551 research outputs found

    Estimation of wall shear stress using 4D flow cardiovascular MRI and computational fluid dynamics

    Get PDF
    Electronic version of an article published as Journal of mechanics in medicine and biology, 0, 1750046 (2016), 16 pages. DOI:10.1142/S0219519417500464 © World Scientific Publishing CompanyIn the last few years, wall shear stress (WSS) has arisen as a new diagnostic indicator in patients with arterial disease. There is a substantial evidence that the WSS plays a significant role, together with hemodynamic indicators, in initiation and progression of the vascular diseases. Estimation of WSS values, therefore, may be of clinical significance and the methods employed for its measurement are crucial for clinical community. Recently, four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has been widely used in a number of applications for visualization and quantification of blood flow, and although the sensitivity to blood flow measurement has increased, it is not yet able to provide an accurate three-dimensional (3D) WSS distribution. The aim of this work is to evaluate the aortic blood flow features and the associated WSS by the combination of 4D flow cardiovascular magnetic resonance (4D CMR) and computational fluid dynamics technique. In particular, in this work, we used the 4D CMR to obtain the spatial domain and the boundary conditions needed to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. Similar WSS distributions were found for cases simulated. A sensitivity analysis was done to check the accuracy of the method. 4D CMR begins to be a reliable tool to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. The combination of both techniques may provide the ideal tool to help tackle these and other problems related to wall shear estimation.Peer ReviewedPostprint (author's final draft

    Aortic haemodynamics and wall stress analysis following arch aneurysm repair using a single-branched endograft

    Get PDF
    Introduction: Thoracic endovascular aortic repair (TEVAR) of the arch is challenging given its complex geometry and the involvement of supra-aortic arteries. Different branched endografts have been designed for use in this region, but their haemodynamic performance and the risk for post-intervention complications are not yet clear. This study aims to examine aortic haemodynamics and biomechanical conditions following TVAR treatment of an aortic arch aneurysm with a two-component single-branched endograft. Methods: Computational fluid dynamics and finite element analysis were applied to a patient-specific case at different stages: pre-intervention, post-intervention and follow-up. Physiologically accurate boundary conditions were used based on available clinical information. Results: Computational results obtained from the post-intervention model confirmed technical success of the procedure in restoring normal flow to the arch. Simulations of the follow-up model, where boundary conditions were modified to reflect change in supra-aortic vessel perfusion observed on the follow-up scan, predicted normal flow patterns but high levels of wall stress (up to 1.3M MPa) and increased displacement forces in regions at risk of compromising device stability. This might have contributed to the suspected endoleaks or device migration identified at the final follow up. Discussion: Our study demonstrated that detailed haemodynamic and biomechanical analysis can help identify possible causes for post-TEVAR complications in a patient-specific setting. Further refinement and validation of the computational workflow will allow personalised assessment to aid in surgical planning and clinical decision making

    Effects of Uncertainty of Outlet Boundary Conditions in a Patient-Specific Case of Aortic Coarctation

    Get PDF
    Computational Fluid Dynamics (CFD) simulations of blood flow are widely used to compute a variety of hemodynamic indicators such as velocity, time-varying wall shear stress, pressure drop, and energy losses. One of the major advances of this approach is that it is non-invasive. The accuracy of the cardiovascular simulations depends directly on the level of certainty on input parameters due to the modelling assumptions or computational settings. Physiologically suitable boundary conditions at the inlet and outlet of the computational domain are needed to perform a patient-specific CFD analysis. These conditions are often affected by uncertainties, whose impact can be quantified through a stochastic approach. A methodology based on a full propagation of the uncertainty from clinical data to model results is proposed here. It was possible to estimate the confidence associated with model predictions, differently than by deterministic simulations. We evaluated the effect of using three-element Windkessel models as the outflow boundary conditions of a patient-specific aortic coarctation model. A parameter was introduced to calibrate the resistances of the Windkessel model at the outlets. The generalized Polynomial Chaos method was adopted to perform the stochastic analysis, starting from a few deterministic simulations. Our results show that the uncertainty of the input parameter gave a remarkable variability on the volume flow rate waveform at the systolic peak simulating the conditions before the treatment. The same uncertain parameter had a slighter effect on other quantities of interest, such as the pressure gradient. Furthermore, the results highlight that the fine-tuning of Windkessel resistances is not necessary to simulate the post-stenting scenario

    Computational analysis of the hemodynamic performance of novel endovascular and surgical procedures for complex aortic diseases

    Get PDF
    Novel branched stent-grafts (BSG) have been developed for endovascular repair of complex thoracic aortic aneurysms (TAA) involving the aortic arch or thoracoabdominal aorta, but their haemodynamic performance has not been adequately studied. In addition, surgical replacement of the ascending aorta with a Dacron graft remains the gold standard for type A aortic dissection (TAAD), although 12% of patients are at risk of aortic rupture due to further dilatation of the residual dissected aorta. The underlying mechanisms for progressive aortic dilatation following TAAD repair are poorly understood, but haemodynamic and biomechanical factors are believed to play an important role. Therefore, the present study aims to provide more insights into the haemodynamics in novel BSGs developed for treating complex aortic diseases, and a comprehensive evaluation of flow and biomechanical conditions in post-surgery TAADs by means of state-of-the-art computational methods. The first part of this thesis focuses on evaluating the haemodynamic performance of novel BSG designs, including thoracoabdominal branch endoprosthesis (TAMBE) and dual-branched thoracic endograft. Haemodynamics in idealised and patient-specific BSG models has been analysed by examining side branch outflow waveforms, wall shear stress related indices, and displacement forces, in order to assess their long-term durability. The numerical results show that all the stent-graft models examined in this study are capable of providing normal blood perfusion to side vessels, and are at low risk of in-stent thrombosis and device migration. Furthermore, it has been shown that geometric variations in TAMBE do not affect the key haemodynamic results, indicating its potential suitability for a variety of visceral artery anatomies. Comparisons of dual-branched thoracic endograft models with different inner tunnel diameters suggest that BSGs with larger inner tunnel diameters than the respective vessels would be preferred. Comparisons between the pre- and post-intervention models show that insertion of a dual-branched stent-graft significantly alters the flow pattern in the aortic arch, some of which may have a detrimental effect in the long term, thus requiring follow-up studies. The second part of the thesis provides a comprehensive analysis of the haemodynamic and biomechanical conditions in surgically repaired TAAD. Geometric and haemodynamic parameters have been analyzed and compared between the group of patients with stable aortic diameter and another group with progressive aortic dilatation. The number of re-entry tears (6±5 vs 2±1;P= 0.02) and luminal pressure difference (1.3 ±1 vs 11.7 ±14.6 mmHg;P= 0.001) have been identified as potential predictors of progressive aortic dilatation in TAAD patients following surgical repair. This is an important finding and can potentially assist clinicians to make the most appropriate choice or surgical plan for individual patients. Based on the finite element analysis of four patient-specific cases, there are no clear differences in biomechanical parameters between the stable and unstable groups. Furthermore, a preliminary fluid-solid interaction (FSI) simulation performed on a single TAAD model has demonstrated the important influence of wall compliance on pressures in the true and false lumen. Compared to a rigid wall model, the FSI simulation results show a reduction in systolic pressure by up to 10 mmHg and a slight increase in diastolic pressure. However, pressures in the true and false lumen are affected in the same way, so that the luminal pressure difference remains the same between the rigid and FSI models.Open Acces

    Irregular anatomical features can alter hemodynamics in Takayasu arteritis

    Get PDF
    Objective Takayasu arteritis (TA) is a difficult disease to deal with because there are neither reliable clinical signs, laboratory biomarkers, nor a single noninvasive imaging technique that can be used for early diagnosis and disease activity monitoring. Knowledge of aortic hemodynamics in TA is lacking. This study aimed to fill this gap by assessing hemodynamics in patients with TA using image-based computational fluid dynamics (CFD) simulations. Methods Eleven patients with TA were included in the present study. Patient-specific geometries were reconstructed from either clinical aortic computed tomography angiography or magnetic resonance angiography studies and coupled with physiological boundary conditions for CFD simulations. Key anatomical and hemodynamic parameters were compared with a control group consisting of 18 age- and sex-matched adults without TA who had healthy aortas. Results Compared with controls, patients with TA had significantly higher aortic velocities (0.9 m/s [0.7, 1.1 m/s] vs 0.6 m/s [0.5, 0.7 m/s]; P = .002), maximum time-averaged wall shear stress (14.2 Pa [9.8, 20.9 Pa] vs 8.0 Pa [6.2, 10.3 Pa]; P = .004), and maximum pressure drops between the ascending and descending aorta (36.9 mm Hg [29.0, 49.3 mm Hg] vs 28.5 mm Hg [25.8, 31.5 mm Hg]; P = .004). These significant hemodynamic alterations in patients with TA might result from abnormal anatomical features including smaller arch diameter (20.0 mm [13.8, 23.3 mm] vs 25.2 mm [23.3, 26.8 mm]; P = .003), supra-aortic branch diameters (21.9 mm [18.5, 24.6 mm] vs 25.7 mm [24.3, 28.3 mm]; P = .003) and descending aorta diameter (14.7 mm [12.2, 16.8 mm] vs 22.5 mm [19.8, 24.0 mm]; P < .001). Conclusions CFD analysis reveals hemodynamic changes in the aorta of patients with TA. The applicability of CFD technique coupled with standard imaging assessments in predicting disease progression of such patients will be explored in future studies. Future large cohort study with outcome correlation is also warranted. Clinical Relevance Based on patient-specific computational fluid dynamics simulations, the present retrospective study revealed significant difference in aortic hemodynamics between the patients with and without Takayasu arteritis (TA). To the best of our knowledge, this study is the first to evaluate hemodynamic conditions within TA, demonstrating the potential of computational flow modeling in capturing abnormal hemodynamic forces, such as high wall shear stress, resulted from irregular morphological changes. In the future, assessing the hemodynamic parameters within patients with TA during the prestenotic period, together with longitudinal computational fluid dynamics studies may allow better monitoring and management of TA

    New perspectives in surgical treatment of aortic diseases

    Get PDF

    Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice

    Get PDF
    Animal models of aortic aneurysm and dissection can enhance our limited understanding of the etiology of these lethal conditions particularly because early-stage longitudinal data are scant in humans. Yet, the pathogenesis of often-studied mouse models and the potential contribution of aortic biomechanics therein remain elusive. In this work, we combined micro-CT and synchrotron-based imaging with computational biomechanics to estimate in vivo aortic strains in the abdominal aorta of angiotensin-II-infused ApoE-deficient mice, which were compared with mouse-specific aortic microstructural damage inferred from histopathology. Targeted histology showed that the 3D distribution of micro-CT contrast agent that had been injected in vivo co-localized with precursor vascular damage in the aortic wall at 3 days of hypertension, with damage predominantly near the ostia of the celiac and superior mesenteric arteries. Computations similarly revealed higher mechanical strain in branching relative to non-branching regions, thus resulting in a positive correlation between high strain and vascular damage in branching segments that included the celiac, superior mesenteric, and right renal arteries. These results suggest a mechanically driven initiation of damage at these locations, which was supported by 3D synchrotron imaging of load-induced ex vivo delaminations of angiotensin-II-infused suprarenal abdominal aortas. That is, the major intramural delamination plane in the ex vivo tested aortas was also near side branches and specifically around the celiac artery. Our findings thus support the hypothesis of an early mechanically mediated formation of microstructural defects at aortic branching sites that subsequently propagate into a macroscopic medial tear, giving rise to aortic dissection in angiotensin-II-infused mice

    New perspectives in surgical treatment of aortic diseases

    Get PDF

    Vascular remodeling after endovascular treatment: quantitative analysis of medical images with a focus on aorta

    Get PDF
    In the last years, the convergence of advanced imaging techniques and endovascular procedures has revolutionized the practice of vascular surgery. However, regardless the anatomical district, several complications still occur after endovascular treatment and the impact of endovascular repair on vessel morphology remains unclear. Starting from this background, the aim of this thesis is to ll the gaps in the eld of vessel remodeling after endovascular procedure. Main focus of the work will be the repair of the aorta and, in particular thoracic and thoracoabdominal treatments. Furthermore an investigation of the impact of endovascular repair on femoro-popliteal arterial segment will be reported in the present work. Analyses of medical images will been conducted to extract anatomical geometric features and to compare the changes in morphology before treatment and during follow-up. After illustrating in detail the aims and the outline of the dissertation in Chapter 1, Chapter 2 will concern the anatomy and the physiology of the aorta along with the main aortic pathologies and the related surgical treatments. Subsequently, an overview of the medical image techniques for segmentation and vessel geometric quantication will be provided. Chapter 3 will introduce the concept of remodeling of the aorta after endovascular procedure. In particular, two types of aortic remodeling will be considered. On one side remodeling can be seen as the shrinkage of the aneurysmal sac or false lumen thrombosis. On the other side, aortic remodeling could be seen as the changes in the aortic morphology following endograft placement which could lead to complications. Chapter 4 will illustrate a study regarding the analysis of medical images to measure the geometrical changes in the pathological aorta during follow-up in patients with thoracoabdominal aortic aneurysms treated with endovascular procedure using a novel uncovered device, the Cardiatis Multilayer Flow Modulator. Chapter 5 will focus on the geometrical remodeling of the aortic arch and descending aorta in patients who underwent hybrid arch treatment to treat thoracic aneurysms. The goal of the work is to develop a pipeline for the processing of pre-operative and post-operative Computed Tomography images in order to detect the changes in the aortic arch physiological curvature due to endograft insertion. Chapter 6 will focuse on the use of 3D printing technology as valuable tool to support patient's follow-up. In particular, we report a case of a patient originally treated with endovascular procedure for type B aortic dissection and which experimented several complications during follow-up. 3D printing technology is used to show the remodeling of the aortic vasculature during time. Chapter 7 will concern patient-specic nite element simulations of aortic endovascular procedure. In particular, starting from a clinical case where complication developed during followup, the predictive value of computational simulations will be shown. Chapter 8 will illustrate a study concerning the evaluation of morphological changes of the femoro-popliteal arterial segment due to limb exion in patients undergoing endovascular treatment of popliteal artery aneurysms
    • …
    corecore