98 research outputs found

    Thermoplastic bioactive composite – with special reference to dissolution behaviour and tissue response

    Get PDF
    Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.Siirretty Doriast

    Advanced Materials for Oral Application

    Get PDF
    This book consists of one editorial, 12 original research articles and two review papers from scientists across the world, with expertise in materials for dental application. The main subjects covered are: biomaterials and techniques for oral tissue engineering and regeneration; biomaterials for surgical reconstruction; CAD/CAM technologies and dedicated materials; novel restorative and endodontic materials and instruments

    On Three-Dimensional Reconstruction

    Get PDF

    Artificial Intelligence in Oral Health

    Get PDF
    This Special Issue is intended to lay the foundation of AI applications focusing on oral health, including general dentistry, periodontology, implantology, oral surgery, oral radiology, orthodontics, and prosthodontics, among others

    Acta Biologica Szegediensis : Volume 59. Suppl. 3.

    Get PDF

    Study of biocompatibility of nanostructured materials on in vitro and in vivo models

    Get PDF
    Els biomaterials tenen un paper important en la indústria de la salut. Cada any, s'estima que el nombre de dispositius mèdics utilitzats en humans és d'uns 1,5 milions de dispositius individuals, segons l'Organització Mundial de la Salut, amb uns 10.000 tipus de grups de dispositius genèrics disponibles a tot el món. A mesura que sorgeixen nous dispositius, el tema de la biocompatibilitat d'aquests materials es torna més rellevant. Aquesta tesi estudia la biocompatibilitat de biomaterials i la seva interacció amb teixits i cèl·lules combinant models in vitro i in vivo. Els biomaterials estudiats es classifiquen en biomaterials sintètics (polímers, silici, titani i aliatges) i biomaterials derivats de la naturalesa, que al seu torn, es classifiquen en xenogènics, derivats de materials naturals però estranys per a l'organisme i biomaterials autòlegs, derivats dels teixits dels mateixos. organisme. En el cas dels materials sintètics, es va demostrar com les diferents estratègies de funcionalització de les superfícies (en particular, l'efecte del recobriment de proteïnes i la topografia superficial) afecten la resposta de les cèl·lules de mamífer. Els biomaterials autòlegs estaven representats per fibrina rica en plaquetes (PRF), derivada de la sang del pacient.Los biomateriales juegan un papel importante en la industria del cuidado de la salud. Cada año, la cantidad de dispositivos médicos utilizados en humanos se estima en alrededor de 1,5 millones de dispositivos individuales, según la Organización Mundial de la Salud, con alrededor de 10 000 tipos de grupos de dispositivos genéricos disponibles en todo el mundo. A medida que surgen nuevos dispositivos, el tema de la biocompatibilidad de estos materiales se vuelve más relevante. Esta tesis estudia la biocompatibilidad de biomateriales y su interacción con tejidos y células combinando modelos in vitro e in vivo. Los biomateriales estudiados se clasifican en sintéticos (polímeros, silicio, titanio y aleaciones) y biomateriales derivados de la naturaleza, que a su vez, se clasifican en xenogénicos, derivados de materiales naturales pero extraños para el organismo y biomateriales autólogos, derivados de los tejidos del mismo. organismo. En el caso de los materiales sintéticos, se mostró cómo las diferentes estrategias de funcionalización de las superficies (en particular, el efecto del recubrimiento de proteínas y la topografía de la superficie) afectan la respuesta de las células de mamíferos. Los biomateriales autólogos estuvieron representados por fibrina rica en plaquetas (PRF), derivada de la sangre del paciente.Biomaterials play a substantial role in the health care industry. Each year, the number of medical devices used in humans is estimated to be around 1.5 million individual devices, according to the World Health Organization, with about 10 000 types of generic device groups available worldwide. As new devices emerge, the topic of the biocompatibility of these materials becomes more relevant. This thesis studies biocompatibility of biomaterials and their interaction with tissues and cells combining in vitro and in vivo models. The studied biomaterials are classified in synthetic (polymers, silicon, titanium and alloys) and nature-derived biomaterials, which in turn, classify in xenogenic, derived from natural materials but foreign for the organism and autologous biomaterials, derived from the tissues of the same organism. In the case of synthetic materials, it was shown how different functionalization strategies of surfaces (in particular, the effect of protein coating and surface topography) affect mammalian cell response. Autologous biomaterials were represented by platelet rich fibrin (PRF), derived from the blood of the patient. Their potential as implantable system was studied in vitro and in vivo
    corecore