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Abstract

This paper addresses the problem of 3D face recog-
nition using spherical sparse representations. We first
propose a fully automated registration process that per-
mits to align the 3D face point clouds. These point
clouds are then represented as signals on the 2D sphere,
in order to take benefit of the geometry information.
Simultaneous sparse approximations implement a di-
mensionality reduction process by subspace projection.
Each face is typically represented by a few spherical ba-
sis functions that are able to capture the salient facial
characteristics. The dimensionality reduction step pre-
serves the discriminant facial information and eventu-
ally permits an effective matching in the reduced space,
where it can further be combined with LDA for im-
proved recognition performance. We evaluate the 3D
face recognition algorithm on the FRGC v.1.0 data set,
where it outperforms classical state-of-the-art solutions
based on PCA or LDA on depth face images.

1 Introduction

Automatic recognition of human faces is one of the
most challenging topics in the field of image processing
and computer vision. It has numerous applications such
as automated screening, surveillance, authentication or
human-computer interaction. There has been a con-
siderable progress in the area of two-dimensional(2D)
face recognition where intensity/color images of hu-
man faces are employed. However, these systems are
sensitive to illumination, pose variations, facial expres-
sions and make-up. Most of these limitations can be
overcome in 3D face recognition methods, which have
∗This work has been partly supported by the Swiss National Sci-
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Figure 1. Block diagram of the 3D face
recognition system.

shown potential for greater recognition accuracy (see
e.g., [1, 2, 3]).

In this paper, we propose a 3D face recognition sys-
tem based on the representation of faces on the 2D
sphere, as illustrated in Figure 1. We propose first a
fully automated facial region extraction and registra-
tion process. Contrarily to the vast majority of existing
approaches where fiducial correspondences have been
manually established beforehand, we propose a simple
and effective methodology based on the automatic pro-
cessing of the images that are represented as 3D point
clouds. Then, we represent the pre-processed faces as
spherical signals, which permits to preserve the geom-
etry information and to provide important advantages
with respect to depth images (i.e., 2D arrays of face to
camera distance values). In order to cope with the lim-
ited size of the training set, and with possible registra-
tion errors, we enrich the training data by the addition
of virtual samples. These samples represent artificial
faces that are produced by slight pose variations of the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147942236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


training faces, which are easily computed in the spheri-
cal representation.

We eventually perform dimensionality reduction on
the sphere with simultaneous greedy Matching Pursuit
algorithm [4, 5] in order to extract the most meaningful
information of the spherical faces. In particular, the fa-
cial images are jointly represented using a few localized
and orientated features in the sphere, which are able to
capture discriminant geometrical characteristics. It re-
sults in a compact subspace representation that permits
effective matching and recognition. We finally provide
experimental results on the FRGC v.1.0 database that
indicate the effective performance of the proposed sys-
tem, that can be further combined with LDA for im-
proved recognition. The novel algorithm is shown to
outperform solutions that run state-of-the-art algorithms
like PCA and LDA on the depth images.

2 Automatic facial region extraction and
registration

Each 3D face scan typically forms a 3D point cloud
representation, accompanied by a binary matrix A of
valid points. We first use two lateral thresholds on the
vertical projection curve (obtained by the column sum
of the matrix A) in order to remove the subjects’ shoul-
ders. This is followed by thresholding on the depth his-
togram in order to separate the head region from the
chest. Disconnected regions of outliers are further re-
moved by morphological image processing on the cor-
responding binary matrix A (e.g., by keeping the region
of largest area).

Registration of the pre-processed point clouds is then
performed in a two-step approach. All faces are ini-
tially registered by means of the Iterative Closest Point
(ICP) algorithm [6]. An Average Face Model (AFM)
is built after resampling the data points on a 2D grid.
The AFM is used as reference image in order to de-
fine an area-of-interest under the form of an ellipse that
contains the salient facial region. Since all faces are
registered, the facial region can be extracted from each
3D face by ellipse cropping, which discards at the same
time the irrelevant points (e.g., hair, ears etc). Next, ICP
is performed once more on the cropped 3D faces for
even more accurate alignment. The resulting registered
face data are mapped to signals defined in the space of
square-integrable functions on the unit 2-sphere S2, de-
noted as L2(S2). The mapping is performed such that
the value of the spherical signal f(θ, ϕ) represents the
distance of a 3D point with spherical coordinates θ (az-
imuth angle) and ϕ (elevation angle) to the center of

the sphere. The spherical facial signals are finally ob-
tained from the registered faces using nearest neighbor
interpolation on the spherical equiangular grid, which
moreover removes any holes that may exist.

3 Spherical sparse representations

Let us introduce the concept of sparse representa-
tions. We assume the existence of a redundant dic-
tionary (overcomplete basis) D that spans the space
L2(S2). The elements of the dictionary, which are in-
dexed by γ ∈ Γ i.e., D = {gγ , γ ∈ Γ}, are usually
called atoms and they have unit norm i.e., ‖gγ‖2 = 1
where ‖ · ‖2 denotes the L2 norm. A signal s ∈ L2(S2)
is called k-sparse, if it can be expressed as s = ΦIc.
ΦI denotes a matrix composed of subset of atoms in
D indexed by I , where |I| ≤ k, and c denotes a vec-
tor of coefficients. Computing the sparsest approxima-
tion of a given signal is known in general to be NP-
hard, but there exist suboptimal methods such as the
Matching Pursuit (MP) algorithm that work sufficiently
well in practice. In the case where a sparse repre-
sentation is sought for a given set of spherical signals
si = si(θ, ϕ), i = 1, . . . , n, MP is extended to the Si-
multaneous Spherical MP (SSMP) algorithm. The goal
of SSMP is to extract a set of atoms from the dictio-
nary such that all signals are simultaneously represented
as linear combinations of a few, say K, basis vectors,
si =

∑K
k=1 cikgγk

, i = 1, . . . , n.
SSMP is an iterative greedy algorithm, which ex-

tracts a subset G of the dictionary D for the approx-
imation of all signals si. At the first step, the algo-
rithm sets the residual signals as R0

i = si and selects
the atom gγ1 from the dictionary that fits the best all
the residual signals. Formally, the algorithm computes
γ1 = arg maxγ∈Γ

∑n
i=1 |〈R0

i , gγ〉|. Recall that we are
dealing here with spherical signals, and that 〈·, ·〉 rep-
resents the inner product on the sphere. The spherical
inner product between f = f(θ, ϕ) and g = g(θ, ϕ) is
defined as:

〈f, g〉 =
∫

θ

∫

ϕ

f(θ, ϕ)g(θ, ϕ) sin θdθdϕ. (1)

In the next step, all the residual signals are updated
by subtracting the contribution of the selected atom,
R1

i = R0
i − ci1gγ1 , ∀i, where R1

i is the residual of the
i-th signal in the first iteration and ci1 is the correspond-
ing contribution of the selected atom computed as,

ci1 = 〈R0
i , gγ1〉. (2)
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Figure 2. Gaussian atoms

The same process of extracting the best atom and up-
dating the residual is repeated iteratively. At step k, the
best matching atom gγk

is chosen as follows,

γk = arg max
γ∈Γ

n∑

i=1

|〈Rk−1
i , gγ〉|. (3)

Typically, a few iterations are usually sufficient to cap-
ture most of the energy of the signals to be approxi-
mated.

Finally, we propose to use the dictionary D intro-
duced in [7], where the atoms are constructed by apply-
ing geometric transformations on a generation function,
denoted hereby as g(θ, ϕ). We choose as a generating
function the 2-D Gaussian function in L2(S2), defined
as, g(θ, ϕ) = exp(− tan2 θ

2 ). It represents an isotropic
Gaussian function, centered at the North Pole. The ge-
ometric transformation consists of translation, rotation
and anisotropic scaling of g on the sphere. In this case,
the atom index is γ = (τ, ν, ψ, α, β) ∈ Γ, where (τ, ν)
is the position of the atom in the sphere, ψ is its orien-
tation and (α, β) its scaling parameters. Figure 2 shows
a few sample Gaussian atoms that are used in the repre-
sentation of spherical faces.

4 Experimental results

Test p Number of Training Test
configuration subjects set set

T1 1 200 200 673
T2 2 166 332 474
T3 3 121 363 308
T4 4 86 344 187

Table 1. Test configurations.

In our methodology, the spherical facial images are
projected in the reduced SSMP subspace by computing
the corresponding low dimensional coefficients vectors.
Those are computed by successive projections of the
residual signals over the atoms, in a way that “mimics”

the MP process. For this reason, we call them the MP
coefficients. Recognition is performed in the reduced
space (among coefficient vectors) by NN classification
i.e., assigning the test vector to the class correspond-
ing to its nearest neighbor among the training data. The
matching uses the L1 distance metric, which has been
found to outperform other related distances in our ex-
periments.

We evaluate the performance of the proposed algo-
rithm on the University of Notre Dame (UND) Biomet-
ric database1 (named also FRGC v1.0 database). The
database consists of 277 subjects, and each subject has
between one and eight scans. We defined several con-
figurations for our experiments, driven by the number
of samples p per class (subject) in the formation of the
training set (see Table 1 for more details). For the sake
of completeness, we include in our comparisons a hy-
brid method of SSMP followed by LDA, denoted as
SSMP+LDA. Note finally that we use virtual samples in
the configurations T1, T2 and T3, where the training set
is limited. In particular, each spherical training image
is expanded by generating 8 slightly shifted versions of
it (one pixel in each possible direction). The inclusion
of virtual samples compensates for possible registration
errors.

We compare our methods with PCA and LDA on the
(preprocessed) depth images. Additionally, we provide
recognition results with the Euclidean distance (EUC)
on the depth images as well as the Mean Square Er-
ror (MSE) on the spherical functions. We report rank-
1 recognition results across random experiments. For
each experiment, we split randomly the samples be-
tween the training and the test sets. In Figure 3 we
show the average classification error rate obtained for
each configuration, over all 10 random splits. First,
we observe that Euclidean distance on the depth images
(EUC) is inferior to Mean Square Error (MSE) on the
spherical signals. This is the main observation that en-
courages the use of spherical signals for representing
3D faces. Next, notice that SSMP outperforms PCA,
which in turn mainly explains the fact that SSMP+LDA
outperforms LDA (on the depth images), since the lat-
ter implements a PCA decomposition at first step. Fi-
nally, we can see that SSMP+LDA gives the best per-
formances among all the tested schemes.

5 Conclusions

We have proposed a methodology for 3D face recog-
nition based on spherical sparse representations. Spher-

1http://www.nd.edu/∼cvrl/UNDBiometricsDatabase.html
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(a) Test Configuration T1
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(b) Test Configuration T2
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(c) Test Configuration T3
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(d) Test Configuration T4

Figure 3. Classification error rates on the FRGC v.1.0 database.

ical representation of faces allows for effective dimen-
sionality reduction by preserving geometry informa-
tion, which in turn leads to high performance match-
ing in the reduced space. Experimental evidence indi-
cates the advantages of the proposed approach over well
known existing methods.
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