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A B S T R A C T   

Remote sensing (RS) has enhanced forest inventory with model-based inference, that is, a family of statistical 
procedures rigorously estimates the parameter of a variable of interest (VOI) for a spatial population, e.g., the 
mean or total of forest carbon for a study area. Upscaling in earth observation, alias to this estimation, aggregates 
VOI from a finer spatial resolution to a coarser one with reduced uncertainty, serving decision making for natural 
resource management at larger scales. However, conventional model-based estimation (CMB) confronts a major 
challenge: it only supports RS wall-to-wall data, meaning that remotely sensed data must be available in 
panorama and non-wall-to-wall but quality data such as lidar or even cloud-masked satellite imagery are not 
supported due to incomplete coverage, impeding precise upscaling with cutting-edge instruments or for large 
scale applications. Consequently, this study aims to develop and demonstrate the use and usefulness of RS non- 
wall-to-wall data for upscaling with Hierarchical model-based estimation (HMB) which incorporates a two-stage 
model for bridging RS non– and wall-to-wall data; and for optimizing cost-efficiency, to evaluate the effects of 
non-wall-to-wall sample size on upscaling precision. Three main conclusions are relevant: (1) the HMB is a 
variant of the CMB estimator through trading in the uncertainty of the second-stage model to enable estimation 
using RS non-wall-to-wall data; (2) a quality first-stage model is key to exerting the advantage of HMB relative to 
the CMB estimator; (3) the variance of the HMB estimator is dominated by the first-stage model variance 
component, indicating that increasing the sample size in the first-stage is effective for increasing the overall 
precision. Overall, the HMB estimator balances tradeoffs between cost, efficiency and flexibility when devising a 
model-based upscaling in earth observation.   

1. Introduction 

Upscaling in earth observation serves natural resource management 
at larger scales through aggregation of variable of interest (VOI) from a 
finer spatial resolution to a much coarser one (Masek et al., 2015). 
Preservation of information integrity is essential for such upscaling 

process, which in statistics corresponds to estimating the parameter of a 
VOI for a spatial population, e.g., the mean or total of forest carbon for a 
study area, in a way as precise as possible (Bazezew et al., 2018). While 
National Forest Inventory (NFI) programs in several countries provide 
precise estimates every five years for bio- and abiotic VOIs using 
upscaling procedures categorized as design-based inference, it is 
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difficult and expensive for programs of this sort to meet precision 
standards for annual reporting required by, for example, the United 
Nations Framework Convention on Climate Change (Hou et al., 2021; 
Vidal et al., 2016). 

Alternative to the design-based inference, model-based inference, i. 
e., a family of statistical procedures capable of leveraging remote 
sensing (RS) for upscaling or estimation, has enhanced forest inventory 
with increased cost-efficiency (Bayat et al., 2021; Hou et al., 2018). 
Assisted with a variety of terrestrial, airborne, or spaceborne sources of 
RS auxiliary data, a conventional model-based estimator (CMB) is more 
precise than a design-based estimator using the same sample, or 
equivalently, CMB estimator achieves a similar precision but using a 
smaller sample (McRoberts et al., 2018). This is because CMB estimator 
works in a way by assuming a superpopulation model where RS auxil-
iaries are used as independent variables towards modeling a surrogate 
for the superpopulation model enroute to estimation (Chambers and 
Clark, 2012; Ståhl et al., 2016). 

However, CMB confronts three major challenges. First, field cam-
paigns to acquire reference data are nontrivial and expensive, but in 
most cases they are required for model construction. CMB relies on 
modeling a linear or nonlinear relationship between the sampled unit 
observations of the VOI and observed RS auxiliary variables (McRoberts 
et al., 2014). Second, a model constructed previously, i.e., an existing 
model, is usually overlooked for reusing (e.g., Nord-Larsen and Cao, 
2006). When such a model is readily available, costs associated with 
field sampling and acquisition of RS data can be avoided, particularly for 
continuously monitored areas, e.g., forest compartments under forest 
management, Amazonian rain forests under ecological monitoring, and 
African tropical forests under biodiversity protection. These existing 
models are often constructed with terrestrial, airborne, or UAV lidar, or 
with very high-resolution satellite imagery (e.g., Heiskanen et al., 2019; 
Lu et al., 2020). Third, CMB requires RS coverage for the entire area, i.e., 
wall-to-wall auxiliary data, which is not always available or even 
feasible in large-scale inventories (Chirici et al., 2020). Although fine 
resolution satellite or lidar data are detailed, this type of existing models 
cannot be applied to CMB in large-scale inventories due to the cost and 
non-wall-to-wall coverage (Xu et al., 2023). However, non-wall-to-wall 
auxiliary data could be the only option in many applications, for 
example, upscaling the VOIs of understory vegetation with terrestrial 
lidar (Li et al., 2021). Hence, alternatives that overcome these chal-
lenges must be sought. 

Hierarchical model-based estimation (HMB) is a viable option that 
harnesses existing model and non-wall-to-wall data in tandem. Proposed 
by Saarela et al. (2018, 2020), the HMB estimator is a model-based 
procedure that makes use of non-wall-to-wall data for upscaling forest 
biomass. Unlike the CMB estimator, which requires one source of wall- 
to-wall RS auxiliary data, the HMB estimator utilizes two sources of RS 
auxiliary data, one of greater quality but non-wall-to-wall, and one 
source of lesser quality but wall-to-wall. Two-stage modeling, which is a 
key component of the HMB estimator, combines them in a way that the 
first-stage model is constructed with field-observed VOI and non-wall- 
to-wall RS data, and then the resulting predicted values are used as 
reference data for fitting the second-stage model with the wall-to-wall 
RS data. The HMB estimator takes the uncertainty propagation from 
both the first- and the second-stage models into account. Because of the 
two-stage construction, the first-stage model can be replaced with an 
existing model to avoid the cost of field and RS data acquisition for 
model training. However, while the HMB estimator is more flexible than 
the CMB estimator, the inferential precision of the HMB estimator as the 
sample size of the non-wall-to-wall RS data increases, is still unclear. 

Consequently, the objectives of this study are threefold: (1) to 
develop and demonstrate the use and usefulness of RS non-wall-to-wall 
data for upscaling with HMB; (2) to compare the wall-to-wall CMB 
estimator and the non-wall-to-wall HMB estimator; and (3) for opti-
mizing cost-efficiency, to evaluate the effects of non-wall-to-wall sample 
size on upscaling precision. 

2. Materials 

2.1. Field data 

The study area, i.e., the target population, has approximately 10,836 
ha located in Kou, Burkina Faso with a fragmented landscape of dry 
savanna due to agricultural land uses (11◦45ꞌN, 1◦57ꞌW) (Fig. 1). The 
plot-level VOI in this study is firewood volume in m3/ha, aggregated 
from within-plot woody material usable as fuelwood. A sample of 160 
circular plots selected by two-stage sampling was field surveyed during 
the dry season lasted from late November 2013 through early February 
2014, with sample statistics listed in Table 1. The plots have a radius of 
17.84 m with centers geo-referenced using Global Navigation Satellite 
System receivers that have a real-time precision of 60 cm based on free 
corrections from Satellite-Based Augmentation Systems supported by 
European Geostationary Navigation Overlay Service. 

2.2. Remotely sensed auxiliaries 

RapidEye and Landsat 8 provided wall-to-wall auxiliary data 
georeferenced to WGS84/UTM Zone 30 N with acquisition time 
matching the dry season when the field campaign was carried out. A 
single scene of respective sensors covered the target population. At a 
cost of roughly 1.3 USD/km2, RapidEye data were processed to Level 3A 
with radiometric, sensor and geometric corrections at a spatial resolu-
tion of 5 m. Landsat 8 data were the Provisional Surface Reflectance 
product that has a spatial resolution of 30 m, downloaded from the USGS 
at no cost. RS auxiliary variables such as the Enhanced Vegetation Index 
(EVI), Generalized Difference Vegetation Index (GDVI), the first prin-
cipal component (PCA) and Haralick textures were calculated for 
respective datasets as detailed in Hou et al. (2018). The R-package 
“rgdal” was used in data processing (Bivand et al., 2013). 

3. Methods 

3.1. Overview 

A flowchart for the study is provided in Fig. 2, including the 
following cases for CMB and HMB estimators: 

Case A. The CMB estimator. 
Case A.1. Using wall-to-wall Landsat 8 auxiliary data. 
Case A.2. Using wall-to-wall RapidEye auxiliary data. 
Case B. The HMB estimator using a sample of RapidEye data (non- 

wall-to-wall) and wall-to-wall Landsat 8 data. 
All cases follow three fundamental assumptions: (i) the population, 

U, consists of N units with wall-to-wall Landsat 8 auxiliary data available 
where a unit is equivalent to a grid cell, i.e. a pixel, of size 30 by 30 m; 
(ii) a sample, Sa, selected from U, contains M units, for which each 
sample unit has both Landsat 8 and RapidEye auxiliary data available; 
(iii) a sample S containing n units for which each sample unit has the 
field observed firewood volume and the auxiliary data for both Landsat 
8 and RapidEye. In this study, the population size is N = 120756, and 
the sample size for S is n = 160. For evaluating the effects of sample size 
for RS auxiliary data on the HMB estimator, samples, Sa, of size M ∈

(160,320,1600,3200,6400,12800) was selected randomly without 
replacement from U. With the HMB estimator, RapidEye represents the 
greater-quality RS sample data, available non-wall-to-wall. Other ex-
amples of such data could be airborne, terrestrials lidar or UAV imagery. 

For convenience, we itemize readily available tools for this section: 
(1) R-package “bootStepAIC” (Rizopoulos, 2022) for selecting inde-
pendent variables; (2) R-package “nlme” (Pinheiro et al., 2016) for 
estimating model parameters; (3) R-package “nlme” (Pinheiro and 
Bates, 2000) for estimating parameters of residual variance; (4) R- 
package “HMB” (https://CRAN.R-project.org/package = HMB) for HMB 
estimator. 
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3.2. Conventional model-based (CMB) estimator 

The CMB estimator supports upscaling with RS wall-to-wall auxiliary 
data. It uses the sample S for modeling and then plugs wall-to-wall 
auxiliary variables into the constructed model for population param-
eter prediction (i.e., upscaling). If there is an existing model, the CMB 
estimator directly applies given that the wall-to-wall auxiliary variables 
used by this model are available. However, for lidar instruments, for 
example, new acquisitions of timely wall-to-wall auxiliary variables are 

Fig. 1. Target population in Burkina Faso.  

Table 1 
Sample statistics.  

Forest attributes Min Max Mean SD 

Tree density (stems/ha) 10 1935 494 401 
Mean diameter (cm) 6.4 40 15.2 8.5 
Basal area (m2/ha) 0.2 16.1 5.6 3.6 
Firewood volume (m3/ha) 0 29.1 6.6 6.2  

Fig. 2. Flowchart of the study cases. S, first-stage sample; Sa, second-stage sample; U, population; model Fs1 , first-stage model using field data and Landsat 8 data; 
model Fs2, first-stage model using field data and RapidEye data; model Gsa, second-stage model using RapidEye-predicted data and Landsat 8 data. 
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hardly practical, thus restraining these cutting-edge instruments for 
large-scale inventories. Regardless, this is feasible with satellite data 
which, albeit coarser than lidar data, have timely and full coverages to 
the target population, and thus readily suit the CMB estimator. 

The model is key to upscaling with the CMB estimator. For cases A.1 
and A.2, the model is denoted as Fs1 for Case A.1 and Fs2 for Case A.2, 
and has the general form, yi = f(xi; β) + εi, which links the dependent 
variable yi with a vector of RS auxiliary variables xi, where i indexes 
population units; β is a vector of model parameters; and εi is a random 
error term following N(0,σ2

i ). The mean of the distribution of y for the ith 

population unit is denoted yFi, estimated with ŷFi
= f(xi; β̂S), i.e., ŷF =

f(XU; β̂S) in matrix form. Section 3.4 provides details about the esti-
mation of model parameters. 

With the fitted model, the population mean is estimated with a 
collection of estimates ŷFi 

for every unit of the population (i.e., wall-to- 
wall), 

μ̂1 =
1
N
∑N

i=1
ŷFi

(1) 

The variance estimator of μ̂1 takes the form (e.g., McRoberts et al., 
2013) 

V̂ar(μ̂1) = lT
UX̃U Ĉov(β̂S)X̃

T
U lU (2)  

with 

Ĉov(β̂S) =

(

X̃
T
S Ω̂

− 1
S X̃S

)− 1

(3)  

where X̃U =
∂f(XU ;̂βS)

∂̂βS 

is a partial derivative matrix of f(XU; β̂S) with 

respect to β̂S for population U, and lU is an N-length vector with each 
element being 1/N; Ĉov(β̂S) is the estimated covariance matrix for β̂S, 
with X̃S being a partial derivative matrix of f(XU; β̂S) with respect to β̂S 

for the sample S; Ω̂S is a residual variance–covariance matrix for the 
model Fs1 or Fs2, with diagonal elements estimated using an exponential 
variance function detailed in Section 3.4. Because V̂ar(μ̂1) was derived 
with the delta method, using first-order Taylor expansion, and thus is an 
approximation for nonlinear models (Gregoire et al., 2016). Note that μ̂1 

and V̂ar(μ̂1) are general expressions for the CMB estimator, working for 
both A.1 and A.2 by using the corresponding set of ŷFi

, X̃U, X̃s and Ω̂s. 

3.3. Hierarchical model-based (HMB) estimator 

The HMB estimator supports upscaling with RS non-wall-to-wall 
auxiliary data. It was derived from the general form of the CMB esti-
mator, where the modeling is arranged in a hierarchical structure of two 
stages. The resulting HMB estimator takes the error-propagation across 
the hierarchy into account, and thus enables uncertainty assessment 
combining wall-to-wall and non-wall-to-wall data for large-scale in-
ventories, greatly increasing the utility of cutting-edge remote sensing 
instruments. (e.g., Wang et al., 2020). 

In case B, the first-stage model based on RapidEye, Fs2, is linked with 
the second-stage model based on Landsat 8, GSa, in a way that model Fs2 
predicts, with a newly constructed or existing model, a set of non-wall- 
to-wall firewood volumes that are used for modeling GSa with the sample 
Sa. The final upscaling is based on model GSa, with uncertainties asso-
ciated with model parameter estimation and sample size at each stage. 
The general form of model GSa conforms to models Fs1 and Fs2 of the 
CMB estimator (Section 3.2), with modeling details described in Section 
3.4. 

The HMB estimator of the population mean is 

μ̂2 =
1
N
∑N

i=1
ŷGi

(4)  

where ŷGi 
is the predicted dependent variable based on the second-stage 

model GSa for the ith population unit. This is with respect to the popu-
lation U, and thus requires RS wall-to-wall auxiliary variables, i.e., 
Landsat 8. 

The variance estimator of μ̂2 takes the form 

V̂ar(μ̂2) = lT
UZ̃U Ĉov(α̂Sa)Z̃

T
U lU (5)  

where Z̃U =
∂f(ZU ;α̂Sa)

∂α̂Sa 
is a partial derivative matrix of f(ZU; α̂Sa) with 

respect to α̂Sa in the population U; Ĉov(α̂Sa) is the estimated var-
iance–covariance matrix for α̂Sa, and 

Ĉov(α̂Sa)=

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

+

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

Z̃
T
Sa Σ̂

− 1
Sa X̃Sa ĉov(β̂s)X̃

T
Sa Σ̂

− 1

Sa Z̃Sa

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

(6) 

The law of total covariance was used for deriving Eq. (6), 

Cov(α̂Sa)=E[Cov(α̂Sa

⃒
⃒
⃒ŷFSa

)]+Cov(E[α̂Sa

⃒
⃒
⃒ŷFSa

]) (Saarela et al., 2020). The 

first term can be expressed as the model-based covariance of estimated 
model parameters conditionally on the predicted firewood volume using 

model Fs2, ŷFSa
, i.e., E

[
Cov

(
α̂Sa|ŷFSa

)]
= (Z̃

T
Sa Σ̂

− 1
Sa Z̃Sa)

− 1
. Z̃Sa is a partial 

derivative matrix of the fixed part of model GSa with respect to α̂Sa for 

sample Sa; and Σ̂
− 1
Sa is the estimated variance–covariance matrix of 

model GSa residuals detailed in Section 3.4. The second term estimates 

the propagated uncertainty stemming from ŷFSa
, i.e., Cov

(
E
[

α̂Sa|ŷFSa

])
=

(Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa)

− 1
Z̃

T
Sa Σ̂

− 1
Sa Cov(ŷFSa

)Σ̂
− 1
Sa Z̃Sa(Z̃

T
Sa Σ̂

− 1
Sa Z̃Sa)

− 1
. 

The variance–covariance matrix for α̂Sa can be thus expressed as 

Cov(α̂Sa) =

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

+

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

Z̃
T
Sa Σ̂

− 1
Sa Cov

(
ŷFSa

)
Σ̂

− 1
Sa Z̃Sa

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

(7) 

An approximately unbiased estimator of Cov(α̂Sa) can be obtained by 
substituting the estimated Cov(ŷFSa

), that is, 

Ĉov(α̂Sa) =

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

+

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

Z̃
T
Sa Σ̂

− 1
Sa Ĉov

(
ŷFSa

)
Σ̂

− 1
Sa Z̃Sa

(

Z̃
T
Sa Σ̂

− 1
Sa Z̃Sa

)− 1

(8)  

where Ĉov
(

ŷFSa

)
= X̃Sa ĉov(β̂S)X̃

T
Sa, with X̃Sa being a partial derivative 

matrix of the fixed part of model Fs2 with respect to ̂βs for sample Sa; and 
Ĉov(β̂s) being consistent with Eq. (3). Note the difference regarding 
subscripts S, Sa and U that indicates non-wall-to-wall or wall-to-wall 
characteristics for a sample or population. 

Therefore, the variance of the HMB estimator, V̂ar(μ̂2), decomposes 
into two parts, with the first term estimating the variance associated 
with model GSa at the second-stage, and the second term estimating 
variance associated with model Fs2 at the first-stage and propagated to 
the second-stage. 

3.4. Single- and two-stage modeling at the unit level 

For modeling, the “bootstrap stepAIC” procedure was used for 
selecting independent variables parsimoniously from the large set of 
Landsat 8 or RapidEye auxiliary variables extracted, as described in 
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Section 2.3. This procedure integrates bootstrapping to assess the vari-
ability of stepwise model selections as per the Akaike information cri-
terion, available in the R-package “bootStepAIC” (Rizopoulos, 2022). 

As illustrated in Fig. 2, the single stage model Fs1 describes the 
relationship between the VOI, yS (i.e. yS = [y1, y2,⋯, yn]

′

), and the 
Landsat 8 independent variables, xL (i.e., xL =

[
x’

1,⋯, x’
n
]’

=
[
1, x1, x2, ..., xp1

]
), at sample S, expressed as follows with βL denoting a 

vector of model parameters to be estimated: 

ModelFs1 : yS = f(xL; βL)+ e, e ∼ N(0,ΩL) (9) 

The single stage model Fs2 describes the relationship between the 
VOI, yS (i.e. yS = [y1, y2,⋯, yn]

′

), and the RapidEye independent vari-
ables, xR (i.e., xR =

[
x’

1,⋯, x’
n
]’

=
[
1, x1, x2, ..., xp2

]
) at sample S, 

expressed as follows with βR denoting a vector of model parameters to be 
estimated: 

ModelFs2 : yS = f(xR; βR)+∊,∊ ∼ N(0,ΩR) (10) 

Following Davidson and MacKinnon (1993), the second-stage of the 
two-stage model GSa describes the relationship between the VOI, ySa (i.e. 
ySa = [y1, y2,⋯, yM]

′

), and the Landsat 8 independent variables, z (i.e. 

z =
[
z′

1,⋯, z′

M
]′

= [1, z1, z2, ..., zq]) at sample Sa: 

ModelGSa : ySa = g(z;α)+ υ, υ N(0,Σ) (11) 

Where the ySa, is estimated using the first-stage model Fs2, using non- 
wall-to-wall RapidEye independent variables available in the sample Sa; 
and α is a vector of model parameters to be estimated. For generaliz-
ability, the role of model Fs2 can be replaced with an existing model 
constructed previously, and the role of RapidEye data with airborne or 
UAV-borne lidar data which form the basis for tackling the challenges 
listed in the Introduction with HMB estimation. 

In this study, models Fs1, Fs2 and GSa took nonlinear forms as y =

βL0⋅xβL1
L1 +e , y = e(βR1•xR1+βR2•xR2+βR3•xR3) + ∊, and y = α0⋅zα1

1 +υ respec-
tively, with one independent variable being selected for models Fs1 and 
GSa and three independent variables for model Fs2. 

Parameters of the three models were estimated with the restricted 
maximum likelihood estimation using “nlme” package in R (Pinheiro 
et al., 2016). The residual variance–covariance matrices for the models 
Fs1, Fs2 and GSa, i.e., ΩL and ΩR corresponding to Ωs in Eq. (3) and Σ to 
ΣSa in Eq. (6), were estimated for on-diagonal elements using the 
exponential variance function structure conforming to the following 
form (e.g., Gałecki and Burzykowski, 2013) 

Var (εi ) = σ2 exp (2δvi ), (12) 

where σ2 and δ are the parameters estimated using “varExp” function 
in R-package “nlme” (Pinheiro and Bates, 2000, p. 211); and vi is the 
variance covariate defining the variance function for ith population unit. 
In this study, we chose scalar-valued function of the independent vari-
ables of respective models as respective variance covariates vi in that the 
results of which outperformed the most common choice i.e., the esti-
mated E(yi) (Mehtätalo and Lappi, 2020). Although spatial autocorre-
lation was not an issue in the present study, both CMB and HMB 
estimators in Sections 3.2 and 3.3 support its incorporation. 

3.5. Evaluation criteria for modeling and upscaling 

Root mean square error, RMSE, was used for evaluating the predic-
tion accuracy of a fitted model. RMSE and its relative form on a per-

centage basis are respectively expressed as RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(yi − ŷ i)

2

n

√

, and 

RMSE% = RMSE
y × 100, where n is the number of sample plots; yi and ŷi 

refer to field measured and predicted firewood volume; and y =
1
n
∑n

i=1yi. 
As for upscaling or population prediction, we further evaluate the 

precision using the sampling error, i.e., SE% = 100×

̅̅̅̅̅̅̅̅̅̅̅

V̂ar (̂μ)

√

μ̂
. The 

smaller the SE%, the greater the precision. This measure jointly evaluates 
μ̂ and V̂ar(μ̂) on a percentage basis, making it more intuitive to 
comparing estimators than using V̂ar(μ̂) alone. 

4. Results and discussion 

4.1. Models 

The constructed models, Fs1, Fs2 and GSa, are summarized in Table 2. 
For Landsat 8, two first-stage models of different RMSEs, one using EVI 
and the other using GDVI, were constructed for evaluating the effects of 
different wall-to-wall auxiliaries on the HMB estimator. There was no 
model exhibiting a systematic lack of fit. 

Three findings are relevant: (1) the RMSEs of the different models are 
generally similar, in the order of 45 − 66%, consistent with previous 
studies under tropical conditions using multispectral satellites (e.g., Hou 
et al., 2011, 2017; Næsset et al., 2016); (2) similar RMSEs indicate that 
wall-to-wall predictions for every unit in the population, i.e., mapping, 
are comparable for the CMB and HMB estimators; and (3) RapidEye 
outperforms Landsat 8 by 8% on average, i.e., Fs2 vs. Fs1, suggesting 
appreciable effects of using finer spatial resolution and within plot in-
formation, consistent with previous findings (e.g., Hou et al. 2018; Rahlf 
et al., 2014; Wittke et al., 2019). 

In practice, any working existing model constructed with alternative 
RS auxiliary data can substitute for the role of model Fs2 in Case B 
(Jayathunga et al., 2018; Chirici et al., 2020). Consequently, costs spent 
on the first-stage modeling including the field campaign and RS acqui-
sitions at sample S would be circumvented. However, note that for 
selecting an existing nonlinear model that is highly wiggly, its approx-
imated variance covariance matrix of model parameters may risk being 
underestimated, which is less problematic for linear models. Regardless, 
costs associated with applying the existing model with a sample of RS 
non-wall-to-wall auxiliary variables, Sa, are still required for predicting 
VOI values that will be used for fitting a second-stage model. Effects of 
Sa sample size are examined in Section 4.3. 

4.2. Comparison of estimators 

Comparison of the CMB and HMB estimator reveals the greater ef-
ficiency of the HMB estimator. The estimates resulting from the CMB 

Table 2 
Summary of the models. A sample of 6400 observations predicted by the first- 
stage model Fs2 were used to fit the second-stage model GSa, denoted with *6400.  

Case Model RMSE RMSE% Independent 
variable 

Estimate SE 

Case A1 Model 
Fs1  

4.42  65.21 (Intercept)  4.79  0.36     

EVI  2.29  0.22 
Case A1 Model 

Fs1  

4.49  66.36 (Intercept)  17.96  1.62     

GDVI  5.87  0.60 
Case A2 Model 

Fs2  

4.09  60.35 PCA  0.31  0.03     

Textural mean 
of SR  

13.14  0.80     

Textural 
variance 
of SR  

− 0.02  0.00 

Case 
B*6400 

Model 
GSa  

3.18  45.54 (Intercept)  6.01  0.06     

EVI  1.40  0.03 
Case 

B*6400 
Model 
GSa  

3.25  46.68 (Intercept)  12.42  0.12     

GDVI  3.07  0.05  
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and HMB estimators are summarized in Table 3. From the upscaling 
perspective, these estimates are upscaled from the unit-level to the 
population-level. The advantage of using the CMB and HMB estimators 
for upscaling resides in its survey sampling nature that is statistically 
sound in terms of model-unbiasedness and uncertainty quantification in 
the form of precision (Chambers and Clark, 2012). 

Three findings are relevant. First, the rate of error propagation is 
greater in inferencing than modeling even though modeling underpins 
inference, resulting in numerous implications towards efficient in-
ventory. From a comparison within Case A, the precision of Case A.2 is 
markedly greater than that of Case A.1, by 15% on average, while Case 
A.2 outperforms Case A.1 by 8% on average with respect to RMSE 
(Section 4.1), suggesting that (1) RMSE at the level of individual units 
cannot be used as a measure of the precision of the estimator of the 
population mean, where a V̂ar(μ̂) (or SE%) should be used; and (2) adopt 
remotely sensed greater quality data as much as possible, which con-
tributes to decreasing RMSE and V̂ar(μ̂) (or SE%). 

Second, the CMB estimator is more sensitive and reliant on correla-
tion with wall-to-wall auxiliaries than the HMB estimator. Table 3 shows 
that the weaker the correlation between wall-to-wall auxiliary variables 
and VOI, the less the precision in the form of V̂ar(μ̂) or SE% for both 
estimators. However, with HMB, the loss in precision is negligible and 
embodied as almost the same V̂ar(μ̂) or SE% of EVI and GDVI models, the 
reason is associated with the share of uncertainty contributed from each 
of the stages as further elaborated in Section 4.4. 

Third, the precision of the CMB and HMB estimators is comparable, 
with the latter outperforming the former due to the relatively more 
accurate first-stage model Fs2 (Table 3). Taking NFI in China or the 
United States of America as reference, the SE% around 5% meets the 
official standard of the precision in respective countries (Tomppo et al., 
2010; USDA, 2008), demonstrating the prospect of both estimators for 
improving annual reporting. 

4.3. Effects of non-wall-to-wall sample size on HMB estimator 

The non-wall-to-wall sample size (Sa) determines the number of 
sample plots for which RS auxiliary data are collected for the dependent 
and the independent variables of model Gsa. Apparently, with a given 
inferential precision, the smaller the Sa sample size, the fewer the non- 
wall-to-wall auxiliaries required, and thus the more cost-efficient the 
HMB estimator; or equivalently, with a given size of Sa, the precision is 
dependent on the sampling intensity, i.e., the ratio between the size of Sa 
and the size of population, useful for inventory planning and budgeting 
particularly when an existing model casts the role of model Fs2. 

As the sample size for Sa increases, the predictions produced by 
model Gsa are summarized in Table 4, and the pattern of convergence is 
graphed in Fig. 3. Two findings are relevant. First, as the sample size for 
Sa increases, the precision of the HMB estimator converges to that of 
CMB estimator for which model Fs2 is used and with wall-to-wall aux-
iliaries available, suggesting that (1) HMB is a variant of CMB estimator 
and is a special case of CMB when sharing the same first-stage model (i. 
e., Case A.2 vs Case B); (2) by increasing the sample size for Sa, the 
margin of benefit resides in reducing the difference between V̂ar(μ̂1) of 
the CMB estimator and V̂ar(μ̂2) of the HMB estimator (Tables 3 and 4); 
and (3) when the sample size for Sa equals the population size, i.e., wall- 
to-wall, the greatest precision for the HMB estimator is at most V̂ar(μ̂1)

(Fig. 3). 
Second, the rate of convergence is nonlinear as the sample size for Sa 

increases (Table 4), with a reverse J-shaped pattern observed (Fig. 3B), 
indicating that (1) like design-based inference (Hou et al., 2022), model- 
based inference also follows the reverse-J pattern between sampling 
intensity and precision; and thus (2) the sampling intensity for Sa is cost- 
efficient around the turning point in the curvature of the reverse-J 
shape, i.e., the maxima of second-order derivative on its curve func-
tion, at empirically 1.32% in terms of sampling intensity. At this point, 
take EVI model for example, the precision of HMB estimator was only 
4% less than that of the CMB estimator using RapidEye wall-to-wall 
auxiliaries, but 11% greater than that for Landsat 8 wall-to-wall- 
auxiliaries (Tables 3 and 4). Nevertheless, when the sampling intensity 
is increased to 10.6%, the precision of the HMB estimator was 13.5% 
greater than that for the CMB estimator using Landsat 8 wall-to-wall 
auxiliaries, and only 0.9% less than that for RapidEye wall-to-wall 
auxiliaries. As expected, if the sample size of Sa increases further, the 
precision of the HMB estimator would converge to the precision of Case 
A.2 of the CMB estimator, reiterating the potential of the HMB estimator 
when used with a greater-quality model, Fs2, and provided with a 
reasonable size of the non-wall-to-wall auxiliaries for Sa. 

Table 3 
Summary of the estimation using CMB and HMB estimators. A sample of 6400 
observations predicted by the first-stage model Fs2 were used to fit the second- 
stage model GSa, denoted with *6400.  

Case Estimator Model μ̂ V̂ar(μ̂) SE% 

Case A1 CMB Model Fs1 with EVI  6.584  0.119  5.24 
Case A1 CMB Model Fs1 with GDVI  6.624  0.125  5.34 
Case A2 CMB Model Fs2  6.955  0.098  4.50 
Case B*6400 HMB Model GSa with EVI  6.923  0.099  4.54 
Case B*6400 HMB Model GSa with GDVI  6.896  0.099  4.56  

Table 4 
Effects of the sample size of Sa, i.e., the data volume of remotely sensed non-wall-to-wall auxiliaries, on the precision of the HMB estimator with V̂ar(μ̂) decomposed for 
the first- and second-stage modeling.  

Sample 
size of Sa 

Sampling 
intensity of Sa (%) 

Wall-to-wall auxiliary variable μ̂ V̂ar(μ̂) SE% Variance 
decomposition (%) 

Fs2 GSa 

160  0.13 EVI  6.793  0.142  5.55  70.42  29.58   
GDVI  6.842  0.146  5.58  67.81  32.19 

320  0.26 EVI  6.891  0.132  5.27  72.27  27.73   
GDVI  6.907  0.134  5.30  70.90  29.10 

1600  1.32 EVI  6.932  0.105  4.67  94.29  5.71   
GDVI  6.871  0.107  4.74  92.45  7.55 

3200  2.65 EVI  6.923  0.101  4.59  97.03  2.97   
GDVI  6.862  0.101  4.62  95.83  4.17 

6400  5.30 EVI  6.923  0.099  4.54  98.49  1.51   
GDVI  6.896  0.099  4.56  98.39  1.61 

12,800  10.60 EVI  6.913  0.098  4.53  99.18  0.82   
GDVI  6.881  0.098  4.55  98.98  1.02  
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4.4. Variance decomposition for the HMB estimator 

A closer look at the composition of the estimated total variance for 
the HMB estimator, V̂ar(μ̂2), helps to identify the pattern of uncertainty 
propagation ascribed to the respective stages with a few towards prac-
tical guidance for effective variance reduction. The results of variance 
decomposition are summarized in Table 4 and graphed out in Fig. 4. 

Five findings are relevant. First, the total variance of the HMB esti-
mator is dominated by the first-stage variance component ascribed to 
model Fs2. Second, the share of the first-stage variance is on average 

3600% greater than that of the second-stage variance. Third, as the 
sampling intensity for Sa increases, the first-stage share of the total 
variance increases and would become 100% upon the full coverage of 
Sa, i.e., wall-to-wall. Fourth, likewise, as the sampling intensity for Sa 
increases, the share of the second-stage variance decreases and would 
become 0% upon the full coverage of Sa. Fifth, the difference in preci-
sion caused by different second-stage models in the HMB estimator de-
creases as the sampling intensity for Sa increases because of the 
dominance of first-stage variance component. 

These findings suggest that (1) upon the full coverage for Sa, the first- 

Sa

GSa

Sa

Sa
Sa

Fig. 3. Estimated population means with 95% confidence intervals (CI) plotted against the sample size of Sa (on the left), and the sampling error plotted against the 
sampling intensity of Sa (on the right). 

Sa Sa

Fig. 4. The share of decomposed variance attributed to the first-, Fs2, and second-stage, Gsa, modeling in the total variance as the sampling intensity of Sa increases 
with the auxiliary variable of model Gsa using EVI (on the left) or GDVI (on the right). 
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stage variance converges to the variance of the CMB estimator using 
model Fs2 with wall-to-wall auxiliaries, and the second-stage variance 
converges to zero, reiterating that the HMB estimator is a special case of 
the CMB estimator when sharing the same first-stage model; (2) 
increasing the sample size for S for modeling Fs2 is more effective for 
decreasing V̂ar(μ̂1) than increasing the sample size for Sa for modeling 
Gsa, because the first-stage modeling contributes to most of the total 
variance; (3) alternatively, employing a greater-quality model for the 
first-stage helps to reduce V̂ar(μ̂1) as well; (4) the existing model to be 
used as model Fs2 is key to exerting the advantage of the HMB estimator 
relative to the CMB estimator; and (5) the HMB estimator balances 
tradeoffs between cost, efficiency and flexibility, and fulfils what the 
CMB estimator fulfils, but not vice-versa. 

4.5. Application scenarios for HMB estimator 

The HMB estimator is not just comparable to the CMB estimator with 
respect to precision but also enables various practical applications that 
cannot be performed with the CMB estimator. These applications 
include but are not limited to scenarios as follows. 

First, there exists a high-quality model, but not for its wall-to-wall 
auxiliaries. This scenario is common for populations under annual or 
periodic monitoring (Van Deusen, 2002). Reusing this existing model as 
the first-stage model of the HMB estimator exempts field campaign and 
RS acquisitions for model construction. Although for the purpose of 
calibrating the parameters of an existing model it may be necessary to 
observe the VOI with a few sample plots (Tompalski et al., 2019). 
Fieldwork of this sort is less burdensome than undertaking a full 
campaign and can be incorporated into the planning for acquiring 
second-stage sample, Sa, to reduce the overall cost. This scenario could 
be efficient and interesting for the provision of annual estimates 
required by the UNFCCC. 

Second, mapping and upscaling are both desired. In model-based 
inference, there are few estimators enabling inference with non-wall- 
to-wall auxiliaries, except for the HMB and hybrid estimators. The 
hybrid estimator works for non-wall-to-wall auxiliaries (Ståhl et al. 
2011). However, while the hybrid and HMB estimators are about 
equally efficient for upscaling, the hybrid estimator does not support 
mapping, unlike the HMB estimator. Comprehensive comparisons be-
tween the HMB and hybrid estimators are reported in Saarela et al. 
(2018, 2020). 

Third, the acquired RS data cannot be wall-to-wall due to the 
obstruction of clouds, the malfunction of RS sensors, or the non-wall-to- 
wall nature of remote sensing instruments. Cloud cover is a major 
limiting factor due to the obstruction and shading effects in time-series 
auxiliaries acquired by optical spaceborne sensors including the freely 
available Landsat 8 and Sentinel-2 (Zhu et al., 2015). Although there are 
cloud masking algorithms that are increasingly effective (Joshi et al., 
2019; Qiu et al, 2019), post-processing acquisitions are essentially non- 
wall-to-wall. Landsat 7 exemplifies the malfunction of RS sensors. In 
addition to orbit drifting, failure of the Landsat 7 scan line corrector 
causes the scanning pattern to exhibit wedge-shaped scan-to-scan gaps, 
leading to the missing about 22% of the normal scene area, i.e., non- 
wall-to-wall (Mueller-Warrant, 2019). The Global ecosystem dynamics 
investigation (GEDI) instrument is a spaceborne waveform lidar 
installed on the International Space Station for sampling land surface 
between 51.6◦ N and 51.6◦ S latitudes on the order of 4% with a nominal 
footprint of 25 m (Dubayah et al., 2020). Compared with 2D spectral 
data, GEDI lidar supplies 3D data that are appreciable for the sampling 
of surface topography, canopy height, canopy cover, and vertical canopy 
structure (Duncanson et al., 2022). Indubitably, particularity of these 
challenges resides in the non-wall-to-wall nature of RS auxiliaries, which 
is, albeit beyond the appliance of CMB estimator, within the appliance of 
HMB estimator, both for wall-to-wall mapping and upscaling. 

5. Conclusions 

In this study, the precisions of the CMB (Cases A.1 and A.2) and the 
HMB (Case B) estimators were compared to demonstrate the use and 
usefulness of RS non-wall-to-wall data for upscaling within the model- 
based inferential framework. Five conclusions are relevant: (1) HMB is 
a variant of CMB estimator and is a special case of CMB when sharing the 
same first-stage model; (2) an existing model of high quality is key to 
exerting the advantage of HMB estimator relative to the CMB estimator, 
e.g., high-quality non-wall-to-wall multi-spectral or 3D remote sensing 
data employed by the HMB estimator versus moderate wall-to-wall 
multi-spectral data employed by the CMB estimator; (3) the variance 
of the HMB estimator is dominated by the first-stage model variance 
component, indicating that increasing the sample size in the first-stage is 
effective for increasing the overall precision; (4) RMSE at the level of 
individual units cannot be used as a measure of the precision of the 
estimator of the population mean where a variance estimator or coef-
ficient of variation should be used; and (5) overall, the HMB estimator 
balances tradeoffs between cost, efficiency and flexibility, fulfils what 
the CMB estimator fulfils, but not vice-versa, with three practical sce-
narios common to remote sensing-based wall-to-wall upscaling (i.e., 
estimation) summarized and discussed. Last but not the least, comple-
ment to the present study, further research outlined towards maximizing 
the application of RS non-wall-to-wall data is encouraged for upscaling 
scenarios where spatial correlation and estimation bias are present 
(Saarela et al., 2022; Fortin et al., 2023). 
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