203 research outputs found

    3D hp-adaptive finite element simulations of a magic-T electromagnetic waveguide structure

    Get PDF
    This paper employs a 3D hp self-adaptive grid-refinement finite element strategy for the solution of a particular electromagnetic waveguide structure known as Magic-T. This structure is utilized as a power divider/combiner in communication systems as well as in other applications. It often incorporates dielectrics, metallic screws, round corners, and so on, which may facilitate its construction or improve its design, but significantly difficult its modeling when employing semi-analytical techniques. The hp-adaptive finite element method enables accurate modeling of a Magic-T structure even in the presence of these undesired materials/geometries. Numerical results demonstrate the suitability of the hp-adaptive method for modeling a Magic-T rectangular waveguide structure, delivering errors below 0.5% with a limited number of unknowns. Solutions of waveguide problems delivered by the self-adaptive hp-FEM are comparable to those obtained with semi-analytical techniques such as the Mode Matching method, for problems where the latest methods can be applied. At the same time, the hp-adaptive FEM enables accurate modeling of more complex waveguide structures

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    3D hp-Adaptive Finite Element Simulations of Bend, Step, and Magic-T Electromagnetic Waveguide Structures

    Get PDF
    Metallic rectangular waveguides are often the preferred choice on telecommunication systems and medical equipment working on the upper microwave and millimeter wave frequency bands due to the simplicity of its geometry, low losses, and the capacity to handle high powers. Waveguide translational symmetry is interrupted by the unavoidable presence of bends, transitions, and junctions, among others. This paper employs a 3D hp self-adaptive grid-refinement finite element strategy for the solution of these relevant electromagnetic waveguide problems. These structures often incorporate dielectrics, metallic screws, round corners, and so on, which may facilitate its construction or improve its design, but significantly difficult its modeling when employing semi-analytical techniques. The hp-adaptive finite element method enables accurate modeling of these structures even in the presence of complex materials and geometries. Numerical results demonstrate the suitability of the hp-adaptive method for modeling these waveguide structures, delivering errors below 0.5% with a limited number of unknowns. Solutions of waveguide problems obtained with the self-adaptive hp-FEM are of comparable accuracy to those obtained with semi-analytical techniques such as the Mode Matching method, for problems where the latest methods can be applied. At the same time, the hp-adaptive FEM enables accurate modeling of more complex waveguide structures.TEC2010-18175/TCM MTM2010-1651

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    Analytical Design Procedures for the Odd Mode of Ridge Gap Waveguide Devices and Antennas

    Get PDF
    The millimeter-wave (mm-wave) band has attracted attention due to its wideband characteristics that make it able to support multi-gigabit per second data rate. Nevertheless, the performance of mm-wave wireless communication systems is restricted due to attenuation loss. Design of mm-wave components and antennas is rapidly growing with the current evolution in the wireless communication systems. However, the traditional waveguide structures such as microstrip, coplanar, substrate integrated waveguide, and rectangular waveguide either suffer from high losses or difficulty in manufacturing at mm-wave band. The ridge gap waveguide (RGW) technology is considered as a promising waveguide technology for the mm-wave band. RGW technology overcomes the conventional guiding structure problems as the wave propagates in an air gap region which eliminates the dielectric loss. Moreover, RGW does not need any electrical contacts, unlike traditional rectangular waveguides. Also, the RGW can be implemented in the printed form (PRGW) for easy integration with other planer system components. In this thesis, the use of the odd mode (TE10 (RGW)) RGW to design mm-wave components and antennas is presented. First, a systematic design methodology for the RGW using hybrid PEC/PMC waveguide approximation is presented. This reduces the design time using full wave simulators. The concept has been verified by simulation and experimental measurements. Second, two different methods to excite the odd mode in RGW are studied and investigated. In the first method, a planar L-shape RGW is used where less than -10 dB reflection coefficient is achieved, from 28 to 36 GHz, and more than 93% of the input power has been converted into the odd mode at the output port. The second method uses a magic tee with a shorted sum port and provides a wideband pure odd mode at the output port with reflection coefficient less than -10 dB from 28 GHz to 39 GHz. Other mm-wave components based on odd mode TE10 RGW are designed and presented including a Y-junction power divider and 3 dB forward coupler are designed for the first time in RGW technology. The Y-junction has a wideband matching from 28 to 34 GHz with a reflection coefficient less than -15 dB and the transmission output levels are about -3.3 dB. The usefulness of the odd mode RGW lies in the ability to increase the channel bandwidth that has been achieved by designing a dual-mode RGW. A magic tee is used to simultaneously excite the fundamental mode Q-TEM and the odd mode TE10 (RGW) on the ridgeline. The proposed dual-mode RGW performance is verified through simulation and measurement of a back-to-back configuration. The proposed design achieves a matching level less than -10 dB for the two modes over the frequency range from 29 GHz to 34.5 GHz with isolation better than 23 dB. The dual-mode RGW is then used to feed a reconfigurable Vivaldi horn antenna where two different radiation patterns can be obtained depending on the excited mode. The Q-TEM generates a single beam pattern, while the odd mode TE10 (RGW) generates a dual-beam pattern. The maximum gain for the single beam radiation is 12.1 dBi, while it is 10.43 dBi for the dual-beam pattern. The bandwidth of the dual-mode antenna is 25% at 32 GHz with impedance matching less than -10 dB and isolation better than 20 dB. Finally, several antennas are presented in this thesis based on the odd mode RGW. A novel differential feeding cavity antenna using the odd mode of RGW is presented. The measured results show good performance in terms of gain, bandwidth, sidelobe level, and cross-polarization. The maximum gain is 16.5 dBi, and the sidelobe level is -17 dB and -13.8 dB, for the E-plane and H-plane, respectively. Moreover, the proposed antenna has low cross-polarization levels of -35 dB in the E-plane and -27 dB in the H-plane. In addition, two 2x1 linear frequency scanning array antennas are designed and implemented using the proposed Y-junction to generate single beam and dual-beam patterns. The beam scan is from -11(degree) to -40(degree) at 28 GHz and 32 GHz, respectively
    corecore