7,671 research outputs found

    Measurement of Micro-bathymetry with a GOPRO Underwater Stereo Camera Pair

    Get PDF
    A GO-PRO underwater stereo camera kit has been used to measure the 3D topography (bathymetry) of a patch of seafloor producing a point cloud with a spatial data density of 15 measurements per 3 mm grid square and an standard deviation of less than 1 cm A GO-PRO camera is a fixed focus, 11 megapixel, still-frame (or 1080p high-definition video) camera, whose small form-factor and water-proof housing has made it popular with sports enthusiasts. A stereo camera kit is available providing a waterproof housing (to 61 m / 200 ft) for a pair of cameras. Measures of seafloor micro-bathymetrycapable of resolving seafloor features less than 1 cm in amplitude were possible from the stereoreconstruction. Bathymetric measurements of this scale provide important ground-truth data and boundary condition information for modeling of larger scale processes whose details depend on small-scale variations. Examples include modeling of turbulent water layers, seafloor sediment transfer and acoustic backscatter from bathymetric echo sounders

    Investigating submerged morphologies by means of the low-budget “GeoDive” method (high resolution for detailed 3D reconstruction and related measurements)

    Get PDF
    Geophysical methods allow to collect geological data on lake and sea bottoms and characterize large areas, even at high depths, but with high costs. Moreover, the most widespread acquisition methods for morpho-bathymetric survey and the related instruments used are almost always ship-, ROV- or AUV-based and consequently they require high budgets. It is known that shallow waters can represent a limit for certain vessels and techniques, preventing the acquisition in the shoreface zone. To overcome the limits, i.e. to survey with high accuracy nearshore shallow waters with a low budget, we tested and tuned the “GeoDive” method that allowed us to survey two test sites, featured by the presence of “block fields” (i.e., accumulations of huge blocks and boulders of gravitational origin) under shallow waters. The “GeoDive” method allowed us to map the submerged morphologies and to acquire high-resolution optical images for further photogrammetric processing. The latter was fundamental to obtain 3D high-resolution models, also with conditions of low visibility. An Action Sport Cam with high definition resolution has been used for video acquisition, in addition to the equipment used during scientific diving. By coupling the processing of underwater-acquired data with the direct surveys performed by underwater SCUBA operators, it was possible to perform some morphological and sedimentological measurements and observations on the experimental targets, with the help of suitable markers

    Virtual Exploration of Underwater Archaeological Sites : Visualization and Interaction in Mixed Reality Environments

    Get PDF
    This paper describes the ongoing developments in Photogrammetry and Mixed Reality for the Venus European project (Virtual ExploratioN of Underwater Sites, http://www.venus-project.eu). The main goal of the project is to provide archaeologists and the general public with virtual and augmented reality tools for exploring and studying deep underwater archaeological sites out of reach of divers. These sites have to be reconstructed in terms of environment (seabed) and content (artifacts) by performing bathymetric and photogrammetric surveys on the real site and matching points between geolocalized pictures. The base idea behind using Mixed Reality techniques is to offer archaeologists and general public new insights on the reconstructed archaeological sites allowing archaeologists to study directly from within the virtual site and allowing the general public to immersively explore a realistic reconstruction of the sites. Both activities are based on the same VR engine but drastically differ in the way they present information. General public activities emphasize the visually and auditory realistic aspect of the reconstruction while archaeologists activities emphasize functional aspects focused on the cargo study rather than realism which leads to the development of two parallel VR demonstrators. This paper will focus on several key points developed for the reconstruction process as well as both VR demonstrators (archaeological and general public) issues. The ?rst developed key point concerns the densi?cation of seabed points obtained through photogrammetry in order to obtain high quality terrain reproduction. The second point concerns the development of the Virtual and Augmented Reality (VR/AR) demonstrators for archaeologists designed to exploit the results of the photogrammetric reconstruction. And the third point concerns the development of the VR demonstrator for general public aimed at creating awareness of both the artifacts that were found and of the process with which they were discovered by recreating the dive process from ship to seabed

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    A Robust Quasi-dense Matching Approach for Underwater Images

    Get PDF
    While different techniques for finding dense correspondences in images taken in air have achieved significant success, application of these techniques to underwater imagery still presents a serious challenge, especially in the case of “monocular stereo” when images constituting a stereo pair are acquired asynchronously. This is generally because of the poor image quality which is inherent to imaging in aquatic environments (blurriness, range-dependent brightness and color variations, time-varying water column disturbances, etc.). The goal of this research is to develop a technique resulting in maximal number of successful matches (conjugate points) in two overlapping images. We propose a quasi-dense matching approach which works reliably for underwater imagery. The proposed approach starts with a sparse set of highly robust matches (seeds) and expands pair-wise matches into their neighborhoods. The Adaptive Least Square Matching (ALSM) is used during the search process to establish new matches to increase the robustness of the solution and avoid mismatches. Experiments on a typical underwater image dataset demonstrate promising results
    corecore