

tion is also achieved by combining images with GPS locations and compass

data [76]. Images are clustered based on GPS and compass to identify points-
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of-interest in [57, 96]. Geo-location and time based image clustering is pro-

posed in [28]. In [68], social media platform check-in information is com-

bined with GPS tags and records to identify geographical areas of interest for

tourists, while [75] uses template matching and compass to correct camera

pose for featureless content. Sensor assisted video and image tagging is pro-

posed in SEVA [69] and TagSense [79]. OPS [73] uses sensor annotated images

to obtain GPS location of an remote outdoor landmark.

In MoVi [22], social events are captured collaboratively using sensory cues

such as ambient sound and light to detect changes in environment. OutLis-

ten [7] and Micro-Cool [4] allow concert/event spectators to capture and upload

their video clips and use these video clips to reconstruct (either manually or

by matching audio content) the concert experience. Zhang and Wang [110]

use GPS and compass sensor data to generate a tourist summary video from

multiple videos in a video database.

FOCUS [48] uses Structure-from-Motion (SfM) [93] as part of cloud-based

architecture for indexing videos. SfM requires all videos to be available for

frame-by-frame pairwise comparison of all videos, and camera calibration for

all the cameras involved in the video capture. Both systems require all videos

from smartphones to be uploaded to the cloud for processing.

2.2.1.3 Sensor assisted user interest inference

Bao et al [21] uses smartphone sensors and acoustic signatures recorded sig-

natures to predict user feedback to movies.

22



2.2.2 Geo-tagged data management

Video capture, retrieval and classification are addressed by geo-tagging based

techniques which utilize a variety of sensors available in smart phones to anno-

tate media. For instance, Ay et al. [17] uses sensor metadata to rank relevant

video clips based on the magnitude of area or time interval captured in each

video clip. This ranking is presented to queries placed by users. The ranked

results are filtered based on occlusion and wiki page information [89]. This

effort is further extended [39] to introduce energy conservation by uploading

metadata on-demand, and by using WiFi/GSM based location inference to

complement GPS.

2.3 Recommendation techniques

Personalization has been the next big jump in technology of the Internet to-

day. Every form of content provider or content search applications today have

means to filter and recommend content to suit the needs of a specific user. To

achieve this effect a myriad of recommendation systems have been developed

and deployed. The prevalent architecture for such personalized content ser-

vices has been client-server system based on HTTP. The same architecture has

been extended to mobile devices also. However, as pointed out before, such a

system does not address the resource considerations. The most prominent and

popular personalization technique that has seen extensive research and wide

deployment is collaborative filtering (CF) [94]. CF techniques can be broadly

categorized into memory-based or model-based.
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2.3.1 Memory based collaborative filtering (MCF)

Memory-based CF (MCF) utilizes rating history of users to identify neighbour-

hood patterns among users or items. This pattern facilitates the prediction of

ratings for hitherto unrated user-item pairs.

2.3.2 Model based collaborative filtering

Model-based CF uses the user ratings in conjunction with standard statistical

models such as Bayesian belief nets and latent semantic model to identify

patterns in the ratings of user-item pairs. The resultant model is then used to

make predictions for future ratings.

2.3.3 Collaborative filtering in peer-to-peer networks

There exists much research on using CF on peer-to-peer (P2P) systems. Pock-

etLens [74] is a recommender system for portable devices that uses item-item

collaborative filtering for making recommendations. It proposes a rating ex-

change protocol for both distributed P2P architecture and centralized server

architecture, where nodes rely on a central server for storing rating informa-

tion. A probabilistic model-based CF is proposed by Wang et al. [102] for a

P2P network.

2.4 Discussion

Table 2.1 shows the comparison of UGCSelect with the related work discussed

in the previous sections. The comparison is along the following themes:

1. Network infrastructure resource awareness: Sensor and content

based techniques which rely on the cloud ignore the characteristics of the
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network such as available bandwidth and battery capacity of the mobile

devices, and are unsuitable to operate under resource constraints. This

limitation is also observed in recommendation techniques developed for

infrastructure networks. UGCSelect includes the network characteristics

as part of its selection mechanism and selects only content from mobile

devices which have enough battery and bandwidth to share content. Ad-

ditionally, UGCSelect relies on metadata to select content. This prevents

the sharing of content if it is not required. Required data is shared on

demand.

2. Content redundancy awareness: Resource management techniques

developed for mobile networks are not content-aware. Due this limita-

tion, redundancy in similar content cannot be eliminated. For sensor

and content based techniques which use cloud, all content is uploaded

to cloud, without regard for eliminating redundancy. This results is in-

efficient use of available resources. UGCSelect eliminates redundancy at

the source before sharing by leveraging the metadata from the content

and sensors.

3. Multi-source selection: UGC from ad-hoc events usually do not cap-

ture the event in entirety. This means any single UGC content might not

be sufficient to compute the result for application query. Therefore, con-

tent from multiple sources have to be combined to get the desired result.

This issue is not addressed in geo-tagged media management techniques.

UGCSelect incorporates multiple-source content to elimintate this lim-

itation. Another use of multiple sources is that it provides diversity of

choice for selecting content. When two UGC media are similar, system

could choose the UGC which results in minimum retrieval cost. Geo-
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tagged media management does not leverage this source diversity. This

advantage is incorporated by UGCSelect.

4. Dependence on training data: Content-based techniques require

training data to operate, which might not be available for ad-hoc events.

UGCSelect incorporates techniques which do not assume the availability

of training data.

5. Dependence on camera infrastructure: Some collaborative sensor

based techniques require camera network deployments. Ad-hoc events

might occur in locations where camera network deployments might not

be possible or might be rendered useless due to large crowds and occlu-

sion. UGCSelect relies on event attendees to capture content. Content

redundancy facilitates finding content of a particular view which is not

occluded.

6. Dependence on localization infrastructure: Ad-hoc events could

indoors, outdoors or in semi-outdoor environments. Localization infras-

tructure like GPS does not work indoors, and is prone to error when the

GPS signal is disrupted by canopies and trees. In tightly packed events,

where in scenes are in close proximity, GPS error could result in incorrect

content selection. Geo-tagged media management and some collabora-

tive techniques relying on GPS, have the above limitation. UGCSelect

localizes the content using the scene, rather than the absolute location.

This eliminates the need for localization infrastructure.
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Chapter 3

Movisode

3.1 Outline

We describe the details of Movisode, the first of three decision making modules

in Figure 1.1. In an event where the attendees capture and share videos of a

common scene, uploading all videos consumes network resources and smart-

phone battery. Alternative to this approach is to select a subset of videos which

satisfy the user. The problem is to choose the minimum subset of videos which

satisfy the user and also reduce the resource consumption.

Movisode proposes an on-demand mobile video sharing mechanism which

avoids uploading user generated videos unnecessarily. As shown in the Fig-

ure 1.1, Movisode uses m2s infrastructure network to facilitate user generated

video sharing. It consists mobile client component and server component.

Movisode mobile client uploads a small amount of metadata information gen-

erated on the smartphones to the server initially, instead of uploading the

entire video by default. The server will then only fetch relevant videos, in

response to user or application queries. By uploading only a small amount
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of metadata information to support queries and only upload more data on

demand, the network and energy cost on the smartphones are reduced.

Movisode is event-centric as it assumes that mobile videos are grouped

according to the event during which the videos are shot. It has several key

differences from the conventional video sharing approach (e.g., YouTube): (i)

Movisode supports spatio-temporal query by utilizing the objective attributes

of the video. Users search for videos taken during a specific period of time,

from a specific angle, focusing on a specific point-of-interest (POI) of the scene

(we will define the concept of POI more precisely in Section IV-A). (ii) The

output video generated by Movisode in response to a user query can be made

up of videos uploaded by multiple users. This is particularly useful when

no single video available covers the spatial/temporal dimensions of the query.

(iii) Movisode does not require localization information, which may not be

available (e.g., GPS is not available indoor) and can consume much energy to

acquire.

Movisode is driven by two main algorithms. The first is a lightweight meta-

data extraction algorithm that runs on the smarpthone. The algorithm infers

the view angle (from compass sensor on smartphone), POI (from the video

content) of available video clips, and uploads these information to the server.

The second algorithm runs on the server. It takes in metadata information

from the smartphones, upload cost/bandwidth of participating phones, and

the results of previous queries. The algorithm then decides which video to re-

trieve from which smartphones to satisfy a given spatio-temporal query from

the user. The objective is to balance the often conflicting goals of meeting user

requests and minimizing upload cost, by exploiting the fact that users usually

cannot visually detect small deviations in view angles and POI.

As an illustration, consider a request for videos that show the performance
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from the center of the stage for a 2-minute interval of a dance event. Fig-

ures 3.1(a)- 3.1(d) show thumbnails of the best match videos available, ob-

tained using an algorithm that does not take into account upload cost. Fig-

ures 3.1(e)-3.1(h) show thumbnails extracted from the set of clips selected by

Movisode to satisfy the request. Movisode is able to select videos that are

very similar to the best available videos while incurring significantly less up-

load cost by saving 83 Joules of energy in this particular case. On the other

hand, Figures 3.1(i)-3.1(l) show the thumbnails selected by an approach that

considers only upload cost. Although, this approach fetches the clips that re-

sults in the lowest upload cost, the view angle, and POI stay mostly on the

left of the stage instead of center of the stage as required by the query.

The organization of this chapter is as follows. We present the user in-

teraction model of Movisode in Section 3.2, metadata extraction approach

performed by the smartphones in Section 3.3, and video selection algorithm

performed by the server in Section 3.4. Results of evaluation are discussed in

Section 4.4. Section 4.5 concludes the chapter with a summary.

3.2 Using Movisode

We first illustrate how Movisode works by presenting how a user interacts

with Movisode through the Web interface. Organizers of events such as sports

matches and stage performances can register their event with Movisode, pro-

viding location and time information. Attendees of the event then “check-in”

into the event through the Movisode mobile client. After that, the attendees

begin to capture videos using their smartphones at the event venue for shar-

ing. Periodically, each smartphone uploads metadata of video that it intends

to share.
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Figure 3.2: Web interface for user query.
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A user can place a query in the form of “show me videos of the event from

time t1 to t2, with cameras recording video from angle θ and pointing at POI

γ”. Movisode selects the set of clips, based on video metadata previously up-

loaded by the users, that balances the conflicting objectives of high quality and

low cost. Once all the selected clips have been uploaded from the smartphones

to the server, its availability is indicated on the web interface.

Figure 3.2 shows the Web interface. The top of the page lists the available

events. For a selected event, past query results are shown on the right hand

side of the main video window. Below the main video window, the viewing

angle, POI, duration, and popularity of the set of video clips are visualized.

3.3 Metadata Extraction

In order to provide metadata about a user captured video on the smartphones,

each smartphone runs a light-weight metadata extraction scheme. For each

video, the metadata extracted, besides the start and end times, are the view-

ing angle and point-of-interest (POI). Distance is not included as part of the

metadata since we do not assume the availability of location information.

3.3.1 Angle and Point-of-Interest (POI)

We assume the availability of a reference image of the event area in advance,

which may be provided either by the participant or the event organizer. For

the purpose of computing viewing angle and POI, we view the event from a

top-down or bird’s eye view. Whatever the shape of the stage or event area

may be, it is always projected on to a 2D plane represented by the reference

image. If an event contains multiple scenes, each scene will be associated with
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Figure 3.3: Illustration of difference between POI and Angle.

a reference image. The Movisode system processes queries based on reference

images.

Figure 3.3 illustrates the model. The event plane, AB, is projected to be a

horizontal line and C is the center of the line AB. Without loss of generality,

we assume that a line that is perpendicular to the event plane has a view angle

of 0◦. For example, in Figure 3.3, user U2 viewing along the line X has a view

angle of 0◦.

We define the view angle of a frame captured in a video clip as the

angle between the line representing the view and a line perpendicular to AB.

Users U1 (along line Y ) and U3 (along line Z) have view angles of θ1 and θ2

respectively.

We define the point-of-interest (POI) of a view captured in a video clip

as the position of intersection between the line representing the view and event

plane AB. We quantify the POI value as the normalized distance from one

end of AB. In Figure 3.3, the POI of Users U2 (along line X), U4 (along line

W ) and U3 (along line Z) have POI of 0.5, 0.5 + P1 and 0.5 + P2 respectively.

While computation of a view angle can be performed relatively easily using

the compass sensor available on most modern smartphones, computing the POI

is more involved and is presented in more details in the next section.
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3.3.2 Computing POI

In principle, the POI of an image is computed by finding the horizontal shift

in image features between the given image and the reference image. This shift

is used to compute the displacement of the video frame’s view with respect

to the reference image center. The algorithm thus requires a reference image

with sufficient features as an input.

The smartphone computes the POI and uploads the average POIs as meta-

data to the server periodically. Conceptually, POI is computed as the average

relative distance of matching interest points found in the given image and

the reference image. We compute the POI for video frames sampled at a

pre-defined sample rate.

For each sampled video frame, the frame is resized to reduce the power con-

sumption and delay during computation. The effect of resizing is explored in

Section 3.3.3. The interest points of video frame is computed using BRISK [62]

feature detector1. These interest points are matched with interest points in

the reference image.

For each matching interest point pair (kj1
r , kj2

i ), the interest point of video

frame (i) is rescaled to the width of reference image (r):
(

XC(kj2
i ) × wr

wi

)

,

where, wr is width of reference image and wi is width of video frame.

The offset distance between the X-coordinate of reference interest point

XC(kj1
r ) and rescaled kj2

i is then computed as:

Offset =

(

(XC(kj1
r ) −

(

XC(kj2
i ) × wr

wi

)

)

Finally, the offset is normalized to range [0, kγ ] (kγ

2
is the normalized center of

1available in the OpenCV (http://opencv.org/) library for Android
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Figure 3.4: Sample reference image for POI computation.

the reference image), with respect to reference image as follows:

Normalized offset =
(XC(kj1

r ) −
(

XC(kj2
i ) × wr

wi

)

) × kγ

wr

The average of all positive offset distances over all interest points are com-

puted. Similarly, average of all negative offset distances are computed. If the

number of points with positive offset is more than negative offset, then pos-

itive offset is used to compute POI. Otherwise, negative offset is used. The

computed POI is the the normalized offset computed in the previous step plus

kγ

2
. The resulting value is the POI.

Note that since we use interest point feature that is scale invariant to

compute POI, our algorithm works even if the reference image and the captured

image are of different resolution, zoom-level, and orientation.

3.3.3 Performance

The POI computation runs on the smartphone and needs to be accurate as well

as lightweight. Both image resolution and occlusion could affect the accuracy

of the algorithm. We evaluate the impact of image resolution in this section.

The effect of occlusion on accuracy under real world settings is evaluated using
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(a) Left (b) Center

Figure 3.5: Frame samples with different orientations used for POI computation.

real world traces and user study in Section 4.4.

We evaluate POI computation algorithm using three metrics: computation

time, energy consumption, and accuracy, for different sub-sampled sizes of the

candidate images.

We create a test image as shown in Figure 3.4 as the reference image.

Figure 3.4 also shows a ruler (indicated by the red arrow). The reference

image captures the ruler segment starting at 37cm and ending at 174cm. The

ground truth POI of the reference image is at the mid-point of the image (at

106cm).

We run our experiments on a Galaxy Nexus phone, running the Android

operating system. Power is measured with a Monsoon power monitor device 2.

Accuracy is defined as
(

(1 − |Estimated POI−Ground truth|
Length of ruler segment

) · 100
)

.

The experiment is conducted for 12 images and 5 subsampling resize fac-

tors. We show two representative images in Figure 3.5 from different angles

and POIs. Note that the image shown in Figure 3.5(b) contains scene changes

(positions of figures have changed).

The ground truth is indicated by the red dotted line in the image (original

2http://www.msoon.com/LabEquipment/PowerMonitor/
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image, without subsampling) and the estimated POI is indicated by the blue

dotted line. The start and end points of the ruler segment appearing in the

image is indicated below the image in centimeter. The ground truth and the

estimated POI values are also shown. The summary of the evaluation is shown

in Table 3.1 for sub-sampling resize factors varying from 20% of the original

image to full sized image.

We find that by subsampling to 60% of the original image size, we could still

maintain 91.5% accuracy, i.e., only a 2% reduction in accuracy with respect to

the baseline case of using the original image, while achieving a power reduction

by approximately 86% and computation time reduction by 86%.

Table 3.1: Performance of POI algorithm for different resizing factors.
Re-size Factor Delay(sec) Energy(mJ) Accuracy(%)

20% 0.098 3.6 75.7

40% 0.311 12.1 82.5

60% 0.899 39.3 91.5

80% 2.558 117.4 93.4

100% 6.494 292.6 93.5

3.4 Video selection Problem

After the metadata of a video is uploaded from a smartphone to the server, it

is available to be selected as part of a response to a user query. In this section,

we describe how Movisode selects the “right” set of videos given a query.

We illustrate the video selection problem with a simple example. In this

example, we have six video clips covering different time intervals. Figure 3.6(a)

shows the intervals of this set of video clips over a eight minute duration. In

this example, no clip covers the entire eight minutes. The angle and POI of the

video clips, labelled V = {v1, v2, v3, v4, v5, v6}, are shown in the Figure 3.6(b).
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A set of clips may contain redundancy when we consider temporal overlap.

For instance, set {v1, v6, v3, v4} has temporal redundancy. An approach that

uploads all available clips would retrieve significant amount of redundant data

and is highly inefficient.

A key question that Movisode aims to address is which subset of video clips

covering the query duration should be uploaded. To answer this question,

Movisode considers the view angle and POI requested and the cost of each

video. This decision results in a tradeoff between the accuracy of the clips as

required by the orientation and temporal coverage and the power budget of

the smartphones.

3.4.1 Video clip and user Query

We now formulate the video selection problem formally. A video clip v is a se-

quence of temporally consecutive, non-overlapping video segments of unit time

duration. v is characterized by the clip interval [sv, ev), where sv and ev are

the starting and ending time of v respectively. Each video clip is also associ-

ated with two sequences that are characteristics of underlying video segments,

namely the sequence of orientation angles (〈θv,t〉), and POIs (〈γv,t〉).
As mentioned previously, a user query q is characterized by an interval

[sq, eq), an orientation angle θq, and a POI γq.

Let Ev,l,t be the energy required to upload segment v[t, t + 1) from smart-

phone l. It is a product of the time to upload the segment and average power

consumed by smartphone over its network interface. We obtain the average

power from the Android internal API 3. In cases where the video has already

been uploaded and is cached by the server, energy cost is 0.

3http://devmaze.wordpress.com/2011/01/18/using-com-android-internal-part-1-
introduction/
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(a)

(b)

(c)

Figure 3.6: Spatial and temporal distribution of videos: (a) Example of clip in-
tervals. (b) The event plane showing videos in Figure 3.6(a) with different view
angles and POI values. (c) The event co-ordinate system. The XY-plane repre-
sents the visual components of the videos taken at the event. The Z-component
is the energy consumed in retrieving the video clip.
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Given a set of video clips V , the temporal coverage of V , is defined as the

union of all clip intervals in V , i.e., ∪v∈V [sv, ev). We say that a set of video

clips V temporally covers a given interval if and only if union of temporal

coverage of V and the given interval, is equal to the given interval. Intuitively,

every time instance in the given interval is captured by some clip in V . For in-

stance, consider the video clips in Figure 3.6(a). The sets {v1, v2, v3, v4, v5, v6},
{v1, v3, v4}, {v2, v3, v5}, {v1, v3, v5, v6} temporally cover the interval [0, 8).

3.4.2 Cost Model

Three parameters determine the cost: view angle, POI, and the energy con-

sumed. We combine these parameters into a cost model by representing them

in a 3D cartesian co-ordinate system in the following way.

First, consider the XY -plane as representing a 2D plane representation of

the event plane, as shown in Figure 3.6(c). Let the query be a request for

a video q that views the event along the line M that passes through Q and

the POI P1. M makes an angle of θq with a line perpendicular to the X-axis.

Next, consider a video v with a view along the line N and passes through V

and the POI P2.

We compute the distance between the video q and v as the “effort” involved

in transforming q to v. Such a transformation can be viewed as two different

operations – a rotation of the line M about the point P1 in a clockwise direction

by θq,v,t, followed by a translation along the X-axis by γq,v,t. When the energy

cost is included (as Z-axis), the move from (x,y,z) to (x′,y′,z′) can be described
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by

x′ = x · cos (θq,v,t) + y · sin (θq,v,t) + γq,v,t (3.1)

y′ = −x · sin (θq,v,t) + y · cos (θq,v,t) (3.2)

z′ = z + Ev,l,t, (3.3)

where θq,v,t is the angle between the lines Q and V . If the lines fall either side

of the normal, then this value is the sum of the individual inclinations of the

lines. If they fall on the same side, it is the difference in the inclinations. This

value gives the angle by which the every point on the query line has to be

rotated in order to align it with the video line.

θq,v,t =



















θq + θv,t if (θq ≥ 0 and θv,t ≤ 0) or

(θq,t ≤ 0 and θv,t ≥ 0)

θq − θv,t if (θq, θv,t ≥ 0) or (θq, θv,t ≤ 0).

Putting in a matrix form, the transformation (clockwise rotation and then

translation) matrix to align Q with V is given by:

Tq,v,t =

















cos (θq,v,t) sin (θq,v,t) 0 γq,v,t

− sin (θq,v,t) cos (θq,v,t) 0 0

0 0 1 Ev,l,t

0 0 0 1

















. (3.4)

When the query and the video segments are aligned, θq,v,t

= 0, γq,v,t = 0, and Ev,l,t = 0. Tq,v,t reduces to the following best case

transformation matrix T∗
q,v,t which is a 4 × 4 identity matrix.

The best video segment for a query is one that is exactly aligned to the
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query and incurs no energy cost. The distance between the Tq,v,t and T∗
q,v,t

thus provides a measure of the cost and this transformation distance is rep-

resented by Frobenius norm (used to quantify geometric transformation er-

ror [40]) of the difference between Tq,v,t and T∗
q,v,t as follows: dF (Tq,v,t,T

∗
q,v,t) =

∣

∣

∣

∣Tq,v,t − T∗
q,v,t

∣

∣

∣

∣

F
.

On simplification, we get the following equation for the transformation

distance.

dF (Tq,v,t,T
∗
q,v,t) =

√

4 · [1 − cos (θq,v,t)] + γ2
q,v,t + E2

v,j,t (3.5)

The distance can be computed using the angles from the smartphone compass

readings, the POI from the images, the video sizes, the energy level reported

by the smartphones, and the available channel rate estimated.

With the cost defined, the problem under consideration can now be de-

scribed. Given a query q, a collection of video clip V and their availability on

a set of smartphones N with their respective uploading cost, we want to find

a set of video clips that (i) satisfies q, and (ii) reduces dF (Tq,v,t,T
∗
q,v,t).

3.4.3 CCMVA Algorithm

With the formulation above, we now present our solution to the video selection

problem. We called our algorithm CCMVA, or Cost- and Coverage-aware

Mobile Video Aggregator. CCMVA runs on the server, using the metadata

information uploaded by the mobile devices as input.

The input to CCMVA is a set of video clips V , energy consumption to

upload a video segment for each device, and the query q. We assume that

every video clip either overlaps with the interval [sq, eq) or is contained within

the interval [sq, eq). Otherwise the clip would not be in the query result and
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can be omitted. Segments of same interval duration are assumed to be of same

size.

We can model the input as a directed acyclic graph G = (V ∪ {vs, vt}, E),

where vs and vt are the source vertex and sink vertex respectively. We treat

vs as a video clip with interval [−∞, sq) and vt as a video clip with interval

[eq,∞).

We construct the edges in G as follows: There is an edge from u to v if

either of the following conditions is true: (i) u and v are consecutive, i.e.,

eu = sv, (ii) u and v overlaps, i.e., su ≤ sv ≤ eu < ev. We add two self loops

(vs, vs) and (vt, vt) in G (for reasons that will be clear later). Any subset of V

that temporally covers [sq, eq) forms a simple path from vs to vt in the graph.

V may not temporally cover the interval [sq, eq), in which case there is no

path from vs to vt, and G does not form a connected component. There is no

subset of V that would satisfy the query q in this case. CCMVA, however,

still returns a subset of video in V that falls within the interval [sq, eq). To

handle these cases, we add dummy video clips into G that fill up the gaps –

for every consecutive interval [s, e) not temporally covered by video clips in

V , we insert a dummy video clip of interval [s, e) into G. These dummy clips

ensure that G is connected and a path from vs to vt always exist.

If G contains multiple paths from vs to vt, then CCMVA algorithm needs

to select a path that reduces the transformation distance. Having shorter

video clips, increases the flexibility of choosing different video clips with lower

transformation distance. In Movisode, we break the videos captured by users

into short segments, each of a maximum length L, before we feed the clips into

CCMVA algorithm. We call L the minimum switching interval. The result of

having shorter clips is that, we have more vertices in G and more possible paths

to choose from. The effect of introducing the minimum switching interval will
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be presented in the evaluation section.

We now consider the cost of including a video clip v in the result of query

q. We consider the cost at each time instance t separately. At time t, in-

cluding video clip v into result of q introduces an transformation distance

dF (Tq,v,t,T
∗
q,v,t). We combine this cost over time, as cv:

cv =
ev−1
∑

t=sv

dF (Tq,v,t,T
∗
q,v,t) (3.6)

To reduce the cost, when two overlapping video clips, vj1 and vj2 (svj1
≤

svj2
≤ evj1

< evj2
), are included in the query result, we only need to upload one

of the overlapped segment, either vj1 [svj2
, evj1

) or vj2 [svj2
, evj1

). The segment

with smaller cost c is preferred. We can remove the segment with the higher

cost from its original clip, effectively shortening the clip. We call the remaining

shortened segment the effective segment. Note that the effective segment of

vj2 depends on what other clips are included in the query result. We, however,

can pre-compute all possible effective segments for every clip, as shown below.

To consider effective segments in the algorithm, we construct a weighted

graph G′ = (E,E ′) as follows. The set of vertices in G′ consists of all edges

E in G. We add an edge in G′ between any two edges (vj1 , vj2) and (vj2 , vj3)

in G (i.e., for any two hop path through vj2). Each edge ((vj1 , vj2), (vj2 , vj3))

can now be associated with the effective segment of vj2 , after considering the

overlapping with vj1 and vj3 . Note that it is possible for a clip to have an

effective segment of length 0, in which case the edge can be omitted from G′

for efficiency. The number of edges in G′ is O(|E|2).
Similar to G, the two vertices in G′ that correspond to the self-loop (vs, vs)

and (vt, vt) serves as the source and sink. Any path from (vs, vs) to (vt, vt)

gives a set of effective segments that satisfy the query q. In G′, however, we
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Figure 3.7: Graph G representing the video clips and the temporal relations be-
tween the clips.

Figure 3.8: Graph G′ representing the effective segments and the cost of including
each segment into the query result. The cost is computed from Table 3.2. The
minimum cost path is for set {v2, v3, v4} with a cost of 5.17.

can now label each edge ((vj1 , vj2), (vj2 , vj3)) with cvj2
that corresponds to the

cost of including the effective segment vj2 (w.r.t. overlap with vj1 and vj3) into

the results of q. We define cvj2
= 0 if vj2 is a dummy vertex.

The CCMVA algorithm is now fairly straight forward – it merely finds the

least cost path from (vs, vs) to (vt, vt) in G′.

3.4.4 Example

To elucidate the algorithm, consider the video clips with properties shown in

Figures 3.6(b) and 3.6(a). Consider a query q on interval [0, 8), requiring an

view angle of 0◦ and a POI of 0.5. Upload of clips {v1, v3, v4, v5}, {v2} and {v6}
are assumed to require normalized energy cost of 0.1, 0.2 and 1.0 respectively.
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Table 3.2: Possible effective segments for video clips. Transformation cost is
evaluated using Equation 3.6.

Clip Effective segment cv Edge pair

v1 [0, 2] = 2 1.68 ((vs, v1), (v1, v3))

v2 [0, 2] = 2 1.63 ((vs, v2), (v2, v3))

v3 [2, 6] = 4 2.04 ((v1, v3), (v3, v4))

v3 [2, 5] = 3 1.53 ((v1, v3), (v3, v5))

v3 [2, 6] = 4 2.04 ((v2, v3), (v3, v4))

v3 [2, 5] = 3 1.53 ((v2, v3), (v3, v5))

v4 [6, 8] = 2 1.5 ((v3, v4), (v4, ve))

v5 [5, 8] = 3 2.3 ((v3, v5), (v5, ve))

v6 No segment - ((v1, v6), (v6, v3))

v6 No segment - ((v2, v6), (v6, v3))

Figure 3.7 shows the graph G for these vertices, with edges capturing the

overlaps between video clips. For instance, there is edge from v2 to v3 because

they overlap, but there is no edge between v2 and v4. The weighted graph G′

is shown in the Figure 3.8.

Table 3.2 lists all the effective segments in the example. The effective

segment is determined by the cost of overlap segment with respect to the

candidate videos. For instance, v2 and v3 overlaps during [2, 3]. v2 (with view

angle 25◦) has cost of 0.84 w.r.t q. Similarly, v3 (with view angle 0◦) has cost

of 0.5 during this interval. Hence, overlap segment of v3 is preferred instead

of v2. At minute 2, the effective segment of v3 starts and the effective segment

v2 ends.

In Figure 3.8, no edge corresponds to v6 since the effective segment for

v6 w.r.t. v1, v2, and v3 are all empty. ((v2, v6), (v1, v6), (v6, v3) are marked

as dotted lines in Figure 3.7). The resulting graph is illustrated in Figure

3.8. The effective segment costs (evaluated using Equation 3.6) are labelled in

Figure 3.8. The min-cost solution for Figure 3.7 is {v2, v3, v4} and the cost is

5.17.
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3.5 Evaluation

We evaluate Movisode in three different ways. We conducted trace-based

evaluation in a realistic setting, we use video and sensor data of two events

from the Jiku Mobile Video dataset [85], namely NAF 160312 and NAF 230312.

Both events were music and dance performance on stage. We also conduct

a phone test bed evaluation to understand Movisode performance in real

network conditions. Finally, we evaluate the subjective quality of Movisode

through an user study to verify whether the gains in objective quality metrics

translate to subjective quality improvements.

3.5.1 Trace-based evaluation

To capture the factors that affect the phones’ energy consumption in our eval-

uation, we performed video upload using the Android’s YouTube app on a

HTC Desire smartphone, over 3G/HSPA and WiFi, from various locations in

Singapore and measured the energy required using the Android PowerTutor

app [108] (PowerTutor is calibrated using Monsoon power monitor device). A

700 KB video clip was used for uploading over 3G/HSPA and a 5 MB video

clip was used for uploading over WiFi.

50% of the upload were made using HSPA broadband service. The data

plan supports up to 2 Mbps upload speed, but the average upload bandwidth

measured was only 0.2 Mbps. The measured average power consumed was

0.96 W. The other uploads are performed with either public WiFi or enterprise

WiFi. Public WiFi access tends to provide lower data rate and impose rate

limit, while enterprise/campus WiFi provides much higher data rate but are

much more restricted in coverage. The average upload speed of public WiFi

was 0.3 Mbps, consuming 0.15 W of power. For the Enterprise WiFi, the
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numbers are 1 Mbps and 0.44 W respectively.

In our evaluation, each phone is assumed to upload its video metadata

to the server every 20 seconds (metadata segment duration). POI traces are

extracted using the algorithm described in Section 3.3.1. One frame is sam-

pled for every metadata segment duration and is resized to 60%, to compute

the POI values for the dataset videos. The energy consumed by the POI

computation is given in Table 3.1.

The upload cost for each phone is randomly assigned from the traces col-

lected during our energy measurements. The cost is normalized to [0,1] using

the maximum consumption measured (1.36 W). Queries are generated period-

ically, with randomly generated requested video length, view angle, and POI

value.

We compare CCMVA to three baseline algorithms that differs only in the

cost function in G′: (i) the EnergyOnly algorithm (energy baseline), where the

cost for an effective segment v stored on a smartphone l is
∑ev−1

t=sv
Ev,l,t, (ii)

the MLDOnly (Minimum Link Delay) algorithm (uplink throughput baseline),

where the device with the highest upload throughput is always chosen, and

(iii) the DivergenceOnly algorithm (angle/POI divergence baseline), where the

cost function (energy cost in Equation 3.5 is ignored) for an effective segment

v stored on a smartphone l is:
∑ev−1

t=sv

(

√

4 · [1 − cos (θq,v,t)] + γ2
q,v,t

)

We evaluate the algorithms using following metrics: (i) average angle di-

vergence, (ii) average POI divergence, (iii) average energy cost incurred by a

mobile device, (iv) total energy cost, and (v) average uplink throughput per

query. The energy cost includes both transmission and POI computation. In

the evaluation, we vary the query rate, length of video requested, and mini-

mum switching interval.
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Table 3.3: Movisode: default simulation parameters.

Parameter Value

Execution frequency of algorithm 5 minutes

Minimum switching interval 20 seconds

Length of video requested 15 minutes

Query rate 0.5 query/minute

Metadata segment size 20 seconds

Table 3.3 lists the default simulation parameters. The algorithm executes

every 5 minutes and if there are more than one query present, they are executed

in a FIFO order.

3.5.1.1 Results

Length of Video Requested. The length of the video requested is varied

from 1 to 15 minutes. Increase in video length (Figure 3.9(a)) does not affect

the angle divergence of CCMVA and DivergenceOnly, since these two algo-

rithms attempt to choose clips that decrease the angle divergence regardless

of video length. In contrast, the angle divergence of EnergyOnly and ML-

DOnly increases for shorter queries (less then 10 minutes) and then tend to

plateau as the query length increases. When longer queries are made, the

likelihood of finding clip segments in the cache that match is higher, thus

stabilizing the divergence as the query video length exceeds 10 minutes. The

behaviour of the candidate algorithms for POI divergence (Figure 3.11(a)) is

similar to that of angle divergence. CCMVA sees an increase in average angle

divergence of 5.7◦ compared to DivergenceOnly and has 30.6% higher average

POI divergence with respect to DivergenceOnly. The average angle divergence

of EnergyOnly and MLDOnly is 64.7◦ and 79.1◦ respectively.
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Figure 3.9: Behaviour of angle divergence with: (a) Length of video requested (b)
Query rate (c) Minimum switching interval.
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Figure 3.10: Behaviour of energy with: (a) Length of video requested (b) Query
rate (c) Minimum switching interval.
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Figure 3.11: Behaviour of POI and uplink throughput: (a) POI Vs length of video
requested (b) POI Vs minimum switching interval (c) uplink throughput Vs query
rate (d) uplink throughput Vs query rate.
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DivergenceOnly always attempts to find the best clip irrespective of the

energy cost, leading to the highest energy consumption among the candidate

algorithms. CCMVA also attempts to find a clip which lowers the angle di-

vergence, but it does so by considering the energy cost involved in the upload.

This approach makes its performance closer to the EnergyOnly algorithm that

attempts to decrease energy cost. MLDOnly also has low energy cost, only

slightly lower than CCMVA. Figure 3.10(a) shows the results. Phones con-

sume 28.5% more energy than EnergyOnly when CCMVA is used and 4 times

more energy than baseline when DivergenceOnly is used.

Figure 3.11(c) shows that uplink throughput increases for shorter video

length until the links are saturated for longer video length, at which point the

throughput stabilizes. DivergenceOnly shows the lowest throughput perfor-

mance. The uplink throughput drops by a factor of 3 compared to MLDOnly.

CCMVA and EnergyOnly have 36% and 46% lower throughput than baseline.

Query Rate. The query rate is varied from 0.1 to 2 query/

minute. Figure 3.9(b) shows how angle divergence varies with query rate.

Angle divergence of CCMVA and DivergenceOnly are not affected by increase

in query rate. In contrast, angle divergence of EnergyOnly and MLDOnly

decrease with increasing query rate due to the effect of caching. These two

algorithms tend to prefer clips found in the cache to save energy or retrieve

data faster. As the number of cached video segments increases, the possibility

of these algorithms finding video segments with better angular divergence also

increases as a side effect. However, the angle divergence of CCMVA remains

at a very low value of 4.2◦ with respect to baseline, while EnergyOnly and

MLDOnly show about 41◦ of angle divergence. Since, POI behaviour is similar

to angle divergence, the plots are not shown.

Figure 3.10(b) shows the variation of energy per phone with increasing
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query rate. At peak rate, CCMVA consumes 20% more energy than baseline,

whereas DivergenceOnly consumes 4 times more.

Uplink throughput per query (Figure 3.11(d)) drops with increasing query

rate. At peak load of 2 queries/minute, the thoughput registered by baseline is

0.3 Mbps. CCMVA registers an uplink throughput of 0.2 Mbps. Throughput

of DivergenceOnly is half that of CCMVA.

Minimum Switching Interval. We measure the performance of the var-

ious algorithms by varying the minimum switching interval from 20 seconds

(minimum is metadata segment size) to 4 minutes. Minimum switching in-

terval determines the shortest duration that can be chosen from any clip in

generating the query result. The results for angle divergence are shown in

Figure 3.9(c). As minimum switching interval increases, angular divergence of

CCMVA and DivergenceOnly increase while the result for EnergyOnly stabi-

lize after an initial increase, but the angle divergence can be at least two times

CCMVA and eight times that of DivergenceOnly.

Angle divergence for DivergenceOnly and CCMVA increases because, as

minimum switching interval increases, these two algorithms are forced to re-

main on the same clip even if there are better options provided by other clips.

Behaviour of the candidate algorithms for POI divergence (Figure 3.11(b)) is

similar to that of angle divergence.

The energy cost increases with switching duration for all algorithms (Fig-

ure 3.10(c)), for reason similar to that of angle divergence. Energy cost of

CCMVA is closer to EnergyOnly than DivergenceOnly. At 4 minutes, CCMVA

consumes slightly less energy compared to MLDOnly. This difference occurs

when MLDOnly chooses clips from phones connected to Enterprise WiFi which

have higher data rate, but also register slightly higher energy consumption

compared to Public WiFi.
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Figure 3.12: CDF of total energy of system over Time.

Different Events. So far, only results for NAF 230312 event is shown. We

present a summary of results for both NAF 160312 and NAF 230312 events

in Table 3.4 for comparison. The result shows that the trend is similar for

both events. CCMVA performs at least 2 times better than other algorithms

in terms of divergence, has 1.1 times higher uplink throughput, and consume

10 times fewer energy than DivergenceOnly. In terms of total system energy

consumption (Figure 3.12 shows average over both events), CCMVA consumes

only 7.5% of the energy that would have been expended if all clips in the phones

were to be uploaded, compared to 5.5% consumed EnergyOnly and 36.6% by

DivergenceOnly.

Contribution of Caching and Switching. CCMVA’s performance is

strongly influenced by two techniques used, namely caching and switching.

We quantify the impact of these techniques by evaluating variants of CCMVA

that use different combination of caching and/or switching. With no switching,

once a user clip is selected, it is utilized till the end of the clip before another

clip can be selected. Table 4.1 shows the percentage improvement in cost met-

ric for the above schemes with respect to CCMVA. Switching has significant
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Table 3.4: Summary of results for NAF 160312 and NAF 230312 events.

Divergence Baseline CCMVA Energy MLD
(DivergenceOnly) Only Only

Angle
NAF 160312 5.3◦ 45.1◦ 46.9◦

NAF 230312 5.86◦ 55.1◦ 63.3◦

POI
NAF 160312 20.4% 49.3% 46.8%
NAF 230312 24.9% 57.8% 60.2%

Uplink Throughput CCMVA Energy Diverg-
Baseline (MLDOnly) Only ence

Only
NAF 160312 26.7% 34.8% 43.5%
NAF 230312 31.9% 34.3% 65.9%
Energy Baseline CCMVA Diverg- MLD
(EnergyOnly) ence Only

Only
NAF 160312 2.2% 135.7% 7.1%
NAF 230312 28.5% 373.4% 25%

Table 3.5: Contribution of caching and switching technique measured by percent-
age improvement.

NAF 230312 NAF 160312
Metric Cache Cache Cache Cache

+Switch +Switch
Angle 6.8% 87.8% 7.8% 86.5%

Divergence
POI 5.3% 22.7% 3.1% 20.7%

Divergence
Energy/Phone 38.9% 77.1% 20.5% 35.5%

Uplink 1.8% 19.9% 29.7% 80.8%
Throughput

influence on all metrics and this is true for both event traces. The ability to

switch to a different clip frequently is crucial in obtaining good solutions.

On the other hand, caching mainly reduces energy consumption of the

phones and increases throughput. Caching may not necessarily decrease all
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the divergence cost metrics. This is because, one cached video clip could

influence the choice of other clips in the solution for the query.

3.5.2 Test bed evaluation

We conducted experimental evaluation using 10 smartphone clients to verify

the performance in real settings. Six phones used WiFi to upload and four

phones used 3G for communication with the server. A mix of Galaxy S2,

Galaxy Nexus, and Nexus S model of phones were used for the experiment.

Phones were placed in a semi-circular manner around the scene. Every phone

ran the Movisode client app. A run of the experiment lasted for 20 minutes

and every data point is the average of three runs.

Each client performed recording for 2 minutes followed by a 10 second

idle period. This process was repeated 10 times. Metadata for the client

was uploaded every 15 seconds. The average size of uploaded metadata was

150 Bytes. Request from the server consisted of videos of 5 minutes length

with angle and POI request generated randomly. Accuracy of the power values

provided by Android Internal API was verified with measurements taken using

a Monsoon power monitor for 3 different phone models and for both WiFi and

3G in both OFF, ON and transmit state (Table 3.7). We observe that the

average error of the API compared to power measurements is 26% for 3G and

20% for WiFi. While the error is not insignificant, we believe it suffice for our

evaluation.

Table 3.6 provides a summary of the result. Result is consistent with

the simulation evaluation in terms of relative performance comparison among

CCMVA, DivergenceOnly, EnergyOnly and MLDOnly. For example, in terms

of angle and POI (POI not shown in table) divergence, CCMVA is 4◦ and 23%
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more than DivergenceOnly, while the differences for the other two algorithms

are about 70◦ and 44% respectively. In terms of total energy (includes compu-

tation, network and sensor energy), CCMVA is 26% that of DivergenceOnly,

while EnergyOnly and MLDOnly consume about 21% and 24% respectively.

Table 3.8 shows the energy expended by each algorithm on 3G and WiFi

respectively. DivergenceOnly consumes more energy because it requests 3

times more uploads than EnergyOnly and 47% of it is over 3G. On the other

hand, CCMVA uploads only 10% more than EnergyOnly and only 17% of it

is over 3G. DivergenceOnly manages to get half the uplink throughput that

MLDOnly achieves, while CCMVA is only 17% less than baseline. MLDOnly

uploads more than CCMVA because of the difference in the content of the

video.

Table 3.9 shows energy per-module breakdown for Movisode client. Net-

work component dominates energy consumption for all algorithms. CCMVA

and DivergenceOnly also use compass sensor (consumes 49 mW on average for

normal mode of sampling) and POI computation. While CCMVA consumes

17.7% of its energy for sensors, only 0.7% is consumed for POI computation.

For Divergence-Only, it is 2.6% and 0.1% of its total energy. The relative

drop is because the network module of DivergenceOnly consumes 97% of total

energy consumed.

3.5.3 User Study

As angle divergence is an objective measure that may not correlate with quality

of user perception, we performed a user study to evaluate whether the selected

video content orientation matches the view orientation expected by the user.

We conducted a web-based user study with 33 users between the age group of
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Table 3.6: Real phone experiment results

Metric CCMVA Diverge- Energy MLD
nce Only Only Only

Angle 29.1◦ 25.3◦ 94.3◦ 92.9◦

Divergence
Total energy 453.9 1726.5 366.7 417.6

(Joules)
Uplink 1.3 0.6 1.4 1.5

throughput
(Mbps)

Uploaded 45.7 115 41.5 64.8
data (MB)

Table 3.7: Power measurement using Monsoon power monitor device (in Watts).
GN: Galaxy Nexus, S2: Galaxy S2 NS: Nexus S

Model Network ON Upload TX OFF

GN
3G 0.94 1.39 0.63

WiFi 0.37 1.23 0.43

S2
3G 0.59 0.73 0.36

WiFi 0.59 1.08 0.42

NS
3G 0.58 0.72 0.21

WiFi 0.33 0.84 0.26

21-40 years. User anonymity was preserved during the study. All videos used

in the study were results obtained by evaluating (Table 3.4) the algorithms

on the NAF 160312 and NAF 230312 events in Jiku dataset. For each event,

we select videos using the candidate algorithms CCMVA, EnergyOnly and

DivergenceOnly for three view orientations (center, left and right of the stage)

for a query length of 30 seconds. In total, 18 videos were used for the study.

At the beginning of the user study, participant is shown a thumbnail image

(representing the query), a graphical illustration of the view orientation shown

in the image and two videos. One video matches the image orientation and the
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Table 3.8: Total energy consumption per interface

Interface CCMVA Diverg- Energy MLD
ence Only Only
Only

3G Energy 0.38 1.64 0.35 0.39
(KJoules)
3G 7.9 54.9 10.28 7.96
Upload(MB)

WiFi Energy 8.9 22.1 9.2 19.8
(Joules)
WiFi 37.9 60.1 31.3 56.8
Upload(MB)

Table 3.9: Percentage energy breakup of Movisode client

Algorithm Network Sensor Computation
CCMVA 85.7% 12.9% 1.4%
DivergenceOnly 96.2% 3.4% 0.36%
EnergyOnly/ 100% - -
MLDOnly

other does not match the orientation. This is the calibration step to illustrate

the difference in orientation to the user.

After the calibration step, the user is shown an image, the graphical repre-

sentation of its orientation, and a video. The user has to rate on Likert scale

of 1-5, the following question: “How similar is the video view orientation with

that of the query image orientation?”. Results of the user study are shown in

the Table 3.10. The overall average ratings for DivergenceOnly, CCMVA and

EnergyOnly are 3.98, 3.91 and 2.5 respectively.

The performance is observed to vary with requested orientations also. For

instance, Movisode performs 97.99% better than EnergyOnly for videos re-

quested from left-of-stage, while it is 36.64% better for videos requested from

center-to-stage orientation. This is due to the distribution of available videos.
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The number of videos captured from the center-to-stage orientation are more

than those captured from left and right of stage. Therefore, the likelihood that

EnergyOnly makes a bad choice reduces for center-to-stage videos.

Table 3.10: Summary of user study results for NAF 160312 and NAF 230312
events. Ratings are in Likert scale of range from 1 to 5

Query Diverg- CCMVA Energy
ence Only
Only

Overall
Center 4.47 4.24 3.12
Right 3.49 4.03 2.68
Left 4.09 3.22 1.63

Average Rating 3.98 3.91 2.5

NAF 230312
Center 4.5 4.19 3.21
Right 2.95 3.47 2.07
Left 3.8 2.46 1.31

Average Rating 3.69 3.51 2.33

NAF 160312
Center 4.43 4.31 3
Right 4.18 4.58 3.28
Left 4.32 4.2 1.84

Average Rating 4.3 4.39 2.65

3.6 Summary

We have presented Movisode, the module of UGCSelect uses sensor cues avail-

able in smart phones and content features to provide spatio-temporal coverage

for queries while minimizing the content upload cost. We have evaluated

CCMVA (algorithm component of Movisode) through trace-based simulation

driven by real-world dataset and energy traces, test bed evaluation and user

study. Results indicate that CCMVA algorithm which forms part of the Mo-

visode system balances the trade-off between spatio-temporal coverage and

energy much better than the other candidate algorithms and provides results
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which are close the best available videos. We evaluate Movisode through trace-

based simulations on two real-world datasets [85], and also on a test bed of 10

smartphones. The summary of our evaluation is as follows:

1. Our trace-based and test bed evaluation shows that Movisode is able

to select clips that are good approximations to the best match video

clips (view angle and POI differ by at most 6◦ and 32% respectively)

while incurring not more than 30% higher energy than energy baseline.

The approach that considers only angle and POI produces best available

matches while incurs 4 times higher cost in uploading. The approach

that considers only upload cost, saves energy but selects videos with an

high error in view angle and POI of up to 92◦ and 72% respectively.

2. The subjective quality of video results are consistent with the accuracy

reported in terms of view angle and POI, with Movisode receiving 56%

better ratings than the approach that considers only upload cost, while

differing by only 1.6% in quality compared to the approach that considers

only angle and POI.

61



Chapter 4

AutoLink

4.1 Outline

AutoLink is the second module in the UGCSelect system. In ad-hoc events,

photos captured by users are unstructured. It is difficult for an user to navigate

and search for specific photos in such unstructured photo collections.

AutoLink processes unstructured photo collections to create an image hi-

erarchy. This hierarchy allows users to navigate from images with high con-

textual information (big picture) to images with high details (specific scene

regions).

4.1.1 Difference with Movisode

AutoLink differs from Movisode in the following ways:

1. AutoLink processes images while Movisode operates on videos

2. Movisode operates in a single-scene environment, it relies on only orien-

tation sensors to organize videos. AutoLink operates in multiple-scene
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environments. In order to associate a photo to one of the scenes, it re-

quires movement trajectories of event attendees to estimate the location

where the photo was taken. Therefore, in addition to the orientation

sensor feature, it also leverages the smartphone accelerometer sensors to

estimate trajectories.

3. AutoLink estimates the size of the scene region captured by the photo

to determine the level of scene detail within the photo.

4.1.2 Challenges

Organizing unstructured photo collection present two challenges:

1. Lack of location information: In events with multiple scene, identi-

fying the scene to which photo belongs becomes challenging when local-

ization infrastructure is not available. This challenge is also compounded

when scenes located at different locations are similar in content. Fig-

ure 4.1 shows two scenes which are similar but located at different places.

Image features might not distinguish between the two scenes clearly to

identify the matching scene for a photo.

2. Noise: Photos captured in ad-hoc events could have occlusions, lighting

distortions, view diversity which make the task of identifying matching

features in photos difficult. For instance, Figure 4.2 shows two photos

belonging to same scene from different angles. Identifying the scene

region captured by a photo is challenging due to the distortion introduced

by the orientation.

The organization of this chapter is as follows. We present an background

for AutoLink in Section 4.2, and algorithm in Section 4.3. Results of evaluation
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(a) (b)

Figure 4.1: Similar scenes at different locations

(a) (b)

Figure 4.2: Same scene from different view angles

are discussed in Section 4.4. Section 4.5 concludes the chapter with a summary.

4.2 Background

An event typical consists of multiple scenes, for example, different display

booths in a exhibition. Visitors to such events tend to move from one scene

to another and capture photos.
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4.2.1 Problem

In this multi-scene event context, AutoLink solves the following problem in

order to create the image hierarchy: Given a set of scenes identified by the

user, for photo captured by the event attendee, find

1. Scene to which the photo belongs

2. Region of the scene the photo captures (describes the level of scene detail

in the photo)

The desired result of AutoLink is an image hierarchy as shown in Figure 4.3.

Figure 4.3: Illustration of AutoLink image hierarchy

4.2.2 User interaction

Figure 4.4 gives the general flow of AutoLink. Event attendee uses the smart-

phone camera to capture the photo. Each photo is timestamped, tagged with

orientation sensor readings at the time of photo capture and accelerometer

sensor readings between the current and previous photo capture occurrence.
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Figure 4.4: Overview of AutoLink

Image content features of the photo, thumbnail and the sensor readings are

uploaded to the server. This is represented by steps 1 and 2 in the figure. The

mobile client in UGCSelect system (Figure 1.1) handles the feature extraction

and sensor tagging.

A typical AutoLink user, initiates the interaction by selecting a set of scenes

(step 3 in Figure 4.4) from the available photo collection (unstructured) using

a web interface.

Using the uploaded metadata and the selected scenes, AutoLink performs

a three stage processing (steps 4,5 and 6 in Figure 4.4) on the unstructured

photo collection to create image hierarchy. The user can then navigate through

the hierarchy using a web browser.

4.3 AutoLink

The processing component of AutoLink is depicted by steps 4, 5, and 6 in

Figure 4.4.
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Ideally, localization infrastructure can be used to identify the scene for

a photo. Due to limitations of localization infrastructure (discussed in Sec-

tion 2.4), AutoLink proposes a localization infrastructure independent solution

by leveraging image content features and inertial sensors to finding matching

scene for photos. The sensor-assisted hybrid classification component (step 4

in Figure 4.4) performs this function.

As an input, an user selects a subset of images, is called the reference

images. Once a scene is identified, the reference image for the scene is used to

compute the region captured by photo. This function is performed by Region

estimation component (step 5).

Finally, the photo is added to image hierarchy using the estimated scene

and region by Hierarchy creation component (step 6).

Each of these stages of AutoLink are elaborated in following sections.

4.3.1 Sensor-assisted hybrid classification

Figure 4.5 illustrates an event with multiple scenes. Identifying matching

scene for a given photo in a multiple scene event, is a classification task. In

the following sections, we describe the features used by AutoLink and the

classification method.

4.3.1.1 Content features

Content features are interest points within an image which capture properties

of the image such as color, change in color, edge, region etc. For an image pair,

matching interest points indicate similarity in corresponding property. We use

four representative features. Each feature reveals a different characteristic of

the image. They are as follows:
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Figure 4.5: Event with multiple scenes

• Color-SIFT: captures scale-invariant characteristics which are invariant

to color [12]. Anomalies such as ambient lighting could change the color

pattern in the image. Due to its color invariance, this feature helps

match two images by eliminating the effect of color change.

• Color histogram: global color histogram description for the photo.

When the color properties of the scene are preserved, color histogram is

detects matches with little processing.

• ORB: fast binary descriptor which is invariant to rotation and noise

resistant [84]. When attendees capture photos from different views and

distances, the photos capture rotated versions of the scene. To reduce

mismatches due to distortion introduced by view difference, ORB fea-

tures are used.

• MSER: or Maximally Stable Extremal Regions descriptor [34] describes

region level features. While, the above three features match images at
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pixel level, MSER matches images at region level.

Filtering interest points. When interest points for a image pair are

matched, the matching interest points could be spurious. One interest point

in the first image, could match multiple interest points in the second image.

These spurious matches reduce the accuracy of classification and region esti-

mation.

We apply three methods to filter the interest points. They are as follows:

1. Super-pixel based filtering: Image regions surrounding matching

interest points should have have similar color properties. If not then the

match is incorrect. For instance in Figure 4.6, k5
i matches two interest

points k2
r and k4

r . Matching pair (k4
r , k

5
i ) represents correct match, while

(k2
r , k

5
i ) represents incorrect match. In order to extract image regions,

SEEDS [100] super pixel algorithm is used to segment the image.

2. Distance based filtering: In Figure 4.7, distance between interest

points within r cannot exceed distance between their matches with i.

This is because, r is assumed to be the zoomed out version of the scene.

Any image belonging to the scene will have higher detail and is captured

closer to the scene. In Figure 4.7, matches (k1
r , k

1
i ) and (k2

r , k
2
i ) satisfy

the distance constraint, while match (k3
r , k

4
i ) does not satisfy distance

constraint with respect to (k5
r , k

3
i ). Following definition formalizes this

point: Two interest point matches (kj1
r , kj2

i ) and (kj3
r , kj4

i ) conform with

each other, if DIST (kj1
r , kj3

r ) ≤ DIST (kj2
i ), kj4

i ), where DIST (.) is the

euclidean distance between the interest points.

3. Interest point clustering based filtering: In Figure 4.6, most of

the matches are positioned in the candidate image, such that it preserves
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Figure 4.6: Two interest points of the scene matching with same interest point
in the candidate image. This causes ambuigity and is resolved by eliminating the
unlikely match

Figure 4.7: Use of distance between interest points to filter out incorrect feature
matches

their relative position in the reference image. The two exceptions to

this are marked in red dotted lines. In order filter out such matches, we

compute the slope of the line joining the matches, cluster the slope values

by computing a histogram of slopes and consider only those matches with

highest occurrence slope value.

For instance, consider a two-bin histogram for slopes above or equal to

zero and below zero. For the image pair in Figure 4.6, cluster size of Bin

1 is three and that of Bin 2 is two. This is because except for matches
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connected by the red line, all others are above or equal to zero. Since,

Bin 1 has the highest cluster size, only matches connected by black lines

are considered for region matching.

4.3.1.2 Sensor-based features

In ad-hoc events, scene content can change dynamically due to human activity.

Relying only on content based features will lower scene identification accuracy.

Smartphone sensors could be leveraged to improve accuracy when content

based features are sufficient for scene identification. Using the accelerometer

and compass sensors, distance between scenes and general orientation of the

scene could be obtained. We use the pedometer app 1 which computes the

number of steps taken by the user, given a accelerometer sensor trace. We

apply the pedometer function on the trace from reference set (scenes are man-

ually labelled in the reference set) and create a step transition matrix S = [si,j]

which gives the average number of steps required to move from one scene i to

another scene j, for all scene pairs.

The user cannot be expected to hold the mobile device in the hand. Be-

tween photo capture events, device could be in his pocket. This makes compass

readings reliable mostly around the time when photo is captured. Therefore,

only the orientation of the photo when it is captured is used as a feature. From

the reference set, average compass orientation(shown in Figure 4.5) of every

scene is used for scene identification.

4.3.1.3 Time-based features

In addition to sensor features, time features could also be exploited to reveal

photo taking pattern of the event attendees. The time stamps between photo

1http://code.google.com/p/pedometer/, retrieved August 20, 2014
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Figure 4.8: Sensor-assited hybrid classification

captures in the reference image set provide information on whether there is a

scene change, and if so what is the most likely scene change. We compute a

time gap matrix T = [ti,j] which gives the average time taken to traverse the

distance between any two scene pairs (i, j). Given a time-gap and T , the most

likely scene to which the newly captured photo belongs is predicted. As user

trajectory is hard to predict correctly, time-gap information is used to improve

the accuracy when content based features do not provide a matching scene.

4.3.1.4 Classification

Figure 4.8 shows the six steps involved in the classification which will be

elaborated in this section.

1. Match. When a mobile device uploads the image features and sensor
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logs, the features are matched with each of the reference images rep-

resenting the scenes. The matches are then filtered using the method

described in Section 4.3.1.1 to remove spurious feature matches.

2. Apply NBNN. Naive bayes nearest neighbour(NBNN) [24] classifier is

applied on the matches to rank the scenes based on the nearest neighbour

distance. This is done for each descriptor separately. NBNN is chosen

because it works with less number of training samples. Standard NBNN

uses dense features which runs slower. We alleviate the problem by

having a higher threshold(set to 1000) for SIFT features. Having a higher

threshold produces fewer but better representative interest points. This

results in higher accuracy for fewer images. It also reduces the time for

interest point matching.

3. Rank and select. From the nearest neighbour ranking, we look for the

scene which gives the best match for the candidate image, for atleast

K descriptors. Having very high K means that the scene has to have a

higher matching score to be declared the label for the image. This results

in fewer images being labelled, but increases the labelling accuracy. If a

scene does not satisfy this criterion, the image is added to the unlabelled

list and the algorithm exits. If the criterion is satisfied, then the new

image is assigned(or labelled) to the scene. When a new labelled image is

added to the collection, the classification attempts to discover labels for

hitherto unlabelled images using the updated labelled image collection.

This is done using the time and sensor features in the following steps.

4. Compute tgap. Figure 4.9(a) shows the time gap(tgap) between two

successive images. If the time gap between two images is large enough,

that might indicate that the user(who captured the photos) has moved
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Figure 4.9: Illustration of time-gap

from one scene to another. For instance, i3 and image i4 in the sequence

belong to two different scenes, and there is a large time-gap between

them.

Between two labelled images (i1 and i5 in the figure) if there exactly one

time-gap which is greater than a threshold ∆tmax, and this time-gap is

the maximum of all the time-gaps, then it indicates only one transition

between two these scene(scene 1 and 2 in the figure) has occurred. Here,

∆tmax is obtained from the average value of all entries of T .

5. Perform time-gap based labelling. If a scene transition is detected

in the previous step, then the known labels are used to classify the un-

labelled images captured between them. All images captured before the

maximum time gap are labelled with the first image label because they

were captured before the scene transition, and those occurring after the

gap are labelled with the second image label because they were captured
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after the scene transition. For instance, in Figure 4.9(b), known labels of

i1 and i5 are used to label the images with unknown labels (i2, i3 and i4).

Since, i2 and i3 occur before the maximum time-gap, they are labelled

with scene 1 , and i4 is labelled with scene 2.

6. Combining content and sensor-based inference. If the time-gap

test fails, then sensors are used to discover new labelled images. Steps

of sensor-assisted classification are elaborated below:

(a) Step distance feature. Steps estimated using accelerometer

traces and pedometer is used to estimate the distance traversed the

user two image captures. Consider two image i and j captured at

ti and tj. Let, S(i, j) be the estimated step distance between i and

j.

If image i is labelled and j is not labelled, then we look for a scene

label which has a similar distance from the known scene (label of

image i), by comparing the estimated step distance with all entries

of i in S. If i is captured before j i.e. ti < tj, then the direction of

traversal is from i to j. In this case we check all row entries of i in

S. Otherwise, direction of traversal is from j to i, and in this case

column entries of i have to be checked.

Based on this intuition, step distance similarity is performed on

every unlabelled image j and labelled image i. For each row entry

(i, x) and column entry (x, i) in S, δsi,j,x = |S(i, j) − si,x| is step

distance difference. We rank all scenes x in ascending order of δsi,x.

(b) Time elapsed feature. When event attendees walk between

scenes, the time taken to traverse the distance tends to be same.

For instance, in Figure 4.5, moving between scenes 2 and 3 usually
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takes a shorter time than moving from scene 1 to 3. Although,

it is possible that people could take a longer route between two

scenes, this feature and step distance could still be used to filter

out unlikely scenes in the result.

Consider two image i and j captured at ti and tj. Similar to step

distance, time elapsed helps identify possible scenes.

For every labelled image i and unlabelled image j, time elapsed is

computed as: ti,j = |ti − tj|. Timestamp order is used for inferring

direction of traversal. If ti < tj, for each row entry (i, x) in T ,

time elapsed difference δti,j,x = |ti,j − ti,x| is computed. We rank all

scenes x in ascending order of δti,j,x.

(c) Orientation feature. When the attendee captures images of

a scene, the image will have similar orientation as the scene. For

instance, in Figure 4.5, the person taking a photo in scene 3, will

face north, north-east or north-west, but not south. Therefore,

difference in orientation of the scene and the image could filter out

unlikely possibilities during classification. Orientation difference

δax,j = |ax − aj| for all scenes x is also used to rank scenes in

ascending order.

(d) Finally, all the ranks (content, time and orientation) are combined

using mean reciprocal ranking [80]. The scene(s) with top N highest

aggregate ranking are considered as label for j. when N > 1, the

label one with highest rank is used for sensor based estimation in

the previous steps.
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Figure 4.10: Reference image (r) and candidate image (i)

4.3.2 Region estimation

Once the scene (r in Figure 4.10) of the candidate image (i in Figure 4.10) is

identified, the next step in AutoLink is to identify the region (shaded area in

Figure 4.10) of the scene which is captured by the image. Region estimation

is done in two different ways, and combined for better accuracy.

In the first approach, the region center is estimated using the vertical and

horizontal shift in the interest points. The rationale is similar to the POI

computation discussed in Section 3.3.2. Finding the region center restricts the

search space for the region matching process around the region center making

it computationally efficient.

The second approach uses the super pixels to estimate the bounding box.

The super pixels segment the image such that regions with similar pixel prop-

erties are coalesced into same region. This estimate corrects errors in the size

of window based estimation.

Figure 4.11 shows the six steps involved in region estimation. They are
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Figure 4.11: Sensor-assited hybrid region matching between reference image for
scene r and candidate image i

elaborated below:

1. Compute region center. Let, the region center be denoted by

(mxi,r,myi,r). Filtered matches for each content-based feature are used

for computing the region center.

Given an interest point match (kj1
i , kj2

r ), kj1
i is rescaled with respect to

image r and the horizontal and vertical offset are computed as follows:
(

XC(kj2
r ) − (XC(kj1

i ) × wr

wi
)
)

and
(

Y C(kj2
r ) − (Y C(kj1

i ) × hr

hi
)
)

where

wr, hr is the image width and height of r and wi, hi is the image width

and height of i.

The offset estimates obtained from each match could be positive or nega-

tive. The estimates are separated into list of positive and negative values

and a weighted average is taken over each list. The weights are obtained

from inverse of matching distance of interest points matches.
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In order to determine the overall direction of offset, the weight (edge

weight) of all positive offsets is compared with edge weight of all negative

offsets. The offset direction with higher weight is favoured because it

indicates that more similar matches were used to compute the offset.

The corresponding weighted average is used as estimate. This is done

for both the x-offset and y-offset separately. The weighted average offsets

are denoted as ∆mxi,r and ∆myi,r.

The region center of i is computed as mxi,r = mxr +∆mxi,r and myi,r =

myr + ∆myi,r. Figure 4.12(a) illustrates the region center estimated

using the above method.

2. Estimation using sensor. The z-axis of the compass sensor provides

a measure of forward tilt of the camera which also indicates the vertical

shift in the region center. We discretize the angle value and average it

with the y-coordinate of the region center estimated using content.

3. Feature based window matching. Since, the size of the region is

not known before hand, this method applies windowing iteratively (as

shown in Figure 4.12(b) and 4.12(c)) by increasing the size of the window

iteratively. For each window size, similarity of feature matches contained

in the window is computed, until the window with maximum similarity

is found. Feature based window matching is elaborated below.

Let, size of the region around the region center be a bounding box de-

noted by top-left (txi,r, tyi,r), width wi,r and height hi,r.

(a) Compute aspect ratio of i, wi

hi
. Aspect ratio is required because

the scene image and candidate image could be different sizes. This

happens in smartphone images when people capture in landscape
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or portrait mode.

(b) Initial value of wi,r is set to constant representing minimum allow-

able width.

(c) Height of region to be estimated is hi,r =
wi,r

(
wi
hi

)
. This is done so that

aspect ratio of region matches i.

(d) For region txi,r = mxi,r − w
2
, tyi,r = myi,r − h

2
with width wi,r and

height hi,r, identify all interest point matches between r and i which

are contained in this region. Average of all matching distances is

the cost for this region. Higher cost implies that the region and

image i are more different.

(e) wi,r is incremented by a fixed constant, and step (a)-(d) are repeated

until wi,r < wr.

(f) Region estimate with minimum cost is chosen as best estimate.

4. Super-pixel based estimation. Windowing uses interest points

to match bounding boxes. When interest points are located within

regions which extend outside the window, windowing underestimates

region width and height. Using super pixel boundaries for estimat-

ing the bounding box helps in overcoming this limitation. As shown

in Figure 4.13, reference (Figure 4.13(a)) and candidate images (Fig-

ure 4.13(b)) are segmented. Only super-pixels with matching interest

points are used for bounding box estimation (Figure 4.13(c)).

5. Averaging bounding boxes. Final estimate of region size is an

average of the bounding box estimates obtained from both the meth-

ods. Figure 4.14 illustrates the estimated bounding box (in red) and the

ground truth bounding box (in blue).
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(a) Estimated region center (b) Initial window

(c) Expanded window

Figure 4.12: Feature based window matching for region estimation

4.3.3 Hierarchy creation

Image hierarchy is a poly tree L = (N , E), where N is the set of images

and an edge exists from i to j if:

1. i overlaps with j.

2. Region size of i is greater than j

3. Children of i do not satisfy conditions (1) and (2) with j

The rationale for the above definition is as follows: the hierarchy is a polytree

to allow multiple root nodes. Each root node represents a scene. condition

(1) ensures image i and j share the same scene. Condition (2) ensures that

j captures a sub-region of i in higher detail. Condition (3) guarantees the

progressively increasing region detail along the hierarchy.
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(a) Super pixel segmentation of
reference image

(b) Super pixel segmentation of
candidate image

(c) Super pixels in reference image
that match the candidate image

Figure 4.13: Illustration of super-pixel based estimation
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Figure 4.14: Region estimation: estimated bounding box (in red) and ground truth
(in blue)

Once matching scene and region for the candidate image is estimated,

the matching scene is used to identify the root node to which the candidate

image has to be added. The region bounding box is used to iterate through

the polytree until a node which satisfies the above definition is reached. The

candidate node is added as a child to that node.

4.4 Evaluation

4.4.1 Methodology

This section describes the details of the datasets, metrics and candidate tech-

niques used for the evaluation of AutoLink.

4.4.1.1 Datasets

Since there are no datasets with accelerometer, gyro and compass sensors, we

have collected two real-world datasets which contain sensor annotated images

captured using smartphone. Participants were allowed to capture data without
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any restriction on their behaviour. Every scene is represented by one reference

image determined manually offline. Ground truth labelling was done manually.

Dataset 1. is an exhibition event which involved both indoor and out-

door exhibits spread over a large area. This means that photo captures are

separated in time and space and are relatively easier to distinguish. Dataset 1

contains data from 1 participant with 755 photos. We refer to this as the single

user case. Dataset 1 has 43 scene classes and Dataset 2 has 22 scene classes.

Since, there was only one participant in Dataset 1, we have sub-sampled the

sensor traces and split the photos to create two virtual users. This dataset

is considered as the best case which simulates two people with very similar

walking trajectories.

Dataset 2. is captured in an exhibition event held in an indoor environ-

ment where scenes involving posters and demos. Scenes were closely located.

The scenes also share some common features which makes distinguishing them

challenging. Dataset 2 contains 187 images with sensors logs, obtained from 6

participants who volunteered for the evaluation. We refer to this as multiple

user case. For all results of Dataset 2, sensor data from 5 participants were

used for constructing matrices S and T .

4.4.1.2 Metrics and parameters

Metrics of evaluation are described below:

1. Precision is defined as the ratio of correctly labelled images to number

of labelled images.

2. Recall is defined as the ratio of correctly labelled images to number of

images.

3. Running time of the candidate techniques
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4. Bounding box accuracy is used to compute the accuracy of region

matching [109]. The ground truth bounding box is obtained by manual

human labelling of the regions. Let, Ag be the area of ground truth

bounding box and Ap be the area of predicted bounding box. The accu-

racy is given by:

Bounding box overlap (%) =
(Ag ∩ Ap) ∗ 100

(Ag ∪ Ap)
(4.1)

There are two parameters that impact the accuracy of AutoLink. They

are as follows:

1. K: If a candidate scene appears as the best match in the rank list of

atleast K feature descriptors types, then it is accepted as label for the

image. We have used four descriptor types (discussed in Section 4.3.1.1).

The default value for evaluation is K = 2. We vary K from 1 to 4 and

observe its effects on classification accuracy.

2. N: This parameter is the maximum number of candidate scenes that

are considered potential labels for an image. Default value for evaluation

is N = 1.

4.4.1.3 Candidate techniques

Evaluation of AutoLink is done in two phases. For the classification phase,

following are the candidate techniques used for evaluation:

1. NBNN only. This is the content only version of AutoLink.

2. NBNN + Time. This method is AutoLink without sensors. We

evaluate this scenario to get the accuracy gain from content and time

based methods.
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3. NBNN + Sensor features. This method is AutoLink without time-

gap features. We evaluate this scenario to get the accuracy gain from

content and sensor based methods.

4. NBNN + Time + Sensor. This is the AutoLink with all features

included.

5. Bag-of-visual-words (BOVW). OpenCV [6] version of the bag-of-

visual words (BOVW) is used as the candidate technique for training

based algorithms. BOVW extracts interest points from images and clus-

ters them into patterns called “visual words”. A visual dictionary of

such words are created using training images. A test image is classified

by matching its visual words against the dictionary. This method has

been used by ImageWebs [41] for image similarity graph.

6. Structure-from-Motion (SfM). SfM extracts interest points from

a set of images, uses point correspondence to construct a 3D model of

the scene. This 3D model is used to estimate the viewpoint of each

photo. This technique is used in PhotoTourism [92]. We have used

VisualSfM [105, 104] for our evaluation.

For the region matching phase, the candidate techniques are:

1. Window matching only. This technique only estimates the region

center and the size based on window matching described previously. The

region center is not corrected with sensors.

2. Window matching + super pixels. This technique combines the

region estimates from window matching and super pixels.
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3. All techniques. This is the AutoLink region matching, which com-

bines sensor correction with window matching and super pixel estima-

tions.

When only one dataset results are discussed, by default it is the multiple

user case (Dataset 2).

4.4.2 Classification

We first discuss the single user case of Dataset 1 where image hierarchy is built

using only the personal image collection. We will then elaborate on the case of

multiple participants, where image collections of more than one user are used

to build the image hierarchy.

Single user case. Table 4.1 summarizes the results for both datasets.

In the single user case, the scene images chosen by user and the images to be

classified share the same sensor and time log. This is the scenario where classi-

fication should produce good accuracy. As expected, AutoLink demonstrates

70% precision and high recall of 78%.

In Dataset 1, the time-gap feature distinguishes scene transitions with

reasonable accuracy because of larger area and content difference between

scenes is high. Due to this reason, sensors play a less significant role. Without

sensors, precision drops by 8% and recall drops by 6%. Without time-gap

feature, recall drops by 51%.

The content-only component which is NBNN, does provide a high precision

of 78%. Most of the images that could have been labelled using time and sensor

features remain unlabelled, resulting in low recall of only 10%.

For BOVW which relies on visual dictionary, the lack of enough training

data (only 1 image per scene) results in poor performance. The precision
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reduces to 19% and recall to 3%.

Compared to BOVW, SfM based image clustering does better at 53% pre-

cision and recall. SfM does not rely on content training. The main source of

error for SfM is that it classifies based on “similar” scenes rather than “same”

scenes. When scenes are similar in appearance, use of sensors and time features

help distinguish them accurately.

Multiple user case. In the case of multiple users, one user chooses the

scene images, and images to be classified is received from other users. The

sensors and time features are not the same. I.e., each user might capture

images in different sequence and move between scenes in different ways.

AutoLink gives a good precision of 71% which is the same as the single

user case. The recall is relatively lower at 51%. The difference with the single

user case is 37%. This lower recall is because the time features which gave

high accuracy in Dataset 1, are not as accurate in the case of Dataset 2. This

is because Dataset 2 is a indoor event with closely clustered scenes. The time

difference between people spending time in a scene, or moving to the next one

is not very different.

When the sensor module is removed, the recall drops by 37% and precision

by 9%, demonstrating that the major contributor to the number of correct

classifications, in this case, is sensors.

Without the time-gap module, the recall drops by 27%. The drop is less

compared to Dataset 1 because sensor module contributes to classification

more significantly than time-gap features when scenes are clustered in small

spaces.

The NBNN only gives 25% recall which is 51% drop from AutoLink classi-

fication. This slight rise of 7% in precision is because AutoLink without time

features makes less errors in classification, although it classifies less.
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Compared to the single user case, SfM performs very badly at 37% preci-

sion and recall. Dataset 2 has higher number of scenes with similar features

compared to Dataset 1 which is a mix of indoor and outdoor scenes. AutoLink

provides twice the precision with 37% higher recall than SfM.

Finally, BOVW performance is similar to the single user case with 19%

precision and recall.

When the number of participants used to construct the transition matrices

was reduced to 1, the precision and recall reduced by 5% indicating that one

participant’s trace is enough to build the transition matrices to get a reasonable

accuracy.

Table 4.1: Classification accuracy: precision and recall
Single user Multiple users

Approach Precision Recall Precision Recall
NBNN + Time + Sensors 0.7 0.78 0.71 0.51

NBNN + Sensor 0.76 0.38 0.74 0.37
NBNN + Time 0.64 0.73 0.64 0.32

NBNN only 0.78 0.1 0.78 0.25
SfM 0.53 0.53 0.37 0.37

BOVW 0.19 0.029 0.19 0.19

Variation across phones. Table 4.2 shows the variation of precision

and recall across three of the six phones. The standard deviation in precision

is 1.9% is very small, indicating that precision of AutoLink is not affected by

the number of images captured by the user. But, there is 26% variation in

recall. The trend indicates that participants capturing fewer images tend to

receive a lower recall. This is because, when the number of images is less, the

likelihood of getting good quality scene images to create hierarchy decreases.

Sample results of classification. Figure 4.15 shows classification re-

sults for two scenes from Multiple user dataset (Dataset 2). Correct classifica-

tion event when image captures parts of the scene in higher detail is illustrated
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Table 4.2: Variation in precision and recall across phones
Approach Precision Recall Number of photos captured

Participant 1 0.65 0.28 56
Participant 2 0.64 0.46 69
Participant 3 0.67 0.47 118

(a) Scene 1 (b) Higher detail,
correct

(c) Different view,
correct

(d) Scene 2 (e) Occluded image,
correct

(f) Incorrect

Figure 4.15: Samples of image classification. Correct and incorrectly classified
images are shown

in Figure 4.15(b). Classification when image has different view angles is illus-

trated in Figure 4.15(c). Semi-occluded image classified correctly is shown in

Figure 4.15(e). Incorrectly classified image is shown in Figures 4.15(f). In-

correct classification is because of the fewer interest points generated for the

image content.

Running time. Table 4.3 gives the running time of candidate techniques.

For the multiple user dataset, the running time of AutoLink is at most 298

milliseconds when run on a 4 core 3.4GHz Intel i7 processor. Removing sensor

and/or time features results in a negligible decrease in running time. Bag-

of-Features has a much lower 35 ms running time, it does not perform well
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in terms of accuracy. SfM run on the same machine takes 5.9 seconds/image

which is 20 times more than AutoLink. Both AutoLink and SfM use multi-

threading.

Table 4.3: AutoLink running time
Approach Average running time per image

NBNN + Time + Sensors 298 ms
NBNN + Time 292 ms

NBNN + Sensors 290 ms
NBNN only 287 ms

SfM 5946.7 ms
Bag-of-Features 35.9 ms

Varying N and K. In Table 4.4 and 4.5 we vary the value of N from

1 to 10 and K from 1 to 4. Increase in N increases the chance of detecting

the correct scene match. The variation from 1 to 10 yields a precision and

recall improvement of upto 29%. Increasing K does not necessarily increase

the precision and recall. While the reason for decrease in recall is because

less images are labelled correctly, decrease in precision is because, for higher

K, AutoLink has fewer content labels which increases the uncertainty for the

sensor-based labelling. Having a very low K value also affects precision because

there will be more false content matches. The best precision and recall is

achieved when K = 2, which is also used for our evaluation.

Table 4.4: Variation of precision with (N,K) parameters
N K=1 K=2 K=3 K=4
1 0.55 0.71 0.66 0.35
3 0.52 0.59 0.54 0.28
5 0.55 0.65 0.59 0.34
10 0.57 0.67 0.61 0.35
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Table 4.5: Variation of recall with (N,K) parameters
N K=1 K=2 K=3 K=4
1 0.46 0.51 0.44 0.19
3 0.52 0.58 0.53 0.25
5 0.55 0.64 0.58 0.29
10 0.57 0.66 0.60 0.31

4.4.3 Region estimation.

Figure 4.16 gives the CDF of percentage overlap of the candidate techniques,

for the photos that are correctly classified. 58% of photos have atleast 50%

overlap with the ground truth bounding box, when all techniques (superpixel,

window matching and sensors) are applied. For window matching based region

estimation, only 30% of photos have 50% overlap. This is because, window

matching relies on interest points and color features only and does not factor

in the semantic region boundaries. Lesser overlap is also due to the error

of the region center which affects window position. When super pixels are

included, 38% of photos have 50% overlap. There is an 8% increase due to

considering the region boundaries. Running time per image pair for region

matching module of AutoLink is 73 milliseconds.

Figure 4.17 shows the sample estimations for region matching. Blue rect-

angle denotes the ground truth and red rectangle denotes the estimation. Fig-

ure 4.17(c) shows estimation for candidate image which captures changed scene

content. Figure 4.17(f) shows estimation for image with higher detail and Fig-

ure 4.17(i) shows estimation for occluded image.

4.4.4 Overall accuracy.

User interacts with AutoLink by drawing a bounding box in a scene image.

AutoLink lists top-M images that belong to this scene and overlap with the
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Figure 4.16: Region matching accuracy

bounding box. We measure the accuracy of this list as follows:

In the dataset, we have manually classified and labelled the bounding box

for every image. From the set of all possible scenes in the dataset, we randomly

select a scene and generate a rectangle bounding box representing the user’s

request. In all, we generate 10000 user requests. For each request, the best

possible match is identified from the ground truth. AutoLink is used to predict

a list of candidate images that overlaps with the user request. The list is

ordered in decreasing order of bounding box overlap with the user request.

Overall accuracy is measured as follows: if there is atleast one image in

the Top-M entries of AutoLink list, which matches the ground truth overlap

percentage, then the user request has a match. Otherwise, the user request has

no matches. Table 4.6 gives percentage user requests that have a match. We

have generated 10000 random user requests on Dataset 2, for this evaluation.

The value of M is varied from 1 to 20. For M = 1, accuracy is 56.6%.

As expected accuracy increases with more entries in the predicted list, but

saturates at M = 15. At M = 2, 70% of user requests have atleast one

matching prediction.
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Table 4.6: Overall accuracy of AutoLink
Top-M predictions Percentage accuracy

1 56.6
2 70.4
3 74.9
5 76.9
10 80.14
15 81.11
20 81.11

4.5 Summary

In summary, this chapter details AutoLink, the sensor- assisted module of

UGCSelect to automatically generate image content links so that smartphone

photos captured in ad-hoc events, could be organized to improve user expe-

rience. We have demonstrated its performance with two real world datasets

and also suggested potential application scenarios. Evaluation results indicate

upto 70% precision, and atleast 50% recall in classification and 20 times faster

than state-of-the-art.
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(a) candidate 1 (b) Scene 1 (c) Changed scene
content

(d) candidate 2 (e) Scene 2 (f) Higher detail

(g) candidate 3 (h) Scene 3 (i) Occlusion

Figure 4.17: Samples of region estimation
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Chapter 5

CoFiGel

5.1 Outline

CoFiGel is the last of the three modules of UGCSelect (Figure 1.1). When

infrastructure is not available, CoFiGel facilitates content sharing using m2m

network. CoFiGel uses subjective UGC attributes to select content. Subjective

attributes have the following advantages:

1. Content processing (which is CPU intensive) is not required

2. Captures abstract user taste which is not possible in content based se-

lection

3. Requires small quantity of user feedback metadata to describe content

and infer user interest. Disseminating small metadata consumes less

resources in m2m networks.

CoFiGel uses recommendation systems to process subjective attributes of

UGC. In Figure 2.1, we show two main types of recommendation techniques

designed for infrastructure networks, that leverage user feedback to predict
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user interest. The first technique is model based recommendation which builds

a model with training user feedback set, and then uses the model to predict user

interest. The second technique is memory based collaborative filtering (MCF).

This method of recommendation differs from the model based approach in that

it does not build a model which is hard to change when the user set changes.

MCF builds a rating matrix from the user feedback for content, and extracts

similarity patterns between users to make predictions. This rating matrix

can be built incrementally over time. MCF has also seen wide deployment in

commercial products 1. Due to these advantages, MCF is a good candidate

for subjective content selection in infrastructure-less m2m networks.

5.1.1 Problem

The performance of m2m networks depend on the following factors:

1. Storage capacity of the mobile device

2. Duration of the m2m contacts

3. Frequency of m2m contacts

4. Number of replicas of the content available in the m2m network

MCF does not consider these factors while making predictions for the user.

Using MCF as it is results in wasteful use of resources and poor delivery of

items to users in m2m networks.

CoFiGel solves this problem by combining the network characteristics of

m2m and the predictions of MCF to share UGC. As part of the solution

we propose, a distributed transmission scheduling and storage management

1http://www.amazon.com/
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algorithm, which balances the trade-off between faster growth of the rating

matrix of MCF, while increasing the delivery of interesting items to users in a

timely manner.

5.1.2 Differences with Movisode and AutoLink

CoFiGel differs from Movisode and AutoLink in the following ways:

1. CoFiGel is designed for a distributed environment, because it operates in

m2m networks. Movisode and AutoLink use m2s links and are designed

for a client-server environment.

2. Movisode and AutoLink use objective attributes to share content, while

CoFiGel uses subjective attributes of content.

The chapter is organized as follows: Section 5.2 elaborates on MCF. The

trade-off involved when combining MCF and m2m is detailed in Section 5.3.

System model for CoFiGel is presented in Section 5.4. Utility estimation is

discussed in Section 5.5. Section 5.6 discusses the algorithm, Section 5.7 details

the evaluation and Section 5.8 concludes the chapter with a summary.

5.2 Memory-Based Collaborative Filtering

We now explain in more detail how MCF works. Typical MCF techniques have

the following structure. A training data set is used to build a rating matrix

consisting of ratings given for items by users. The rating matrix is used to

identify the similarities between users/items and also to predict the ratings

of hitherto unrated items by a given user. From this sorted list of predicted

ratings, a subset of highly rated items are shown to the user. Feedback from
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the user for the item shown is then used to update the rating matrix. The

assumption is that users tend to behave in the same way as they behaved in

the past.

For concreteness, we will use the Cosine-based similarity metric ([65, 52,

74]) in the rest of this paper to illustrate how CoFiGel works. Cosine-based

similarity is a popular item-based MCF and has been used in large scale real-

world applications such as the recommendation system used by Amazon.com.

Note that CoFiGel can also work with other MCF algorithms, such as Slope

One [61]. Since MCF works for recommendation of any kind of items, we will

use the term items in the rest of the discussions to refer to content in our

application.

In general, ratings can be represented as integer values. For simplicity, we

assume that ratings are binary and are expressed as either 1 (positive/like)

or 0 (negative/dislike). In computing Cosine-based similarity, unrated items

are assigned ratings of 0. After a user has rated an item, the item will not be

recommended to the user again.

Let U and I be the set of all users and items respectively and I+
u and

I?
u be the set of items that are rated positive and unrated by a user u ∈ U

respectively. Let the rating of an item i ∈ I for user u at any given time be

mu,i. Cosine-based similarity metric computes RNKu,i, the rank of an unrated

user-item pair (u, i), in the following way. First, the similarity between two

items i and j is computed using

Sim(i, j) =

∑

u∈U mu,i · mu,j
√

∑

u∈U m2
u,i ·

√

∑

u∈U m2
u,j

(5.1)
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Table 5.1: Rating matrix for Cosine-based similarity metric, ⋄ denotes ratings that
could be predicted and ⋆ denotes unknown ratings

Users i1 i2 i3 i4 i5 i6
u1 1 ⋄ ⋆ ⋆ ⋄ ⋄
u2 1 ⋄ ⋆ ⋆ ⋄ ⋄
u3 1 1 ⋆ ⋄ ⋄ 1
u4 ⋄ 1 ⋄ 1 1 1
u5 ⋆ ⋄ 1 1 ⋄ ⋄
u6 1 ⋄ ⋆ ⋄ 1 1
u7 1 0 ⋆ ⋄ 0 1

For each unrated item i ∈ I?
u, RNKu,i is computed as:

RNKu,i =
∑

j∈I+
u

Sim(i, j) (5.2)

Obviously, the rank of item i for user u can be computed only if there is

at least one user who has rated both i and another item that user u has rated

positively. If the rank cannot be computed, then we say that the particular

user-item pair is unpredictable. Table 5.1 shows a rating matrix with items

that are rated (positively and negatively), predicted and unpredictable.

Typically, the top-k items i ∈ I?
u with highest rank are recommended to

user u. We say that the prediction of i is positive for u if i is among the top-k

items in I?
u, and negative otherwise. A prediction of i is said to be correct, if

the predicted rating is consistent with the user rating eventually. Note that

the notion of whether a prediction is positive or not changes over time (and

thus whether it is correct or not changes over time as well).

The performance of MCF algorithm is measured by several standard met-

rics [94]. For instance, precision and recall are used to measure the classifica-

tion performance of a MCF algorithm. Precision is a measure of recommended

items that are relevant to the users, and recall is a measure of the number of

100



Table 5.2: Predicted rating and coverage for (u4, i1) and (u4, i3) user-item pairs
User-Item Predicted Rating Gain in rated and

predictable items
(u4, i1) 1.30 2
(u4, i3) 0.71 4

relevant items that are recommended to the users. Another common perfor-

mance measure used is prediction coverage, (or coverage for short), defined as

the percentage of the number of predictable user-item pair.

5.3 MCF for Mobile-to-Mobile Recommendation

When two mobile devices meet, they need to select which items to be transmit-

ted over the intermittent contacts based on the meta-data information avail-

able. As mentioned, since contact capacity is precious, items that are likely

to be liked by other users should be transferred and propagated with higher

priorities. Running MCF in the context of mobile-to-mobile content sharing,

however, leads to another issue: since each user is likely to get a chance to rate

only a small subset of all content available, selecting which items for users to

rate is also important, to increase the coverage. We illustrate this intricacy in

the rest of this section with an example.

Consider the rating matrix shown in Table 5.1. Item i1 has three common

user ratings with items i2, i5 and i6. i3 has only one common user rating with

i4. Using Equations 5.1 and 5.2, we can compute RNKu4,i1 as,

RNKu4,i1 = Sim(1, 2) + Sim(1, 4) + Sim(1, 5) + Sim(1, 6)

=
1√
5
√

2
+ 0 +

1√
5
√

2
+

3√
5
√

4
≈ 1.30
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Similarly,

RNKu4,i3 = Sim(3, 2) + Sim(3, 4) + Sim(3, 5) + Sim(3, 6)

= 0 +
1√
1
√

2
+ 0 + 0 ≈ 0.71

The results are listed in Table 5.2. i1 has a higher rating than i3 with

respect to u4.

However, the consideration, in terms of coverage, is different. It can be

observed from Table 5.1 that all users except u4 and u5 have already rated i1.

Knowing the value of mu4,i1 , allows only at most one more rating, RNKu5,i1 ,

to be computed. The gain in rated and predictable items is 2. On the other

hand, i3 has been rated only by u5. Knowing the value of mu4,i3 , allows the

rating of 3 users (u3, u6 and u7) for item i3 to be computed. The gain in rated

and predictable items is 4. Therefore, the rating of i3 by u4 has a higher gain

in rated and predictable items than rating i1.

This example illustrates the trade-off between improving user satisfaction

and improving coverage when not all data transfer can be completed within

a contact. If user satisfaction is more important, then i1 will be chosen for

transfer. If coverage has higher priority, then i3 should be chosen.

Note that when there is a centralized server with continuous connectivity

to users and has access to all rating information and data items, the impact of

this trade-off is not significant. However, such a trade-off plays an important

role in a resource constraint environment where the contacts between mobile

devices are intermittent, contact capacities are limited and only subsets of

data items can be stored in the local buffers.

The execution of MCF on mobile devices with intermittent contacts presents

a new challenge that is not present in traditional applications of MCF in a cen-
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tralized or peer-to-peer environment where connectivities are not intermittent.

5.3.1 Rating Propagation

Consider the case of item i3 shown in Table 5.1. The only available known

user rating for i3 is from u5. Using the rating matrix shown, only user u4’s

rating can be predicted.

Let, U
j
i be set of users with unknown ratings for item i in jth round of

prediction, P
j
i be set of users with predicted ratings for item i in jth round of

prediction and K
j
i be set of users with known ratings for item i in jth round

of prediction.

The set U
1
3 contains users whose rating cannot be predicted because there

is insufficient rating information available. The rating sets for first round are:

• K
1
3 = {u5}

• P
1
3 = {u4}

• U
1
3 = {u1, u2, u3, u6, u7}

Next, the rating for item u4 becomes available and round 2 begins. First,

u4 is now in K
2
3 and as more information is available, Cosine-similarity can

predict the ratings of u3, u6 and u7. The ratings sets second round are:

• K
2
3 = {u4, u5}

• P
2
3 = {u3, u6, u7}

• U
2
3 = {u1, u2}

Finally, assume that the ratings for u3, u6 and u7 become known, all user

ratings for i3 become either known or predictable. The ratings sets third round

are:
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• K
3
3 = {u3, u4, u5, u6, u7}

• P
3
3 = {u1, u2}

• U
3
3 = ∅

In the presence of intermittent link contact capacity, the proposed approach

is to predict the items that has the greatest likelihood of getting the largest

amount of positive ratings from users.

5.4 System Model

The MCF algorithm runs locally on each mobile device based on available

meta-data information, which consists of the user-item rating matrix and con-

tact history.

The status of mu,i can be either rated, predicted or unpredictable. A

rating mu,i is rated if i has be transferred to and rated by u, and the rating can

be either 1 or 0. A rating mu,i is predicted if it has not been rated yet, but the

rank RNKu,i (see Equation 5.2) can be computed. The predicted rating is 1 if

i is among the top-k item according to RNKu,i for user u, and 0 otherwise. A

rating mu,i is said to be correct if the predicted rating matches the user rating

eventually.

Recall that there are two naive methods to pick an item to transfer to an-

other device. The first method, considering only item recall, picks a predicted

item that gives the highest rank RNKu,i to maximize the probability that

the rating mu,i is correct and positive. The second method considers only the

prediction coverage, and picks a predicted item such that if the item is rated,

then the number of unpredictable items becoming predictable is maximal.
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To consider both recall and coverage, we consider the following metric: for

an item i, we are interested in the number of correct positive prediction for

i eventually, i.e., when i has been rated by all users. Before i is rated by all

users, this quantity is considered as a random variable, denoted as Ωi. At any

round t, we know the current number of correct positive rating for i, denoted

r+
i . We also know is the number of positive predictions for item i, g+

i . Ideally,

we would like the following inequality to be true:

Ωi > r+
i + g+

i ,

i.e., all the positive predictions for i are correct, and there are additional new

postive ratings for i. The key question is thus to estimate the probability that

the above condition is true if i is transferred.

In the following, we present approximations on the potential positive rat-

ings for an item and the probability of delivery of items with positive ratings

to the users. The goal is to derive approximations that can be used as input

to guide and motivate the design of CoFiGel.

5.5 Potential Gain in Positive Ratings

First, we derive an equation to bound Pr{Ωi > g+
i + r+

i }, the probability

that the number of correct positive predictions for item i would increase if i is

transferred.

Pr{Ωi > r+
i + g+

i } ≤ min

{

1, e

r
+
i

E[Ωi]

n−r
+
i

(

1 − r+
i

n

)r+
i +g+

i
}

(5.3)

Proof. Let Ωu,i be the random variable that takes a value of 1 if the predicted
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rating for the user u for item i is correct and positive, and a value of 0 otherwise.

Let pu,i be the probability that the prediction for the user u on item i is correct

and positive, i.e., pu,i = Pr{Ωu,i = 1}.
As Ωi =

∑

u∈U Ωu,i, we can write Pr{Ωi > ω} as

Pr{Ωi > ω} ≤ e−c·ω
∏

u∈U

(

pu,ie
c + 1 − pu,i

)

for any c > 0 and ω > 0 (Lemma 1 of [30]).

Let c = ln
(

n

n−r+
i

)

and ω = r+
i +g+

i , assuming that 0 < r+
i < n. We rewrite

the equation as follows:

Pr{Ωi > r+
i + g+

i } ≤
(

1 − r+
i

n

)r+
i +g+

i ∏

u∈U

(

npu,i

n − r+
i

+ 1 − pu,i

)

(5.4)

From Taylor series expansion, we know that

npu,i

n − r+
i

+ 1 − pu,i = 1 +
r+
i pu,i

n − r+
i

≤ e

r
+
i

pu,i

n−r
+
i

Since
∏

u∈U

e

r
+
i

pu,i

n−r
+
i = e

r
+
i

∑u∈U pu,i

n−r
+
i = e

r
+
i

E[Ωi]

n−r
+
i

We have

Pr{Ωi > r+
i + g+

i } ≤ e

r
+
i

E[Ωi]

n−r
+
i

(

1 − r+
i

n

)r+
i +g+

i

We bound the probability to 1.

Some points to notes:
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• E[Ωi] is unknown and needs to be estimated. In the algorithm imple-

mentation, we approximate E[Ωi] using r+
i . Once we substitute E[Ωi]

with r+
i , the right hand side of Equation 5.3 can be computed using the

parameters r+
i and g+

i which are available locally. Further, to bootstrap

the system, we set initialize r+
i to a small value (we set it to 1% of all

total users in our simulation).

• The concentration bound decreases as g+
i increases: as we made more

positive predictions for item i, the probability that the predictions are

all correct decreases.

• The concentration bound increases for large r+
i as r+

i increases. If an

item has lots of correct positive ratings, then the chances that current

positive predictions are correct increases.

5.5.1 Estimation of Delivery Probability

In the previous section, we only consider the effect of transferring an item i on

the MCF algorithm, but not how long it takes. For the ratings and items to be

useful, the item should reach a user before some time deadline. We estimate

the probability it takes to delivery an item i late after the deadline in this

section.

Consider a DTN with exponentially distributed inter-contact time and in-

finite node buffer capacity. Let λ be the average contact rate (number of

contacts in unit time) and B be the average contact capacity (duration of

contact in time units) of the system. Let Hi be the set of users having item i

and Ni be the set of users that i should be delivered to.

Let Yi be the random variable representing the time when i is delivered

to all users in Ni and Zi be the time when i is delivered to any user in Ni.
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Obviously,

Yi ≤
∑

u∈Ni

Zi (5.5)

By Markov inequality and Equation 5.5, we can find the probability that a

given item i is delivered after a given time t:

Pr{Yi ≥ t} ≤ E[Yi]

t
≤

E[
∑

u∈Ni
Zi]

t
=

|Ni|E[Zi]

t
(5.6)

The next step is to approximate E[Zi]. An item i is delivered to a user u

only if u comes into contact with a user in Hi for a long enough time for i to

be transferred. Furthermore, we consider i as a useful delivery only when this

occurs the first time. If we let Mi,u be the random variable representing the

time when user u meets with a user in Ni and transfers i to that user, then

Zi = minu∈Hi
{Mi,u}.

Let µi be the mean of E[Mi,u] over u ∈ Hi. i.e.,

µi =
1

|Hi|
∑

u∈Hi

E[Mi,u]

From Bertsimas et al. [23], we know that the expected value of the first order

statistic, Zi, is bounded by the average of the individual means of the random

variables of the order statistic:

E[Zi] ≤ µi

and, therefore, from Equation 5.6:

Pr{Yi ≥ t} ≤ |Ni|µi

t
(5.7)
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We now explain how we can estimate µi and bound Pr{Yi ≥ t}. Upon

device contact, each device exchanges a matrix σ, where each element σi,u1

is the last known position (in bytes) of item i in user u1’s transfer queue for

u1 ∈ Hi. We approximate the system behaviour by assuming that scheduling

is FIFO. The time user u1 meets any user u2 before transferring item i to u2

is estimated with
σi,u1

Bλ
. µi is then approximated as

µi =
1

Bλ|Hi|
∑

u1∈Hi

σi,u1 (5.8)

Putting the results together, from Equations 5.8 and 5.7, and bounding the

probability to 1,

Pr{Yi ≥ t} > 1 − min{1, |Ni|
Bλt|Hi|

∑

u1∈Hi

σi,u1} (5.9)

The values |Ni| and |Hi| can be obtained from the user-item rating matrix

being exchanged, and B and λ can be estimated locally by keeping track of

contact history.

We note the following in Equation 5.9. The likelihood of not meeting the

deadline for an item i increases if (i) |Ni|/|Hi|, the ratio of number of nodes not

having i to having i increases, (ii) Bλt, the contact opportunity until time t,

decreases, and (iii) σi,u1 , the waiting time for i in the transfer queue increases.

5.6 Algorithm

Now we can present the workings of CoFiGel based on the results derived from

previous sections. At each device, CoFiGel decides which item to transmit by

computing a utility UTILi, which incorporates the number of positive ratings
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(rated or predicted) for i, the probability of gain in ratings, and the probability

of delivery within the deadline:

UTILi = (g+
i + r+

i ) · PRi · PDi (5.10)

where PRi is the right-hand-side of Equation 5.3, and PDi is the right-hand-

side of Equation 5.9.

The utility increases if either (i) the total number of correctly predicted

positive ratings we get eventually (g+
i + r+

i ), increases (ii) the likelihood of

the number of correct predictions increases (PRi), or (iii) the likelihood of

delivering an item within the deadline t increases.

Note that since the bounds provided are very loose, we do not

expect these computed utilities to reflect the true value of the rating

gain. For the purpose of the scheduling, however, only the relatively

ordering is important. Items with larger utilities are transferred

first. We will shown in the evaluation that the heuristics used is

indeed sufficient to provide good results.

5.7 Evaluation

We evaluated CoFiGel using real-world traces and show that substantial im-

provement can be achieved compared to baseline schemes that do not consider

rating or contact history. We use the MovieLens data set 2 as the underlying

user ratings. The data set chosen has 100K ratings, 943 users and 1682 items.

For mobility traces we have chosen to use the RollerNet trace ([97]) and

the San Francisco taxi trace ([77]) or SanCab trace.

2http://movielens.umn.edu, retrieved August 22, 2014
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The RollerNet trace is an example of human mobility and the data set

consists of about 60 Bluetooth devices carried by groups of roller bladers in a

roller tour over three hours. The average contact duration is 22 seconds and

the average number of contact per node over 3 hours is 501.

The San Francisco taxi (SanCab) trace is representative of a vehicular DTN

environment. The data set consists of GPS coordinates of about 500 taxis in

the San Francisco bay area over a one month period. We selected a 6 hour

interval for our simulation. By assuming a fixed communication range of 50m,

we derive a communication pattern that has average contact duration of 73

seconds and the average number of contact per node over 6 hours is 213.

Size of user generated content such as those found in popular sites like

YouTube is 25MB or less (98% of videos are 25MB or less [27]). We choose data

size of 11MB for the taxi trace and 15MB for RollerNet. The relatively larger

item size for RollerNet is due to the large number of contacts per node. The

buffer size and item generation rate are similarly adjusted to ensure sufficient

loading in the system.

As some nodes in the trace have very limited contacts with the rest of

the trace, we avoid selecting these nodes as the publisher or subscriber nodes

(though they can still act as relay nodes). These nodes are identified as nodes

which do not have sufficient number of node contacts and contact bandwidth to

support meaningful data exchange. After removing these nodes, 22 publisher

and 56 subscribers were chosen for the Taxi trace and 10 publishers and 30

subscribers were chosen for the RollerNet trace.

In order to reduce simulation time, we reduce the MovieLens data set

selected by randomly choosing 900 items (movies) and 500 users from the

original data set. All user-item ratings associated with these chosen user-item

pairs from the original dataset are also included.
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Finally, as the rating data set and the mobility trace are generated in-

dependently, we map the rating data to the mobility trace in the following

way:

1. Every item in the reduced data set is randomly assigned to a publisher

node in the mobility trace. This node will act as the publisher for the

item.

2. Every user in the reduced data set is randomly mapped onto a mobile

subscriber node. The actual user-item rating is known only when the

item reaches the given mobile node where the user is located.

Table 5.3: CoFiGel: trace based simulation parameters

Parameter SanCab RollerNet

Number of Publisher Nodes 22 10

Number of Subscriber
Nodes

56 30

(Item publisher
rate)/publisher

20 items/Hr 40 items/Hr

Simulation duration 6 Hrs Approx.3 Hrs

Item size 11MB 15MB

Default buffer size 2GB 1GB

Default contact bandwidth 3Mbps (375KBps) 3Mbps

Item Lifetime 2 hours 1 hour 15 min

Warmup time 1 Hr 1 Hr

Cool down time 1 Hr 0.5 Hr

The settings in Table 5.3 are used as default unless otherwise specified. Each

simulation point is run at least 3 times with different random seeds.

The performance objectives used are prediction coverage, precision, recall
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and number of satisfied users and latency, as described in Section 5.3. We

compare the performance of CoFiGel with four other algorithms, namely:

1. A scheme that knows the ground-truth of the data. The ground-truth is

available from the MovieLens data set. This scheme provides the actual

rating coverage and gives an upper bound on the system performance.

This scheme is used only in the coverage comparison since ground-truth

is not applicable in the user satisfaction evaluation.

2. An epidemic-based algorithm that is similar to CoFiGel except that it

does not take into account contact history and time constraints. We

called this algorithm NoDeliveryTime. The performance difference be-

tween NoDeliveryTime and CoFiGel indicates the improvement provided

by exploiting contact history.

3. An algorithm that uses only the rating information available. This is

referred to as NoCoverage. The ratings of the items are predicted using

the MCF, but the rating update and the potential coverage increase is

not considered. By using only limited rating information, NoCoverage

is expected to perform the worst.

4. An algorithm which tries to schedule an item so as to acquire prediction

coverage of hitherto unrated users and to satisfy as many more users as

possible. This is called the NoItemRecall. While this approach also uses

contact history, it does not perform multi-round predictions as in the

case of CoFiGel. It only acts using the current rating information.

5. CoFiGel3G is a modification of CoFiGel such that it uses the cellular net-

work to upload/download ratings and a central server to run the MCF.
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However, the data are still sent over the DTN. By exploiting the cel-

lular network as control channel, ratings information propagate quickly

among the nodes and is always up-to-date. However, it is important to

note that faster rating propagation does not always translate to higher

rating coverage. This is because an actual rating can only be discovered

after an user has access to the actual item and provides the rating.

5.7.1 Coverage

In this section, we evaluate the performance of CoFiGel and the other algo-

rithms in terms of prediction coverage, a commonly used metric for MCF.

In addition, we also measured the fraction of correctly predicted positive (or

FCPP) items which looks at the ratio of correctly predicted positive item to

the total of number of positive ratings rather over all ratings. Given that we

are simulating a DTN environment, we felt that FCPP provides a better gauge

for what is achievable by good algorithms in more challenging environments.

Due to space constraints, we will only show the results for prediction coverage

for RollerNet (Figure 5.1(c)), but FCPP for both RollerNet (Figure 5.2(c))

and SanCab (Figure 5.3(c)).

Figures 5.1(a), 5.2(a) and 5.3(a) show how positive ratings increase over

time. The actual number of ratings for the items published so far (Ground-

Truth) are shown to illustrate the best possible outcomes over time. The

results show that CoFiGel and CoFiGel3G have the best performance. In the

SanCab trace, CoFiGel performs even better than CoFiGel3G. In terms of

overall ratings, CoFiGel discovers 45% of the ratings in the RollerNet trace.

In terms of FCPP, CoFiGel discovers 84% and 74% of the positive ratings

in the RollerNet and SanCab traces respectively. The result is better in the
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Figure 5.1: RollerNet trace (total ratings = 11536)
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Figure 5.2: RollerNet trace (total positive ratings = 6400)
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Figure 5.3: SanCab trace (total positive ratings = 5400)
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RollerNet case due to higher contact rate and capacity. In fact, with RollerNet,

the performance of CoFiGel measured using FCPP closely matches the actual

ratings in the first 15 minutes and the gap remains small throughout the

simulation.

In the results shown, it can be clearly observed that CoFiGel has the best

performance, followed by CoFiGel3G. This result can be somewhat surprising

since CoFiGel3G uses the same algorithm as CoFiGel but uses the control

(3G) channel for centralized rating computation and sharing. We explain

the result as follows. Since CoFiGel3G performs centralized rating, the rating

matrix gets updated much faster. This fast rating update has the (unintended)

consequence that the variable Gi in Equation 5.10 approaches the value of 1.0

much faster than the case for CoFiGel. As the value of Gi gets close to 1 and

saturates around this value, this variable becomes useless in term of providing

information for relative ranking to decide which data item is more important.

However, since propagation of data item lags behind rating data, the loss of

this rating information results in CoFiGel3G performing worse than CoFiGel.

For the RollerNet trace simulation with default settings, the higher contact

rate and capacity turn out to have adverse effect on NoDeliveryTime, NoCov-

erage and NoItemRecall, since each algorithm only looks at one aspect of the

problem. In terms of FCPP, NoDeliveryTime discovers 13% of the positive

ratings, while NoCoverage discovers 0.6% or less of the positive ratings and

NoItemRecall discovers around 1%.

For the SanCab trace, NoDeliveryTime’s performance is similar to CoFiGel

in the early part of the experiment but since it does not take the deadline into

account, its performance degrades with time. As expected, as NoCoverage uses

only basic rating, it performs very badly. This is also the case with NoItem-

Recall. Overall, in terms of FCPP, for the SanCab trace, NoDeliveryTime
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discovers 38% of the ratings, while NoCoverage and NoItemRecall discover

4% or less.

For both traces, the coverage for the NoCoverage is very low, showing that

it is important to take into account additional information beyond ratings.

Figures 5.1(b), 5.2(b) and 5.3(b) show how coverage varies with transmission

rate. While increase in contact capacity results in increased coverage because

more items get rated, CoFiGel is able to exploit the increase in transmission

rate much better than NoDeliveryTime, NoCoverage and NoItemRecall. For

the SanCab trace, in terms of FCPP, relative to CoFiGel, NoDeliveryTime

discovers 17% to 46% less ratings while NoCoverage and NoItemRecall discover

less than 5% of the ratings consistently.

Similar behaviour is observed in the RollerNet trace. In the results shown,

CoFiGel performs better than NoDeliveryTime by up to 105% and discovers

at least 50 times more ratings than NoCoverage and NoItemRecall consis-

tently. In general, more improvement comes from taking into account rating

coverage gain (from NoCoverage to NoDeliveryTime) than taking into account

contact history. The effort by NoItemRecall to increase the number of user

ratings is also ineffective due to the absence of rating gain which is capitalized

by CoFiGel. Nevertheless, substantial improvement is still observed between

NoDeliveryTime and CoFiGel.

The performance with respect to different buffer sizes is shown in Figures

5.1(c), 5.2(c) and 5.3(c). For the SanCab trace, buffer size is varied from

80MB to 2GB. The performance of CoFiGel is better than NoDeliveryTime

by 41% to 83%. Improvement of CoFiGel over NoCoverage is about 17 times.

For the RollerNet trace, there are two observations. First, for very small buffer

size of less than 150MB, very few items make it to the next hop and hence,

the FCPP remains same for CoFiGel and NoDeliveryTime. FCPP of CoFiGel
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is higher than NoDeliveryTime by up to 36% and for NoCoverage by 50 to 60

times.

5.7.2 User Satisfaction
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Figure 5.4: RollerNet trace

While coverage indicates the predictive power of the system, the actual

user satisfaction has to be measured by looking at how many items reach

users that like them. In order to ensure that the nodes have accumulated

enough training data before making the measurement, for the SanCab trace,
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Figure 5.5: SanCab trace

we consider items generated after the first and before the fifth hour. The first

hour serves as the training phase, while the last hour is ignored to make sure

that items generated later in the trace do not bias the measurement. Similarly,

the training phase for RollerNet is 1.5 hours and items generated during last

half hour of trace are ignored.

Figure 5.4(a) shows the results for precision of items reaching the users. It

is clear that CoFiGel performs very well, except for one case (350K), it has

the highest precision. In addition, note that even though NoItemRecall has

a higher precision, from the results in the previous section, it has very low

coverage. Due to the disconnected nature of DTN and the large number of

data items and users available, it is also useful to look user utility in two other

ways.

First, we look at the average number of positively rated items that reach

any user. The result is shown in Figures 5.4(b) and 5.5(a). CoFiGel clearly

outperforms the other two algorithms by a very large margin once the band-

width exceeds some threshold required for data dissemination. For the SanCab
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trace, at the highest transmission rate experimented, CoFiGel delivers up to

59% more useful items than NoDeliveryTime and 245% more useful items than

NoCoverage. In the case of the RollerNet trace, the improvements are 117%

and 225% respectively.

Another way we measure recall is to look at the number of users who have

received at least one useful item. The result is shown in Figures 5.4(c) and

5.5(b). Again, CoFiGel performs well, in particular, at higher bandwidth.

At 4Mbps, CoFiGel delivers twice as many useful items to users than No-

Coverage and NoDeliveryTime for both traces. At 2Mbps, both CoFiGel3G

and NoItemRecall outperform CoFiGel in the SanCab trace. The much more

sparse contact interval and lower contact bandwidth may have help to slow

down rating matrix propagation enough such that CoFiGel3G is able to fully

exploit the benefit of fasting rating propagation without value saturation.

5.8 Summary

We have presented CoFiGel, a module of UGCSelect that combines collabora-

tive filtering and m2m infrastructure-less network dissemination so as to enable

content distribution in a distributed environment with intermittent connectiv-

ity. It is designed for sharing of locally stored contents that have spatial and

temporal relationships. CoFiGel has two key components. First, it estimates

the potential gain in prediction coverage if an item is scheduled. Second, it

estimates the time needed to deliver the ratings. Our analysis allows us to

derive approximations that are used as input to the utility computation in

CoFiGel based on only locally estimated parameters.

We have evaluated CoFiGel through trace-based simulation using DTN

mobility traces (RollerNet trace [97] and San Francisco taxi trace [77]) and an
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user rating data set from MovieLens [37]. The RollerNet trace is an example

of human mobility and the San Francisco taxi trace is an example of vehicular

mobility. Our evaluation shows that CoFiGel can provide 80% more prediction

coverage in comparison to the baseline algorithms, detecting at least 74% of

positive ratings in the process, and delivers at least 59% more positive (liked

by user) items in comparison to the baseline algorithms that do not take into

account either ratings or contact history.
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Chapter 6

Conclusion

This chapter summarizes the key contributions of this work, the insights gained

in the process, open issues and future directions for potential research.

6.1 Contributions

We have discussed the importance of UGC authored by smartphone users and

their impact on the limited bandwidth and battery characteristics of smart-

phones. The characteristics of UGC and their in-situ value requires a resource

and content aware management.

Existing literature on the resource management, use of sensors and per-

sonalization to process content have been discussed in detail. We also go

into the details of the limitations of each category of work in Chapter 2. In

the same chapter, we also identify the important factors, namely: (1) net-

work infrastructure resource awareness (2) content redundancy awareness (3)

multi-source selection (4) infrastructure independence. We then present our

system UGCSelect which uses subjective and objective features of content and

the network state to select UGC while conserving the resources of the partic-
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ipating nodes. As part of this system, there content selection methods have

been enunciated. They are:

1. Movisode or MObile VIdeo Sharing [87] On-DEmand for indexing

and on demand retrieval of crowd sourced mobile video

2. AutoLink or Automatic image content Linking for Automatic content

based linking of sensor-annotated smartphone images

3. CoFiGel or Collaborative Filtering Gel for mobile-to-mobile recom-

mendation [86]

6.1.1 Movisode

Movisode provides spatio-temporal coverage while minimizing the upload cost

of the system. It uses sensor cues available in smart phones today to achieve

the above goal. We have evaluated Movisode through trace-based simulation

driven by real-world dataset and energy traces, test bed evaluation and user

study. Results indicate that CCMVA algorithm which forms part of the Mo-

visode balances the trade-off between spatio-temporal coverage and energy

much better than the other candidate algorithms and provides results which

are close the best available videos.

6.1.2 AutoLink

AutoLink organizes unstructured photo collections from ad-hoc events so that

users could discover content easily. AutoLink combines image content features

and smartphone sensors to classify it based on scenes and estimate the region

of the scene captured by the image. This information is used to automati-

cally generate an image hierarchy. The image hierarchy helps users navigate
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to a scene, and explore the regions of the scene in higher detail. We have

demonstrated its performance with two real world datasets.

6.1.3 CoFiGel

CoFiGel combines collaborative filtering and mobile-to-mobile DTN routing so

as to enable content distribution in a distributed environment with intermit-

tent connectivity. It is designed for sharing of locally stored contents that have

spatial and temporal relationships. CoFiGel has two key components. First,

it estimates the potential gain in prediction coverage if an item is scheduled.

Second, it estimates the time needed to deliver the ratings. Our analysis allows

us to derive approximations that are used as input to the utility computation

in CoFiGel based on only locally estimated parameters.

Simulation results show that CoFiGel performs well. It is able to discover

substantially more ratings and is able to deliver much more items that are

rated positively by the users than baseline algorithms that do not take into

account rating gain or mobility pattern.

6.2 Insights

Following are the insights gained during the design and development of the

system.

1. Factoring in source resources during UGC selection saves en-

ergy and bandwidth: Individual device context varies from one

device to another. Each device might experience a different effective

bandwidth, might have content with different sizes although belonging

to the scene. By factoring in these characteristics, our system chooses
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only content with least cost. This contributes to conserving bandwidth

and saving energy.

2. Redundancy management helps: Redundancy increases the choice

for UGC selection, but also contributes to resource cost. Redundancy

is also not even. Some regions of the scene and some views could be

captured more often than others. Some moments of the event might have

more redundant content than others due to popularity of the moment.

This uneven distribution of redundancy has to be factored in during

UGC selection to ensure availability of content to user.

3. Combining light-weight content processing with sensor data

helps reduce unnecessary content upload: Smartphones are in-

creasingly becoming powerful computation devices. New smartphone

models are equipped with multi-core CPU and GPU units. This could

be leveraged to perform some degree of content processing on the phone

itself and combine this with sensor cues to index the content. Such in-

dexing helps avoid uploading content unnecessarily. This approach also

reduces the need for training based content processing.

4. Scene relative content organization: Content organization does

not necessarily require absolute positioning of the camera. Organizing

and locating the content based on scenes makes the system usable in

indoor and outdoor environments without infrastructure.

6.3 Future work

Due to the advent of new sensors on the smartphone platform, mobile vision

has presents new areas for exploration. Some of these have been listed in the
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context of our work.

• Improving resource-aware UGC selection. There are some issues

in this work which offer scope for improvement:

1. Accuracy of sensors: Smartphone sensors are susceptible to noise.

We do not offer any method to correct the sensor data, but rely

on the content to offset any errors in the accuracy. But sensor

noise could affect system performance. For instance, compass sen-

sor could be influenced by ambient magnetic field and requires cal-

ibration. Accelerometer sensor could trigger false positives due to

sudden movements. Sensor fusion has been used to correct these

errors. Recent versions of android have introduced sensor fusion as

part of the API. Using this could improve the accuracy of Movisode

and AutoLink.

2. Use of reference images: Movisode assumed that a reference

image for the scene is provided as part of the input. This limitation

could be overcome if the reference image is automatically selected

from the video collection.

• Content selection with smartphone depth sensors. Recently,

depth sensors for smartphones have been unveiled for android/ iPhone [11].

Content selection could benefit from depth sensors in many ways. To be-

gin with, Movisode and AutoLink accuracy could be improved by using

depth data. Occlusion detection, region of interest identification along

depth, selection and streaming of 3D-video from smartphones over lim-

ited bandwidth links, use of multiple interfaces on smartphones to load

balance 3D content streaming, energy profiling of depth sensor and man-
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aging battery life when depth sensor is used are some interesting avenues

to explore.

• Extending video selection for multiple scenes. Movisode dues

POI estimation for one scene, while AutoLink can classify images for mul-

tiple scenes. These two functionalities could be merged so that videos

segments could be classified based on scenes. This could facilitate au-

tomatic linking of video segments based on scene neighboured. Such

a mechanism could help user to navigate between video segments from

different scenes using these links. Such links could also help annotate

scene content.

• Using AutoLink to generate time-lapse videos and slideshows.

Time-lapse videos and slideshows help browse through and summarize

photo collections. They also have a aesthetic value which could make

public photo collections popular. Image hierarchy generated using Au-

toLink could be used to create time-lapse videos and slideshows auto-

matically.
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