840 research outputs found

    Real-time assessment of tunnelling-induced damage to structures within the building information modelling framework

    Get PDF
    During the initial design phases of complex multi-disciplinary systems such as urban tunnelling, the appraisal of different design alternatives can ensure optimal designs in terms of costs, construction time, and safety. To enable the evaluation of a large number of design scenarios and to find an optimal solution that minimises impact of tunnelling on existing structures, the design and assessment process must be efficient, yet provide a holistic view of soil-structure interaction effects. This paper proposes an integrated tunnel design tool for the initial design phases to predict the ground settlements induced by tunnelling and building damage using empirical and analytical solutions as well as simulation-based meta models. Furthermore, visualisation of ground settlements and building damage risk is enabled by integrating empirical and analytical models within our Building Information Modelling (BIM) framework for tunnelling. This approach allows for near real-time assessment of structural damage induced by settlements with consideration of soil-structure interaction and non-linear material behaviour. Furthermore, because this approach is implemented on a BIM platform for tunnelling, first, the design can be optimised directly in the design environment, thus eliminating errors in data exchange between designers and computational analysts. Secondly, the effect of tunnelling on existing structures can be effectively visualised within the BIM by producing risk-maps and visualising the scaled deformation field, which allows for a more intuitive understanding of design actions and for collaborative design. Having a fully parametric design model and real-time predictions therefore enables the assessment and visualisation of tunneling-induced damage for large tunnel sections and multiple structures in an effective and computationally efficient way

    Tunneling-induced ground movement and building damage prediction using hybrid artificial neural networks

    Get PDF
    The construction of tunnels in urban areas may cause ground displacement which distort and damage overlying buildings and services. Hence, it is a major concern to estimate tunneling-induced ground movements as well as to assess the building damage. Artificial neural networks (ANN), as flexible non-linear function approximations, have been widely used to analyze tunneling-induced ground movements. However, these methods are still subjected to some limitations that could decrease the accuracy and their applicability. The aim of this research is to develop hybrid particle swarm optimization (PSO) algorithm-based ANN to predict tunneling-induced ground movements and building damage. For that reason, an extensive database consisting of measured settlements from 123 settlement markers, geotechnical parameters, tunneling parameters and properties of 42 damaged buildings were collected from Karaj Urban Railway project in Iran. Based on observed data, the relationship between influential parameters on ground movements and maximum surface settlements were determined. A MATLAB code was prepared to implement hybrid PSO-based ANN models. Finally, an optimized hybrid PSO-based ANN model consisting of eight inputs, one hidden layer with 13 nodes and three outputs was developed to predict three-dimensional ground movements induced by tunneling. In order to assess the ability and accuracy of the proposed model, the predicted ground movements using proposed model were compared with the measured settlements. For a particular point, ground movements were obtained using finite element model by means of ABAQUS and the results were compared with proposed model. In addition, an optimized model consisting of seven inputs, one hidden layer with 21 nodes and one output was developed to predict building damage induced by ground movements due to tunneling. Finally, data from damaged buildings were used to assess the ability of the proposed model to predict the damage. As a conclusion, it can be suggested that the newly proposed PSO-based ANN models are able to predict three-dimensional tunneling-induced ground movements as well as building damage in tunneling projects with high degree of accuracy. These models eliminate the limitations of the current ground movement and building damage predicting methods

    Stratum Displacement Law and Intelligent Optimization Control Based on Intelligent Fuzzy Control Theory During Shield Tunneling

    Get PDF
    The laws of Stratum displacement and optimal control are critical for shield operation. This article’s focus is made on the intelligent fuzzy control theory concentrating on earth pressure, total thrust, driving speed, cutter torque, grouting pressure and grouting volume as the main elements of the study. A model of intelligent fuzzy control theory based on the model of No. 9 Line of Guangzhu Rail transit, on the Tianma river shield section. The paper also analyzes stratum displacement law due to shield tunnelling, executes & analyses intelligent controls for optimization of parameters, combining the five two-dimensional structures of the double structure of fuzzy control system. According to the observations made on the model. The model is upto date and the control of all parameters develops stably. The parameter ranges should be controlled as follows: earth pressure, 0.19 ~ 0.22Mpa; total thrust, 1100 ~ 1350T; driving speed, 38 ~ 50mm / min; cutter torque, 1600 ~ 2300 KN • m; grouting pressure, 0.19 ~ 0.25Mpa and grouting volume, 30 ~ 50L/min. Keywords: Shield tunnel, intelligent fuzzy control, Stratum displacement, optimal control DOI: 10.7176/CER/13-6-01 Publication date:October 31st 202

    Predictive Models to Evaluate the Interaction Effect of Soil-Tunnel Interaction Parameters on Surface and Subsurface Settlement

    Get PDF
    Nowadays, the need for subway tunnels has increased considerably with urbanization and population growth in order to facilitate movements. In urban areas, subway tunnels are excavated in shallow depths under densely populated areas and soft ground. Its associated hazards include poor ground conditions and surface settlement induced by tunneling. Various sophisticated variables influence the settlement of the ground surface caused by tunneling. The shield machine's operational parameters are critical due to the complexity of shield-soil interactions, tunnel geometry, and local geological parameters. Since all elements appear to have some effect on tunneling-induced settlement, none stand out as particularly significant; it might be challenging to identify the most important ones. This paper presents a new model of an artificial neural network (ANN) based on the partial dependency approach (PDA) to optimize the lack of explainability of ANN models and evaluate the sensitivity of the model response to tunneling parameters for the prediction of ground surface and subsurface settlement. For this purpose, 239 and 104 points for monitoring surface and subsurface settlement, respectively, were obtained from line Y, the west bond of Crossrail tunnels in London. The parameters of the ground surface, the trough, and the tunnel boring machine (TBM) were used to categorize the 12 potential input parameters that could impact the maximum settlement induced by tunneling. An ANN model and a standard statistical model of multiple linear regression (MLR) were also used to show the capabilities of the ANN model based on PDA in displaying the parameter's interaction impact. Performance indicators such as the correlation coefficient (R2), root mean square error (RMSE), and t-test were generated to measure the prediction performance of the described models. According to the results, geotechnical engineers in general practice should attend closely to index properties to reduce the geotechnical risks related to tunneling-induced ground settlement. The results revealed that the interaction of two parameters that have different effects on the target parameter could change the overall impact of the entire model. Remarkably, the interaction between tunneling parameters was observed more precisely in the subsurface zone than in the surface zone. The comparison results also indicated that the proposed PDA-ANN model is more reliable than the ANN and MLR models in presenting the parameter interaction impact. It can be further applied to establish multivariate models that consider multiple parameters in a single model, better capturing the correlation among different parameters, leading to more realistic demand and reliable ground settlement assessments. This study will benefit underground excavation projects; the experts could make recommendations on the criteria for settlement control and controlling the tunneling parameters based on predicted results. Doi: 10.28991/CEJ-2022-08-11-05 Full Text: PD

    A hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steering

    Get PDF
    The paper proposes a novel computational method for real-time simulation and monitoring-based predictions during the construction of machine-driven tunnels to support decisions concerning the steering of tunnel boring machines (TBMs). The proposed technique combines the capacity of a process-oriented 3D simulation model for mechanized tunnelling to accurately describe the complex geological and mechanical interactions of the tunnelling process with the computational efficiency of surrogate (or meta) models based on artificial neural networks. The process-oriented 3D simulation model with updated model parameters based on acquired monitoring data during the advancement process is used in combination with surrogate models to determine optimal tunnel machine-related parameters such that tunnelling-induced settlements are kept below a tolerated level within the forthcoming process steps. The performance of the proposed strategy is applied to the Wehrhahn-line metro project in Düsseldorf, Germany and compared with a recently developed approach for real-time steering of TBMs, in which only surrogate models are used

    Computationally efficient simulation in urban mechanised tunnelling based on multi-level BIM models

    Get PDF
    The design of complex underground infrastructure projects involves various empirical, analytical or numerical models with different levels of complexity. The use of simulation models in current state-of-the-art tunnel design process can be cumbersome when significant manual, time-consuming preparation, analysis and excessive computing resources are required. This paper addresses the challenges connected with minimising the user workload and computational time, as well as enabling real-time computations during the construction. To ensure a seamless workflow during design and to minimise the computation time of the analysis, we propose a novel concept for BIM-based numerical simulations, enabling the modelling of the tunnel advance on different levels of detail in terms of geometrical representation, material modelling and modelling of the advancement process. To ensure computational efficiency, the simulation software has been developed with special emphasis on efficient implementation, including parallelisation strategies on shared and distributed memory systems. For real-time on-demand calculations, simulation based meta models are integrated into the software platform. The components of the BIM-based multi-level simulation concept are described and evaluated in detail by means of representative numerical examples

    A gene expression programming model for predicting tunnel convergence

    Get PDF
    Underground spaces have become increasingly important in recent decades in metropolises. In this regard, the demand for the use of underground spaces and, consequently, the excavation of these spaces has increased significantly. Excavation of an underground space is accompanied by risks and many uncertainties. Tunnel convergence, as the tendency for reduction of the excavated area due to change in the initial stresses, is frequently observed, in order to monitor the safety of construction and to evaluate the design and performance of the tunnel. This paper presents a model/equation obtained by a gene expression programming (GEP) algorithm, aiming to predict convergence of tunnels excavated in accordance to the New Austrian Tunneling Method (NATM). To obtain this goal, a database was prepared based on experimental datasets, consisting of six input and one output parameter. Namely, tunnel depth, cohesion, frictional angle, unit weight, Poisson's ratio, and elasticity modulus were considered as model inputs, while the cumulative convergence was utilized as the model's output. Configurations of the GEP model were determined through the trial-error technique and finally an optimum model is developed and presented. In addition, an equation has been extracted from the proposed GEP model. The comparison of the GEP-derived results with the experimental findings, which are in very good agreement, demonstrates the ability of GEP modeling to estimate the tunnel convergence in a reliable, robust, and practical manner

    An integrated platform for design and numerical analysis of shield tunnelling processes on different levels of detail

    Get PDF
    Building and construction information modelling for decision making during the life cycle of infrastructure projects are vital tools for the analysis of complex, integrated, multi-disciplinary systems. The traditional design process is cumbersome and involves significant manual, time-consuming preparation and analysis as well as significant computational resources. To ensure a seamless workflow during the design and analysis and to minimise the computation time, we propose a novel concept of multi-level numerical simulations, enabling the modelling on different Levels of Detail (LoDs) for each physical component, process information, and analysis type. In this paper, we present SATBIM, an integrated platform for information modelling, structural analysis and visualisation of the mechanised tunnelling process for design support. Based on a multi-level integrated parametric Tunnel Information Model, numerical models for each component on different LoDs are developed, considering proper geometric as well as material representation, interfaces and the representation of the construction process. Our fully automatic modeller for arbitrary tunnel alignments provides a high degree of automation for the generation, the setup and the execution of the simulation model, connecting the multi-level information model with the open-source simulation software KRATOS. The software of SATBIM is organized in a modular way in order to offer high flexibility not only for further extensions, but also for adaptation to future improvements of the simulation software. The SATBIM platform enables practical, yet flexible and user-friendly generation of the tunnel structure for arbitrary alignments on different LoDs, supporting the design process and providing an insight into soil-structure interactions during construction

    Fuzzy Sets Applications in Civil Engineering Basic Areas

    Get PDF
    Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings. This paper presents some Fuzzy Logic (FL) applications in civil engeering discipline and shows the potential of facilities of FL in this area. The potential role of fuzzy sets in analysing system and human uncertainty is investigated in the paper. The main finding of this inquiry is FL applications used in different areas of civil engeering discipline with success. Once developed, the fuzzy logic models can be used for further monitoring activities, as a management tool

    Advanced Theoretical and Computational Methods for Complex Materials and Structures

    Get PDF
    The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces
    corecore