39 research outputs found

    Forest Variable Estimation Using a High Altitude Single Photon Lidar System

    Get PDF
    As part of the digitalization of the forest planning process, 3D remote sensing data is an important data source. However, the demand for more detailed information with high temporal resolution and yet still being cost efficient is a challenging combination for the systems used today. A new lidar technology based on single photon counting has the possibility to meet these needs. The aim of this paper is to evaluate the new single photon lidar sensor Leica SPL100 for area-based forest variable estimations. In this study, it was found that data from the new system, operated from 3800 m above ground level, could be used for raster cell estimates with similar or slightly better accuracy than a linear system, with similar point density, operated from 400 m above ground level. The new single photon counting lidar sensor shows great potential to meet the need for efficient collection of detailed information, due to high altitude, flight speed and pulse repetition rate. Further research is needed to improve the method for extraction of information and to investigate the limitations and drawbacks with the technology. The authors emphasize solar noise filtering in forest environments and the effect of different atmospheric conditions, as interesting subjects for further research

    New Metrics for Spatial and Temporal 3D Urban Form Sustainability Assessment Using Time Series Lidar Point Clouds and Advanced GIS Techniques

    Get PDF
    Monitoring sustainability of urban form as a 3D phenomenon over time is crucial in the era of smart cities for better planning of the future, and for such a monitoring system, appropriate tools, metrics, methodologies and time series 3D data are required. While accurate time series 3D data are becoming available, a lack of 3D sustainable urban form (3D SUF) metrics, appropriate methodologies and technical problems of processing time series 3D data has resulted in few studies on the assessment of 3D SUF over time. In this chapter, we review volumetric building metrics currently under development and demonstrate the technical problems associated with their validation based on time series airborne lidar data. We propose new metrics for application in spatial and temporal 3D SUF assessment. We also suggest a new approach in processing time series airborne lidar to detect three-dimensional changes of urban form. Using this approach and the developed metrics, we detected a decreased volume of vegetation and new areas prepared for the construction of taller buildings. These 3D changes and the proposed metrics can be used to numerically measure and compare urban areas in terms of trends against or in favor of sustainability goals for caring for the environment

    Airborne Laser Scanning Outperforms the Alternative 3D Techniques in Capturing Variation in Tree Height and Forest Density in Southern Boreal Forests

    Get PDF
    The objective of this study is to better understand the relationship between forest structure and point cloud features generated from certain airborne and space borne sensors. Point cloud features derived from airborne laser scanning (ALS), aerial imagery (AI), WorldView-2 imagery (WV2), TerraSAR-X, and Tandem-X (TDX) data were classified as features characterizing forest height and density as well as variation in tree height. Correlations between these features and field-measured attributes describing forest height, density and tree height variation were investigated at plot scale. From the field-measured attributes, basal area (G) and the number of trees per unit area (N) were used as forest density indicators whereas maximum tree height (H-max) and standard deviation in tree height (H-std) were used as indicators for forest height and tree height variation, respectively. In the analyses, field observations from 91 sample plots (32 m x 32 m) located in southern Finland were used. Even though ALS was found to be the most accurate data source in characterizing forest structure, AI, WV2, and TDX were also capable of characterizing forest height at plot scale with correlation coefficients stronger than 0.85. However, ALS was the only data source capable of providing separate features for characterizing also the variation in tree height and forest density. Features related to forest height, generated from the other data sources besides ALS, also provided strongest correlation with the forest density attributes and variation in tree height, in addition to H-max. Due to these more diverse characterization capabilities, forest structural attributes can be predicted more accurately by using ALS, also in the areas where the relation between the attributes of interest is not solely dependent on forest height, compared to the other investigated 3D remote sensing data sources.Peer reviewe

    Leveraging remotely sensed non-wall-to-wall data for wall-to-wall upscaling in forest inventory

    Get PDF
    Remote sensing (RS) has enhanced forest inventory with model-based inference, that is, a family of statistical procedures rigorously estimates the parameter of a variable of interest (VOI) for a spatial population, e.g., the mean or total of forest carbon for a study area. Upscaling in earth observation, alias to this estimation, aggregates VOI from a finer spatial resolution to a coarser one with reduced uncertainty, serving decision making for natural resource management at larger scales. However, conventional model-based estimation (CMB) confronts a major challenge: it only supports RS wall-to-wall data, meaning that remotely sensed data must be available in panorama and non-wall-to-wall but quality data such as lidar or even cloud-masked satellite imagery are not supported due to incomplete coverage, impeding precise upscaling with cutting-edge instruments or for large scale applications. Consequently, this study aims to develop and demonstrate the use and usefulness of RS nonwall-to-wall data for upscaling with Hierarchical model-based estimation (HMB) which incorporates a two-stage model for bridging RS non- and wall-to-wall data; and for optimizing cost-efficiency, to evaluate the effects of non-wall-to-wall sample size on upscaling precision. Three main conclusions are relevant: (1) the HMB is a variant of the CMB estimator through trading in the uncertainty of the second-stage model to enable estimation using RS non-wall-to-wall data; (2) a quality first-stage model is key to exerting the advantage of HMB relative to the CMB estimator; (3) the variance of the HMB estimator is dominated by the first-stage model variance component, indicating that increasing the sample size in the first-stage is effective for increasing the overall precision. Overall, the HMB estimator balances tradeoffs between cost, efficiency and flexibility when devising a model-based upscaling in earth observation

    Prediction of Site Index and Age Using Time Series of TanDEM-X Phase Heights

    Get PDF
    Site index and stand age are important variables in forestry. Site index describes the growing potential at a given location, expressed as the height that trees can attain at a given age under favorable growing conditions. It is traditionally used to classify forests in terms of future timber yield potential. Stand age is used for the planning of management activities such as thinning and harvest. SI has previously been predicted using remote sensing, but usually relying on either very short time series or repeated ALS acquisitions. In this study, site index and forest stand age were predicted from time series of interferometric TanDEM-X data spanning seven growth seasons in a hemi-boreal forest in Remningstorp, a test site located in southern Sweden. The goal of the study was to see how satellite-based radar time series could be used to estimate site index and stand age. Compared to previous studies, we used a longer time series and applied a penetration depth correction to the phase heights, thereby avoiding the need for calibration using ancillary field or ALS data. The time series consisted of 30 TanDEM-X strip map scenes acquired between 2011 and 2018. Established height development curves were fitted to the time series of TanDEM-X-based top heights. This enabled simultaneous estimation of both age and site index on 91 field plots with a 10 m radius. The RMSE of predicted SI and age were 6.9 m and 38 years for untreated plots when both SI and age were predicted. When predicting SI and the age was known, the RMSE of the predicted SI was 4.0 m. No significant prediction bias was observed for untreated plots, while underestimation of SI and overestimation of age increased with the intensity of treatment

    Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables

    Get PDF
    corecore