679 research outputs found

    Optimization for automated assembly of puzzles

    Get PDF
    The puzzle assembly problem has many application areas such as restoration and reconstruction of archeological findings, repairing of broken objects, solving jigsaw type puzzles, molecular docking problem, etc. The puzzle pieces usually include not only geometrical shape information but also visual information such as texture, color, and continuity of lines. This paper presents a new approach to the puzzle assembly problem that is based on using textural features and geometrical constraints. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. Feature values are derived from these original and predicted images of pieces. An affinity measure of corresponding pieces is defined and alignment of the puzzle pieces is formulated as an optimization problem where the optimum assembly of the pieces is achieved by maximizing the total affinity measure. An fft based image registration technique is used to speed up the alignment of the pieces. Experimental results are presented on real and artificial data sets

    A texture based approach to reconstruction of archaeological finds

    Get PDF
    Reconstruction of archaeological finds from fragments, is a tedious task requiring many hours of work from the archaeologists and restoration personnel. In this paper we present a framework for the full reconstruction of the original objects using texture and surface design information on the sherd. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. The confidence of this process is also defined. Feature values are derived from these original and predicted images of pieces. A combination of the feature and confidence values is used to generate an affinity measure of corresponding pieces. The optimization of total affinity gives the best assembly of the piece. Experimental results are presented on real and artificial data

    The computerization of archaeology: survey on AI techniques

    Full text link
    This paper analyses the application of artificial intelligence techniques to various areas of archaeology and more specifically: a) The use of software tools as a creative stimulus for the organization of exhibitions; the use of humanoid robots and holographic displays as guides that interact and involve museum visitors; b) The analysis of methods for the classification of fragments found in archaeological excavations and for the reconstruction of ceramics, with the recomposition of the parts of text missing from historical documents and epigraphs; c) The cataloguing and study of human remains to understand the social and historical context of belonging with the demonstration of the effectiveness of the AI techniques used; d) The detection of particularly difficult terrestrial archaeological sites with the analysis of the architectures of the Artificial Neural Networks most suitable for solving the problems presented by the site; the design of a study for the exploration of marine archaeological sites, located at depths that cannot be reached by man, through the construction of a freely explorable 3D version

    Computer aided puzzle assembly based on shape and texture information /

    Get PDF
    Puzzle assembly’s importance lies into application in many areas such as restoration and reconstruction of archeological findings, the repairing of broken objects, solving of the jigsaw type puzzles, molecular docking problem, etc. Puzzle pieces usually include not only geometrical shape information but also visual information of texture, color, continuity of lines, and so on. Moreover, textural information is mainly used to assembly pieces in some cases, such as classic jigsaw puzzles. This research presents a new approach in that pictorial assembly, in contrast to previous curve matching methods, uses texture information as well as geometric shape. The assembly in this study is performed using textural features and geometrical constraints. First, the texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. The feature values are derived by these original and predicted images of pieces. A combination of the feature and confidence values is used to generate an affinity measure of corresponding pieces. Two new algorithms using Fourier based image registration techniques are developed to optimize the affinity. The algorithms for inpainting, affinity and Fourier based assembly are explained with experimental results on real and artificial data. The main contributions of this research are: The development of a performance measure that indicates the level of success of assembly of pieces based on textural features and geometrical shape. Solution of the assembly problem by using of the Fourier based methods

    Sampled 3D models for Cultural Heritage: which uses beyond visualization?

    Full text link
    [EN] Digital technologies are now mature for producing high quality digital replicas of Cultural Heritage (CH) artefacts. The research results produced in the last decade have shown an impressive evolution and consolidation of the technologies for acquiring high-quality digital 3D models (3D scanning) and for rendering those models at interactive speed. Technology is now mature enough to push us to go beyond the plain visualization of those assets, devising new tools able to extend our insight and intervention capabilities and to revise the current consolidated procedures for CH research and management. The paper presents a few recent experiences where high-quality 3D models have been used in CH research, restoration and conservation. These examples constitutes a broad review of different uses of digital 3Dassets in the CH domain.[ES] Se puede afirmar que las tecnologías digitales han alcanzado un punto de madurez suficiente como para producir réplicas digitales de alta calidad del patrimonio cultural, especialmente de artefactos. Los resultados de la investigación producidos en la última década han mostrado una impresionante evolución y consolidación de las tecnologías utilizadas para la producción de modelos digitales 3D de alta calidad (escaneado 3D) y para el renderizado de esos modelos a una velocidad interactiva. En este sentido la tecnología es hoy perfectamente capaz de empujarnos a ir más allá de la simple visualización de los bienes culturales, hasta elaborar nuevas herramientas capaces de ampliar nuestra visión y capacidades de intervención así como de revisar los procedimientos actuales de investigación y gestión del patrimonio cultural. Este artículo presenta algunas experiencias recientes en las que modelos 3D de alta calidad han sido utilizados para mejorar la investigación, restauración y conservacióThe research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007- 2013) under grant agreements no. 231809 (IST IP "3DCOFORM") and no. 270404 (IST NoE "V-Must.Net").Scopigno, R. (2012). Sampled 3D models for Cultural Heritage: which uses beyond visualization?. Virtual Archaeology Review. 3(5):109-115. https://doi.org/10.4995/var.2012.4537OJS10911535CALLIERI M., CIGNONI P., GANOVELLI F., IMPOCO G., MONTANI C., PINGI P., PONCHIO F., SCOPIGNO R. (2004): "Visualization and 3D data processing in David's restoration". IEEE Computer Graphics & Applications 24, 2 (Mar.-Apr. 2004), pp. 16-21. http://dx.doi.org/10.1109/MCG.2004.1274056CORSINI M., DELLEPIANE M., DERCKS U., PONCHIO F., CALLIERI M., KEULTJES D., MARINELLO A., SIGISMONDI R., SCOPIGNO R., WOLF G. (2010): "Cenobium - putting together the romanesque cloister capitals of the mediterranean region". In Bar International Series BAR S2118 2010 (Proc. of III International Conference on Remote Sensing in Archaeology, 17th-21st August 2009) (2010), S. Campana M. F., Liuzza C., (Eds.), pp. 189-194.DELLEPIANE M., CALIERI M., DELL'UNTO N. (2011): "Monitoring archeological excavation using dense stereo matching techniques". Tech. rep., CNR-ISTI, Pisa, Italy, 2011.DELLEPIANE M., CALLIERI M., FONDERSMITH M., CIGNONI P., SCOPIGNO R. (2007): "Using 3D scanning to analyze a proposal for the attribution of a bronze horse to Leonardo da Vinci". In The 8th Int. Symp. on International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 07) (Nov 2007), Eurographics, pp. 117-124.DYLLA K., FRISCHER B., MUELLER P., ULMER A., HAEGLER S. (2009): "Rome Reborn 2.0: A case study of virtual city reconstruction using procedural modeling techniques". In 37th Proceedings of the CAA Conference, March 22-26, 2009 (2009), pp. 62-66.HUANG Q.-X., FLORY S., GELFAND N., HOFER M., POTTMANN H. (2006): "Reassembling fractured objects by geometric matching". ACM Trans. Graphics 25, 3 (2006), pp. 569-578. http://dx.doi.org/10.1145/1141911.1141925LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ S., KOLLER D., PEREIRA L., GINZTON M., ANDERSON S., DAVIS J., GINSBERG J., SHADE J., FULK D. (2000): "The Digital Michelangelo Project: 3D scanning of large statues". In SIGGRAPH 2000, Computer Graphics Proceedings (July 24-28, 2000), Annual Conference Series, AddisonWesley, pp. 131-144. http://dx.doi.org/10.1145/344779.344849SCOPIGNO, Roberto et al. (2011): "Sampled 3D models for CH: beyond plain visualization", IEEE Computer, IEEE Press, July-Aug. 2011, (in press).STANCO F., BATTIATO S., GALLO G., (ed.) (2011): "Digital Imaging for Cultural Heritage Preservation". Taylor & Francis Group, 2011.TOLER-FRANKLIN C., BROWN B., WEYRICH T., FUNKHOUSER T., RUSINKIEWICZ S. (2010): "Multi-feature matching of fresco fragments". ACM Trans. Graphics (Proc. SIGGRAPH Asia) 29, 6 (2010), pp. 185-197. http://dx.doi.org/10.1145/1882262.1866207http://dx.doi.org/10.1145/1882261.186620

    Unveiling Damnatio Memoriae. The use of 3D digital technologies for the virtual reconstruction of archaeological finds and artefacts

    Full text link
    [EN] In ancient Rome, damnatio memoriae was a practice of erasing the memory of condemned persons from historical records after their death. This practice was usually addressed by the Senate to Roman elites and emperors who were declared enemies of the State, in order to preserve the honour of Rome. This condemnation usually included practices such as, for example, the erasure of names sculpted on inscriptions and the destruction or reworking of statues and of any other image of the person. Emperor Nero, for example, was condemned to this practice immediately after his death and a wide iconographic repertoire on him was therefore destroyed or deeply damaged. This lack of information can actually be improved thanks to the possibilities of virtual restoration and reconstruction offered by 3D digital technologies.The aim of this paper is to show how the possibility to acquire 3D reality-based data from archaeological finds allows to build 3D digital models that can be analysed and managed in a virtual environment and can be relocated, assembled or restored in order to suggest or graphically support archaeologists’ interpretations and reconstructions. The paper shows the methodology developed for the virtual restoration of the statue of Nero starting from the 3D digitization of the torso that was found 500 years ago by the Roman theatre of Bologna, Italy, the ancient Bononia.Manferdini, AM.; Gasperoni, S.; Guidi, F.; Marchesi, M. (2016). Unveiling Damnatio Memoriae. The use of 3D digital technologies for the virtual reconstruction of archaeological finds and artefacts. Virtual Archaeology Review. 7(15):9-17. doi:10.4995/var.2016.5871.SWORD91771
    corecore