4 research outputs found

    3D Rigid Registration of Intraoperative Ultrasound and Preoperative MR Brain Images Based on Hyperechogenic Structures

    Get PDF
    The registration of intraoperative ultrasound (US) images with preoperative magnetic resonance (MR) images is a challenging problem due to the difference of information contained in each image modality. To overcome this difficulty, we introduce a new probabilistic function based on the matching of cerebral hyperechogenic structures. In brain imaging, these structures are the liquid interfaces such as the cerebral falx and the sulci, and the lesions when the corresponding tissue is hyperechogenic. The registration procedure is achieved by maximizing the joint probability for a voxel to be included in hyperechogenic structures in both modalities. Experiments were carried out on real datasets acquired during neurosurgical procedures. The proposed validation framework is based on (i) visual assessment, (ii) manual expert estimations , and (iii) a robustness study. Results show that the proposed method (i) is visually efficient, (ii) produces no statistically different registration accuracy compared to manual-based expert registration, and (iii) converges robustly. Finally, the computation time required by our method is compatible with intraoperative use

    Usefulness of Intraoperative 2D-Ultrasound in the Resection of Brain Tumors

    Get PDF
    The surgical approach to brain tumors often uses preoperative images to visualize the characteristics of pathology, guiding the surgical procedure. However, the usefulness of preoperative images during the surgical procedure is altered by the changes in the brain during the surgery because of craniotomy, inflammation, tumor resection, cerebrospinal fluid (CSF) drainage, among others. For this reason, there is a need to use intraoperative imaging evaluation methods that allow the surgeon to consider these changes, reflecting the real-time anatomical disposition of the brain/tumor. Intraoperative ultrasound (iUS) has allowed neurosurgeons to guide the surgical procedure without exposing the patient to ionizing radiation or interrupting the procedure. Technological advances have made it possible to improve image quality, have smaller probes, and facilitate the use of the equipment, in addition to the introduction of new imaging modalities, such as three-dimensional images, enhanced with contrast, among others, expanding the available options. In the context of these advances, the objective of this chapter was to review the current status of the usefulness and challenges of iUS for brain tumor resection through an in-depth review of the literature and the discussion of an illustrative case

    VolumĂ©trie des ventricules latĂ©raux chez le nouveau-nĂ© par segmentation automatique d’échographies 3D

    Get PDF
    Les nouvelles sondes Ă©chographiques d’ultrason (US) permettent d’acquĂ©rir des volumes de maniĂšre quasi instantanĂ©e et ce sans balayage. En comparaison avec les sondes deux dimensions (2D), ceci permet de diminuer le temps d’acquisition tout en ayant une qualitĂ© d’image similaire et potentiellement une meilleure confiance dans l’interprĂ©tation ou le diagnostic. L’évaluation ou le suivi du dĂ©veloppement du cerveau et de la taille des ventricules est nĂ©cessaire pour plusieurs situations oĂč le nouveau-nĂ© y est vulnĂ©rable comme dans des cas de naissances prĂ©maturĂ©es, d’hĂ©morragie intraventriculaire (HIV), ou d’interventions chirurgicales. De plus, au niveau psychologique, une dilatation importante des ventricules latĂ©raux est associĂ©e Ă  divers troubles neurologiques ou retard de dĂ©veloppement cognitif. Au niveau physique, une dilatation est associĂ©e Ă  un dĂ©veloppement altĂ©rĂ© de la matiĂšre blanche et un volume anormal de matiĂšre grise corticale. RĂ©aliser un suivi de la dilatation des ventricules latĂ©raux peut donc permettre de dĂ©terminer si le nouveau-nĂ© est Ă  risque d’avoir des effets nĂ©gatifs sur son dĂ©veloppement cognitif ou encore, pour les cas plus graves, si une intervention chirurgicale est nĂ©cessaire. Si une anormalitĂ© est trouvĂ©e en examen standard 2D US, une acquisition par imagerie par rĂ©sonnance magnĂ©tique (IRM) peut ĂȘtre prescrite pour un examen approfondi. Cependant, l’IRM est difficile Ă  utiliser pour imager le cerveau des nouveau-nĂ©s en raison de la contrainte d’immobilisation qui se traduit souvent par l’utilisation d’un sĂ©datif. Donc une alternative pour suivre le dĂ©veloppement du cerveau est d’utiliser une sonde matricielle avec une acquisition Ă  travers la fontanelle qui est encore ouverte chez le nouveau-nĂ© de quelques mois. De plus, cette alternative permettrait de rĂ©aliser des analyses volumiques avec une mĂ©thode plus accessible et moins coĂ»teuse que l’IRM. L’hypothĂšse du projet est que les images ultrasons acquises dans les premiers mois de vie du nouveau-nĂ© peuvent servir Ă  Ă©valuer le dĂ©veloppement du cerveau et des ventricules latĂ©raux en raison de la possibilitĂ© de rĂ©aliser des analyses volumiques quantitatives sur les volumes des ventricules latĂ©raux et du cerveau. L’objectif du projet est donc de valider les volumes extraits des images tridimensionnelles (3D) US avec ceux de rĂ©fĂ©rence en IRM et de dĂ©velopper une mĂ©thodologie pour extraire automatiquement le volume du cerveau et des ventricules latĂ©raux. Dans un premier temps, les ventricules latĂ©raux sont segmentĂ©s manuellement sur les images IRM et 3D US acquises pour une premiĂšre cohorte de patients. De plus, une mĂ©thode gĂ©omĂ©trique est dĂ©veloppĂ©e afin d’estimer le volume du cerveau qui n’est pas inclus complĂštement par le faisceau d’acquisition. Cette mĂ©thode utilise un ellipsoĂŻde pour modĂ©liser la forme du cerveau oĂč le volume peut donc ĂȘtre calculĂ© avec les 3 semi-axes. Cette estimation du volume du cerveau est comparĂ©e Ă  la mesure de circonfĂ©rence de la tĂȘte, mesure pratiquĂ©e en clinique pour suivre le dĂ©veloppement du cerveau, mais qui comporte plusieurs limitations. De plus, le ratio volumique ventricule-cerveau peut ĂȘtre calculĂ©, ce qui permet d’évaluer la dilatation relative des ventricules par rapport au cerveau. Une Ă©tude comparative avec des tests statistiques est rĂ©alisĂ©e afin de valider les volumes extraits des images Ă©chographiques avec ceux de l’IRM qui reprĂ©sentent la vĂ©ritĂ© terrain. Les rĂ©sultats dĂ©montrent qu’il n’y a aucune diffĂ©rence statistiquement significative entre les volumes extraits des images 3D US et des images IRM et qu’il y a une corrĂ©lation presque parfaite pour les ventricules latĂ©raux (r=0.999) et une excellente corrĂ©lation pour le volume du cerveau (r=0.988). Ces analyses peuvent ĂȘtre rĂ©alisĂ©es sur les nouveau-nĂ©s jusqu’à l’ñge d’environ 8 mois, Ăąge oĂč la fontanelle antĂ©rieure commence Ă  se fermer empĂȘchant les ondes acoustiques de passer. Dans un deuxiĂšme temps, le volume du cerveau est extrait automatiquement de l’image 3D US en isolant le cerveau du crĂąne et en appliquant la mĂ©thode gĂ©omĂ©trique dĂ©veloppĂ©e. De plus, les ventricules latĂ©raux ont Ă©tĂ© segmentĂ©s automatiquement sur 13 patients. Un recalage multi-atlas est d’abord rĂ©alisĂ© avec des images IRM. Comme le recalage est multimodal, la diffĂ©rence des principes physiques des deux modalitĂ©s d’imagerie le rend plus complexe et c’est pourquoi une mĂ©trique spĂ©cialement conçue pour le recalage US-IRM, la LC2 (Linear Correlation of Linear Combination) est utilisĂ©e. Les recalages sont suivis par une sĂ©lection des meilleures images et une fusion. Cependant, la LC2 ne permet pas de sĂ©lectionner automatiquement les meilleurs recalages entre diffĂ©rents atlas ou images IRM. Cette sĂ©lection est alors rĂ©alisĂ©e avec un terme de pondĂ©ration de rĂ©gions combinĂ© Ă  la LC2. La rĂ©gion ventriculaire est composĂ©e de deux sous-rĂ©gions, la cavitĂ© de fluide qui est hypoĂ©chogĂšne et la choroĂŻde plexus qui est hyperĂ©chogĂšne. Ce terme de pondĂ©ration dĂ©finit un poids pour chaque voxel de la rĂ©gion ventriculaire projetĂ©e, selon l’intensitĂ© et la position de ce voxel sur l’image Ă©chographique. Par la suite, deux algorithmes de fusion sont utilisĂ©s dans le projet, soit Majority Voting (MV) et STAPLE. Finalement, le rĂ©sultat de la fusion est transformĂ© en maillage et une dĂ©formation du maillage par minimisation d’énergie est implĂ©mentĂ©e pour finaliser la segmentation. Les rĂ©sultats de segmentation dĂ©montrent une amĂ©lioration des rĂ©sultats avec le terme de pondĂ©ration par rĂ©gions, la fusion, et le maillage dĂ©formable. Les rĂ©sultats de segmentation finaux permettent d’avoir une prĂ©cision adĂ©quate en volume (DICE : 70.8%±3.6) et un faible Ă©cart des surfaces (Mean Absolute Distance : 0.88mm ± 0.20). Quant aux volumes du cerveau extraits automatiquement, ils ont une erreur absolue moyenne de 7.73% et une trĂšs bonne corrĂ©lation (r=0.942 ) comparativement Ă  3.12% et une excellente corrĂ©lation (r=0.988) lorsqu’ils sont extrait manuellement. De plus, les volumes des ventricules latĂ©raux sont Ă©galement extraits des segmentations (9.84% erreur absolue moyenne et r=0.848), ce qui permet de calculer le ratio volumique ventricule-cerveau automatiquement. Les travaux prĂ©sentĂ©s dans ce mĂ©moire ouvrent de nouvelles perspectives sur l’évaluation du dĂ©veloppement du cerveau chez les nouveau-nĂ©s. Nos rĂ©sultats dĂ©montrent qu’il est possible d’évaluer le volume du cerveau et des ventricules latĂ©raux avec les nouvelles sondes matricielles d’échographies, ce qui pourrait augmenter l’accessibilitĂ© et la facilitĂ© des Ă©valuations et des suivis rĂ©alisĂ©s en clinique. De plus, cela permet de calculer le ratio volumique ventriculecerveau afin d’évaluer la sĂ©vĂ©ritĂ© de la dilatation des ventricules relativement Ă  la taille du cerveau.----------ABSTRACT New matrix-array ultrasound (US) probes allow neuroradiologists to acquire volumetric images almost instantly with no sweep of the region of interest. Compared to traditional 2D protocols, 3D US imaging decreases acquisition time without reducing image quality and could increase interpretation capabilities. Monitoring of the brain and lateral ventricles development is necessary especially in cases of premature birth, intraventricular hemorrhage (IVH) and surgical interventions. Significant ventricular dilatation is associated with some neurological disorders as well as lower scores on the Bayley scale of infant development and in some circumstances lower intelligence quotient (IQ). Furthermore, it is also associated with altered white matter development and abnormal volume of cortical gray matter. By monitoring the patients’ lateral ventricular dilatation, it is possible to determine if this is a risk factor for their cognitive development or if a surgical intervention is necessary in serious situations. If an abnormality is found with standard 2D US examinations, an MRI can be prescribed for a thorough examination. MRI is challenging with newborns due to immobilization issues, which requires most of the time sedation of the newborn. An alternative is to use recent matrix-array probes instead to perform non-invasive brain imaging through the fontanel. This will allow to perform volumetric analysis with an imaging method more accessible and less expensive than MRI. The project hypothesis is that it is possible to evaluate brain and ventricular development with the 3D US images and accomplish a series of quantitative volumetric measurements. The objective of this project is to validate the volumetric measurement of the 3D US images with the reference MRI and to develop a method to automatically extract the brain volume and segment the lateral ventricles in 3D US. The lateral ventricles volume is important to assess the progression of the dilatation before and after surgical interventions and to assess the severity of the dilatation. First, MRI and 3D US images are acquired for an initial cohort of 12 patients and the lateral ventricles are segmented manually in both imaging modalities. A geometric method is also developed in order to estimate the brain volume which is not fully captured by the limited US probe beam. This method uses an ellipsoid to model the brain shape where its volume is calculated with the 3 ellipsoid semi-axes. This brain volume estimation is compared to the head circumference (HC) which is a widely used method in clinical practice to follow brain development, although there are limitations associated with this approach. Ventricular-brain volume ratio is also calculated to assess the severity of the ventricular dilatation relatively to the brain size. A comparative study and statistical analysis are then undertaken to validate volumes obtained from 3D US images with those from MRI. Results show no statistically significant differences between the extracted MRI and 3D US volumes. Lateral ventricles have a near perfect correlation (r=0.999) and there is an excellent correlation for the brain volume (r=0.988). The difference in volume ratios was 6.0 ± 4.8% compared to MRI. Those analysis are possible on newborns and infants until they are approximately 8 months old, which is the age where the fontanelle starts to close, reducing the acoustic waves propagation. Secondly, the brain and lateral ventricles volumes are automatically extracted from the 3D US images. The brain volume is estimated with the same ellipsoid method after it has been aligned and stripped from the skull. The lateral ventricles were segmented on 13 patients using a multi-atlas registration pipeline with MRI images. Since this is a multimodal registration, a highly specific metric is used to register the MRI with the US images, the LC2 metric (Linear Correlation of Linear Combination). Then, the best registrations are selected for a label fusion but the LC2 alone doesn’t allow to automatically select the best registrations between several MRI images. An area weighting term is combined with the LC2 in order to improve the affine registration and to compare the registration results between several MRI images. The area weighting term assigns a weight to each voxel of the projected venricular area based on the position and intensity of the voxel on the US image. Indeed, the ventricular areas are divided in two areas, the fluid cavities which are hypoechoic and the plexus choroĂŻd which is hyperechoic. These regions are used in the calculation of the weighting term. Two algorithms are tested for the label fusion, Majority Voting (MV) and STAPLE. Furthermore, the mesh is refined using deformable mesh model with an energy minimization process. The segmentation results are encouraging (DICE: 70.8±3.6, Mean Absolute Distance: 0.88± 0.20) and the extracted volumes have no statistically significant differences with the manual segmentations. The brain volumes have a mean absolute error with MRI volumes of 7.73% and a good correlation (r=0.942) when automatically segmented. As a comparison, the error was of 3.12% and the correlation excellent (r=0.988) with the manual measurements. In addition, the automatically extracted lateral ventricles volumes have a good correlation (r=0.848) with the manual segmentations and a mean absolute error of 9.84%. The methodology and results presented in this thesis show new perspectives and tools to help evaluate the infants’ brain development. This project demonstrates the potential of using new matrix-array US probes to assess brain and lateral ventricular volumes in newborns and infants which could be useful to facilitate monitoring of the lateral ventricles dilatation used for the macrocephaly diagnosis. Furthermore, it is possible to calculate the ventricular-brain volume ratio to assess the dilatation severity relatively to the brain volume
    corecore