1,975 research outputs found

    3D-2D projective registration of free-form curves and surfaces

    Get PDF
    International audienceSome medical interventions require knowing the correspondence between an MRI/CT image and the actual position of the patient. Examples occur in neurosurgery and radiotherapy, but also in video surgery (laparoscopy). We present in this paper three new techniques for performing this task without artificial markers. To do this, we find the 3D-2D projective transformation (composition of a rigid displacement and a perspective projection) which maps a 3D object onto a 2D image of this object. Depending on the object model (curve or surface), and on the 2D image acquisition system (X-Ray, video), the techniques are different but the framework is common: Results are presented on a variety of real medical data to demonstrate the validity of our approach

    3D-2D projective registration of free-form curves and surfaces

    Get PDF
    Some medical interventions require knowing the correspondence between an MRI/CT image and the actual position of the patient. Examples occur in neurosurgery and radiotherapy, but also in video surgery (laparoscopy). We present in this paper three new techniques for performing this task without artificial markers. To do this, we find the \bf 3D-2D projective transformation (composition of a rigid displacement and a perspective projection) which maps a 3D object onto a 2D image of this object. Depending on the object model (curve or surface), and on the 2D image acquisition system (X-Ray, video), the techniques are different but \bf the framework is common: \beginitemize \item We first find an estimate of the transformation using bitangent lines or bitangent planes. These are first order semi-differential invariants \citeMundy. \item Then, introducing the normal or tangent, we define a distance between the 3D object and the 2D image, and we minimize it using extensions of the Iterative Closest Point algorithm (\citeBesl,Zhang). \item We deal with the critical problem of outliers by computing Mahalanobis distances and performing generalized χ2\chi^2 tests. \enditemize Results are presented on a variety of real medical data to demonstrate the validity of our approach

    Monocular Pose Estimation Based on Global and Local Features

    Get PDF
    The presented thesis work deals with several mathematical and practical aspects of the monocular pose estimation problem. Pose estimation means to estimate the position and orientation of a model object with respect to a camera used as a sensor element. Three main aspects of the pose estimation problem are considered. These are the model representations, correspondence search and pose computation. Free-form contours and surfaces are considered for the approaches presented in this work. The pose estimation problem and the global representation of free-form contours and surfaces are defined in the mathematical framework of the conformal geometric algebra (CGA), which allows a compact and linear modeling of the monocular pose estimation scenario. Additionally, a new local representation of these entities is presented which is also defined in CGA. Furthermore, it allows the extraction of local feature information of these models in 3D space and in the image plane. This local information is combined with the global contour information obtained from the global representations in order to improve the pose estimation algorithms. The main contribution of this work is the introduction of new variants of the iterative closest point (ICP) algorithm based on the combination of local and global features. Sets of compatible model and image features are obtained from the proposed local model representation of free-form contours. This allows to translate the correspondence search problem onto the image plane and to use the feature information to develop new correspondence search criteria. The structural ICP algorithm is defined as a variant of the classical ICP algorithm with additional model and image structural constraints. Initially, this new variant is applied to planar 3D free-form contours. Then, the feature extraction process is adapted to the case of free-form surfaces. This allows to define the correlation ICP algorithm for free-form surfaces. In this case, the minimal Euclidean distance criterion is replaced by a feature correlation measure. The addition of structural information in the search process results in better conditioned correspondences and therefore in a better computed pose. Furthermore, global information (position and orientation) is used in combination with the correlation ICP to simplify and improve the pre-alignment approaches for the monocular pose estimation. Finally, all the presented approaches are combined to handle the pose estimation of surfaces when partial occlusions are present in the image. Experiments made on synthetic and real data are presented to demonstrate the robustness and behavior of the new ICP variants in comparison with standard approaches

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    Multimodal Three Dimensional Scene Reconstruction, The Gaussian Fields Framework

    Get PDF
    The focus of this research is on building 3D representations of real world scenes and objects using different imaging sensors. Primarily range acquisition devices (such as laser scanners and stereo systems) that allow the recovery of 3D geometry, and multi-spectral image sequences including visual and thermal IR images that provide additional scene characteristics. The crucial technical challenge that we addressed is the automatic point-sets registration task. In this context our main contribution is the development of an optimization-based method at the core of which lies a unified criterion that solves simultaneously for the dense point correspondence and transformation recovery problems. The new criterion has a straightforward expression in terms of the datasets and the alignment parameters and was used primarily for 3D rigid registration of point-sets. However it proved also useful for feature-based multimodal image alignment. We derived our method from simple Boolean matching principles by approximation and relaxation. One of the main advantages of the proposed approach, as compared to the widely used class of Iterative Closest Point (ICP) algorithms, is convexity in the neighborhood of the registration parameters and continuous differentiability, allowing for the use of standard gradient-based optimization techniques. Physically the criterion is interpreted in terms of a Gaussian Force Field exerted by one point-set on the other. Such formulation proved useful for controlling and increasing the region of convergence, and hence allowing for more autonomy in correspondence tasks. Furthermore, the criterion can be computed with linear complexity using recently developed Fast Gauss Transform numerical techniques. In addition, we also introduced a new local feature descriptor that was derived from visual saliency principles and which enhanced significantly the performance of the registration algorithm. The resulting technique was subjected to a thorough experimental analysis that highlighted its strength and showed its limitations. Our current applications are in the field of 3D modeling for inspection, surveillance, and biometrics. However, since this matching framework can be applied to any type of data, that can be represented as N-dimensional point-sets, the scope of the method is shown to reach many more pattern analysis applications

    Implicit 3D Orientation Learning for 6D Object Detection from RGB Images

    Get PDF
    We propose a real-time RGB-based pipeline for object detection and 6D pose estimation. Our novel 3D orientation estimation is based on a variant of the Denoising Autoencoder that is trained on simulated views of a 3D model using Domain Randomization. This so-called Augmented Autoencoder has several advantages over existing methods: It does not require real, pose-annotated training data, generalizes to various test sensors and inherently handles object and view symmetries. Instead of learning an explicit mapping from input images to object poses, it provides an implicit representation of object orientations defined by samples in a latent space. Our pipeline achieves state-of-the-art performance on the T-LESS dataset both in the RGB and RGB-D domain. We also evaluate on the LineMOD dataset where we can compete with other synthetically trained approaches. We further increase performance by correcting 3D orientation estimates to account for perspective errors when the object deviates from the image center and show extended results.Comment: Code available at: https://github.com/DLR-RM/AugmentedAutoencode
    corecore