6,506 research outputs found

    3D Face Recognition with Sparse Spherical Representations

    Get PDF
    This paper addresses the problem of 3D face recognition using simultaneous sparse approximations on the sphere. The 3D face point clouds are first aligned with a novel and fully automated registration process. They are then represented as signals on the 2D sphere in order to preserve depth and geometry information. Next, we implement a dimensionality reduction process with simultaneous sparse approximations and subspace projection. It permits to represent each 3D face by only a few spherical functions that are able to capture the salient facial characteristics, and hence to preserve the discriminant facial information. We eventually perform recognition by effective matching in the reduced space, where Linear Discriminant Analysis can be further activated for improved recognition performance. The 3D face recognition algorithm is evaluated on the FRGC v.1.0 data set, where it is shown to outperform classical state-of-the-art solutions that work with depth images

    3D Face Recognition using Sparse Spherical Representations

    Get PDF
    This paper addresses the problem of 3D face recognition using spherical sparse representations. We first propose a fully automated registration process that permits to align the 3D face point clouds. These point clouds are then represented as signals on the 2D sphere, in order to take benefit of the geometry information. Simultaneous sparse approximations implement a dimensionality reduction process by subspace projection. Each face is typically represented by a few spherical basis functions that are able to capture the salient facial characteristics. The dimensionality reduction step preserves the discriminant facial information and eventually permits an effective matching in the reduced space, where it can further be combined with LDA for improved recognition performance. We evaluate the 3D face recognition algorithm on the FRGC v.1.0 data set, where it outperforms classical state-of-the-art solutions based on PCA or LDA on depth face images

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Generating 3D faces using Convolutional Mesh Autoencoders

    Full text link
    Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://github.com/anuragranj/com

    MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

    Get PDF
    In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.Comment: International Conference on Computer Vision (ICCV) 2017 (Oral), 13 page
    • …
    corecore