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Highlights
• Hyperspectral imagery and photogrammetric 3D point cloud based on RGB imagery were 

acquired under weather conditions changing from cloudy to sunny.
• Calibration of hyperspectral imagery was required for compensating the effect of varying 

weather conditions.
• The combination of hyperspectral imagery and photogrammetric point cloud data resulted in 

accurate forest estimates, especially for volumes per tree species.

Abstract
Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly inter-
esting approach for the estimation of forest characteristics. 3D remote sensing data from airborne 
laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest vari-
ables related to the volume of growing stock and dimension of the trees, whereas recognition of 
tree species dominance and proportion of different tree species has been a major complication in 
remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyper-
spectral imagery was examined in combination with a high-resolution photogrammetric canopy 
height model in estimating forest variables of 298 sample plots. Data were captured from eleven 
separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both 
calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination 
with a canopy height model based on RGB camera imagery using the k-nearest neighbour estima-
tion method. The results indicate that this data combination allows accurate estimation of stand 
volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 
7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of 
a calibrated image mosaic did not bring significant improvement in the results. In estimating the 
volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought 
marked improvement in the estimation accuracy; the best relative RMSE values for the volumes 
for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively.
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1 Introduction

Airborne laser scanning (ALS) data and digital aerial photography are used operationally in 
management-oriented forest inventories aiming at producing stand-level or sub-stand-level (e.g. 
plot-level) forest information. ALS is currently considered to be the most accurate remote sensing 
(RS) method for estimating forest variables that are related to the physical dimensions of trees, 
such as stand height and volume of growing stock (e.g. Næsset 2002, 2004; Maltamo et al. 2006). 
Compared to traditional remote sensing methods based on 2-dimensional (2D) imagery that allows 
mainly utilizing the spectral (tone) and textural image features (Lillesand et al. 2004), the main 
benefit of the ALS data is the 3-dimensional (3D) nature of the data, which enables 3D modelling 
of the forest canopy structure. Since it is possible to differentiate between laser pulses reflected 
from the ground surface and those reflected from tree canopies, both digital surface model (DSM) 
(or canopy surface model, CSM) and digital terrain model (DTM) can be derived from ALS data 
(Axelsson 1999, 2000; Baltsavias 1999; Hyyppä et al. 2000; Pyysalo 2000; Gruen and Li 2002).

As with ALS, it is possible to derive a 3D CSM based on aerial imagery using digital aerial 
photogrammetry with high-resolution and stereoscopic coverage (e.g. Baltsavias et al. 2008; 
St-Onge et al. 2008; Haala et al. 2010). CSMs derived using aerial photographs and digital pho-
togrammetry have been reported to be well correlated to CSMs generated from ALS data, and 
they can be considered as a viable alternative to ALS (e.g. Baltsavias et al. 2008), although their 
geometric accuracy is often lower (e.g. St-Onge et al. 2008; Haala et al. 2010). In the case of pho-
togrammetric CSM, no separate flights are required for the acquisition of ALS and image data, 
which often have different flight parameters in relation to the acquisition altitude and coverage.

In operational forest inventories, also ALS data is typically accompanied by optical imagery, 
because ALS is not considered to be well-suited for estimating tree species composition or domi-
nance, at least not at the pulse densities applied for area-based forest estimation (Törmä 2000; 
Packalén and Maltamo 2006, 2007; Waser et al. 2011). Of the various optical RS data sources, 
colour infrared (CIR) aerial images are usually the most readily available and best-suited for forest 
inventory purposes (e.g. Maltamo et al. 2006; Tuominen and Haapanen 2011). However, even with 
CIR imagery the tree species recognition, and the estimation of non-dominant tree species strata in 
particular, has often resulted in a level of accuracy that is not satisfactory for the purpose of forest 
management (e.g. Packalén and Maltamo 2006; Tuominen et al. 2014).

As potential solutions for the tree species recognition problem, there are two main options: 
either enhancing the spectral resolution by registering forest reflectance from wider spectral 
wavelength areas and discriminating spectral bands more precisely, or increasing significantly 
the geometric resolution of the 3D canopy models (Vauhkonen et al. 2009). Hyperspectral image 
sensors have the capability of discriminating narrow spectral bands over a spectral range (Goetz 
2009). Hyperspectral sensors, therefore, have higher spectral resolution than conventional wide-
band multispectral aerial imagery. On the other hand, high spectral resolution of hyperspectral 
sensors is achieved at the cost of spatial resolution. Wideband multispectral RGB or CIR cameras 
typically have higher spatial resolution than hyperspectral sensors, which make them better-suited 
for photogrammetric 3D modelling.

The remote sensing data required for the construction of photogrammetric CSM and hyper-
spectral object reflectance properties can also be acquired by using relatively light-weight imaging 
sensors, which makes it feasible to use unmanned aerial vehicles (UAV) as sensor carriers. For 
forest inventory and mapping purposes, UAVs have certain advantages compared to conventional 
aircraft (e.g. Koh and Wich 2012; Anderson and Gaston 2013). The UAVs used for agricultural 
or forestry remote sensing applications are typically much smaller than conventional aircraft, and 
in covering small areas they are more economical to use, since they consume less fuel or electric 
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energy and often require less maintenance. Furthermore, they are very flexible in relation to their 
requirements for take-off and landing sites, which makes it possible to operate from locations that 
are close to the area of interest. UAVs also have disadvantages compared to conventional aircraft. 
Because UAVs are usually small in size, their sensor load and the flying range are somewhat limited, 
which makes their use less feasible in typical operational forest inventory areas (e.g. Tuominen 
et al. 2015).

CSMs and imagery collected using consumer-grade colour and CIR cameras from UAV 
platform have been used recently in several studies in estimating forest variables (e.g. Lisein et al. 
2013; Puliti et al. 2015; Tuominen et al. 2015). Also miniaturized hyperspectral imaging technol-
ogy has developed rapidly in recent years, and the sensors are being implemented in small UAVs 
(Colomina and Molina 2014). In several studies push broom hyperspectral imaging sensors have 
been implemented in UAVs (Hruska et al. 2012; Zarco-Tejada et al. 2012; Büttner and Röser 
2014; Lucieer et al. 2014; Suomalainen et al. 2014). Recently, hyperspectral cameras operating 
in the 2D frame format principle have entered the market (Mäkynen et al. 2011; Saari et al. 2011; 
Honkavaara et al. 2013; Aasen et al. 2015). These sensors are expected to outperform push broom 
scanners based technologies by producing better image quality in dynamic UAV applications, and 
by not requiring expensive GNSS/IMU-sensors for georeferencing.

In a dense forest it is not possible to derive an accurate DTM with photogrammetric methods, 
because not enough ground surface is visible in the aerial images (Bohlin et al. 2012; Järnstedt et 
al. 2012; White et al. 2013). Thus, a DTM needs to be obtained by other means in order to be able 
to derive the canopy and vegetation height (above ground) from the CSM. In several countries, 
including Finland, acquisition of a highly accurate DTM based on ALS during the leafless season 
is underway for the entire country. Since one can assume that the terrain’s surface changes very 
slowly, this DTM can be used for consecutive forest inventories, and only the CSM has to be rebuilt 
for the new inventory cycles. In this situation, photogrammetry and hyperspectral imaging oper-
ated from a low-cost UAV platform provide an interesting approach for the forest inventory task.

This investigation examined the performance of calibrated and non-calibrated UAV-borne 
hyperspectral imagery and a photogrammetric canopy height model derived from stereo imagery 
from a UAV-borne consumer-grade camera. Previously the same data set was used in individual 
tree-based species classification (Nevalainen et al. 2017). The objective of this study was to test 
the combination of hyperspectral orthoimagery and a CSM based on high-spatial-resolution RGB 
imagery acquired using UAV-borne camera sensors in estimating forest inventory variables. In 
addition, the effect of the hyperspectral image calibration was tested on the estimation accuracy.

2 Materials and methods

2.1	 Study	area	and	field	data

The study area was the Vesijako research forest area in the municipality of Padasjoki in Southern 
Finland (approximately 61°24´N, 25°02´E). The area has been used as a research forest by the 
former Finnish Forest Research Institute (now part of the Natural Resources Institute of Finland). 
Eleven experimental test sites from stands dominated by pine (Pinus sylvestris L.), spruce (Picea 
abies [L.] H. Karst.), birch (Betula pendula Roth) or larch (Larix sibirica Ledeb.) were used in 
this study. The test sites represented development stages from young to middle-aged and mature 
stands (no seedling stands or clear-cut areas). Within each test site there were 2–16 experimental 
plots treated with differing silvicultural schemes and cutting systems (altogether 56 experimental 
plots). The size of the experimental plots was 1000–2000 m2. Within the experimental plots all 
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trees with a breast-height diameter of at least 50 mm were measured as tally trees in 2011–2012. 
For each tally tree, the following variables were recorded: location within plot, tree species and 
diameter at breast height. Height was measured from sample trees in each plot and estimated for 
all tally trees. The geographic location of the experimental plots was measured with a Global 
Positioning System (GPS) device, and the locations were processed with local base station data, 
with an average error of approximately 1 m. ALS-based DTM (with a spatial resolution of 2 m) 
provided by the National Land Survey of Finland was used as the reference terrain level in the 
study area.

For this study 298 fixed-radius (9 m) circular sample plots were placed on the experimental 
plots (4–8 circular plots per each experimental plot depending on the size and the shape of the 
experimental pots). The plot variables of the circular sample plots were calculated on the basis 
of the tree maps of the experimental plots. The main forest statistics of the field material are pre-
sented in Table 1. Some of the sample plots have an exceptionally high amount of growing stock 
compared to values typical for this geographic area, which can be seen in the maximum values 
and standard deviation of the volumes of the field observations of this study area (Table 1). The 
areas with the highest amount of growing stock are dominated by pine and larch. The location 
of the study area is illustrated in Fig. 1, and the layout of the test sites within the study area is 
presented in Fig. 2.

In the analysis the trees were separated into the following species groups: pine, spruce, larch 
and broadleaved trees (mainly birch but containing a small portion of non-dominant aspen and 
grey alder). In the field data, approximately 60% of field plots represent young and middle-aged 
forests, corresponding roughly to volume classes 100–200 m2 ha–1 and 200–300 m2 ha–1 respec-
tively. From the remaining part, 37 % of the field plots represent volume classes over 300 m2 ha–1 
(mature forests) and 3.4% volume class less than 100 m3 ha–1 (mainly advanced seedling stands). 
The distribution of the measured stand volumes of the field plots is presented in Fig. 3.

2.2 Aerial imagery

Altogether 11 test sites were captured in 8 UAV flights in 25–26.6.2014 (Table 2, Table 3). The 
most significant information of the dataset is given in the following, and more details can be found 
in Nevalainen et al. (2017).

The UAV platform frame was a Tarot 960 hexacopter with the Pixhawk autopilot equipped 
with Arducopter 3.15 firmware. Payload capacity of the system is about 3 kg and the flight time is 
10–30 min depending on payload, battery, conditions, and flight style. The system setup is shown 
in Fig. 4.

Table 1. Average, maximum (Max), minimum (Min) and standard deviation (SD) of field variables in the field 
data in study area 2. 

Forest variable Average Max Min SD

Total volume, m3 ha–1 329.8 1160.8 33.2 220.5
Volume of Scots pine, m3 ha–1 201.0 826.0 0.0 163.6
Volume of Norway spruce, m3 ha–1 46.9 420.0 0.0 88.9
Volume of Larix sp., m3 ha–1 39.9 1110.8 0.0 185.9
Volume of broadleaved, m3 ha–1 42.0 352.6 0.0 84.7
Mean diameter, cm 22.9 55.4 13.9 7.7
Mean height, m 21.2 39.4 14.3 5.1
Basal area, m2 ha–1 31.4 78.5 3.7 14.6
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Fig. 1. Location of the study area.

Fig. 2. Layout of the 11 test sites in the study area (topographic map and eleva-
tion model © National Land Survey of Finland, 2014).
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Fig. 3. Distribution of field plots in relation to growing stock volume.

Table 2. Flight conditions and camera settings during the flights. Median irradiance was taken from Intersil ISL29004 
irradiance measurements. Flight height is given from the ground level.

Area Date Time 
(GPS)

Weather Solar  
elevation

Sun  
azimuth

Median  
irrad

Exposure 
(ms)

Flight height
(m)

v01 26.6 11:07 to 11:23 cloudy 50.91 199.22 2602 10 94
v02 26.6 12:09 to 12:22 cloudy 47.38 219.63 4427 12 88
v0304 25.6 10:38 to 10:51 varying 51.79 188.36 variable 6 85
v05 25.6 09:26 to 09:40 varying 50.93 160.69 variable 6 86
v0607 25.6 12:14 to 12:24 cloudy 47 221.30 3773 10 94
v08 26.6 09:58 to 10:09 sunny 51.84 173.41 13894 10 86
v09v10 25.6 13:51 to 14:12 cloudy 37.20 249.45 2546 8 84
v11 26.6 08:49 to 08:58 varying 49.1 148.44 13982 10 83

Table 3. Results of orientation processing; numbers of GCPs and images, reprojection errors and 
point density in points m–2.

Block N GCP RGB and FPI RGB

N images Reproj. 
error (pix)

N images Reproj. 
error (pix)

Pointcloud
points m–2

v01 7 714 0.70 291 0.84 484
v02 4 469 0.64 176 0.73 555
v0304 9 758 0.60 281 0.70 711
v05 5 717 0.68 292 0.89 601
v06 3 193 0.91 76 1.10 510
v07 4 176 1.63 68 2.56 524
v08 5 421 0.73 178 0.99 538
v09 4 280 0.57 109 0.66 621
v10 3 182 0.65 70 0.88 484
v11 4 469 0.478 469 0.478 833
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A hyperspectral camera based on a tuneable Fabry-Pérot interferometer (FPI) (Mäkynen 
et al. 2011; Saari et al. 2011; Honkavaara et al. 2013) was used to capture the spectral data. The 
FPI camera captures frame-format hyperspectral images in a time sequential mode; the time lap 
is 0.075 s between adjacent exposures and 1.8 s during the entire data cube. Because of the time 
lap each band of the data cube has a slightly different position and orientation, which has to be 
taken into account in the post-processing phase. The image size was 1024 × 648 pixels and the 
pixel size was 11 μm. The FPI camera has a focal length of 10.9 mm; the field of view (FOV) is 
±18° in the flight direction, ±27° in the cross-flight direction, and ±31° at the format corner. The 
camera system has an irradiance sensor based on an Intersil ISL29004 photodetector to measure the 
wideband irradiance during each exposure (Hakala et al. 2013). Spectral settings can be selected 
according to the requirements. In this study altogether 38 bands were used with a full width of a 
half maximum (FWHM) of 11–31 nm (Table 4). In order to capture high spatial resolution data, 
the UAV was also equipped with an ordinary Samsung NX1000 RGB compact digital camera. The 
camera has a 23.5 × 15.7 mm CMOS sensor with a 20.3 megapixel resolution, and a 16 mm lens.

Flying height from the ground level was 83–94 m providing an average GSD of 8.6 cm for 
the FPI images and 2.3 cm for the RGB images on the ground level. The flight height was approxi-
mately 62–73 m from the tree tops, giving average GSDs of 6.5 cm and 1.8 cm at tree tops for the 
FPI and RGB data sets, respectively. The flight speed was about 4 m s–1. The FPI image blocks 
had average forward and side overlaps of 67% and 61%, respectively at the nominal ground level, 
and 58% and 50%, respectively, at the tree top level. For the RGB blocks, the average forward 
and side overlaps were 78% and 73%, respectively, at the ground level; at the level of treetops, 
the average forward and side overlaps were 72% and 65%, respectively.

Fig. 4. UAV system (left) based on a Tarot 960 hexacopter and close-up of the sensor configuration (right) (Photographs 
by Tapio Huttunen).

Table 4. Spectral settings of the FPI VIS/NIR. L0: central wavelength; FWHM: full width at half maximum.

L0 (nm): 507.60, 509.50, 514.50, 520.80, 529.00, 537.40, 545.80, 554.40, 562.70, 574.20, 583.60, 590.40, 598.80, 
605.70, 617.50, 630.70, 644.20, 657.20, 670.10, 677.80, 691.10, 698.40, 705.30, 711.10, 717.90, 731.30, 738.50, 
751.50, 763.70, 778.50, 794.00, 806.30, 819.70, 833.70, 845.80, 859.10, 872.80, 885.60

FWHM (nm): 11.2, 13.6, 19.4, 21.8, 22.6, 20.7, 22.0, 22.2, 22.1, 21.6, 18.0, 19.8, 22.7, 27.8, 29.3, 29.9, 26.9, 30.3, 
28.5, 27.8, 30.7, 28.3, 25.4, 26.6, 27.5, 28.2, 27.4, 27.5, 30.5, 29.5, 25.9, 27.3, 29.9, 28.0, 28.9, 32.0, 30.8, 27.9



8

Silva Fennica vol. 51 no. 5 article id 7721 · Tuominen et al. · Hyperspectral UAV-imagery and photogrammetric…

Imaging conditions were quite windless, but illumination varied a lot. Illumination conditions 
were cloudy and quite uniform during flights v01, v02, v0607, v0910. Test site v08 was captured 
under sunny conditions and during flights v0304, v05 and v11 the illumination conditions varied 
between sunny to cloudy.

2.3 Geometric and radiometric processing of images

2.3.1 Geometric processing

Geometric processing included determination of the orientations of the images and measurement 
of the 3D point clouds. The Agisoft PhotoScan Professional commercial software (AgiSoft LLC, 
St. Petersburg, Russia) and Finnish Geospatial Research Institute’s (FGI) in-house software were 
used for geometric processing. Orientations of the FPI images were determined in integrated pro-
cessing with the RGB images. Three FPI bands (reference) were included simultaneously in the 
processing. The numbers of images in the integrated blocks were 176–758 (Table 3). The outputs 
of the process were the camera calibrations and the image exterior orientations which were trans-
formed to the ETRS-TM35FIN coordinate system using the GCPs in the area. Orientations of the 
bands of the FPI images that were not included in the orientation processing were determined by 
matching unoriented bands to the oriented bands using the FGI’s in-house software. Orientations of 
the RGB dataset were determined also separately without the FPI images, and dense point clouds 
were then generated using two-times down-sampled RGB images.

Statistics of the geometric processing indicated good accuracy (Table 3). The reprojection 
errors were mostly 0.6–0.9 pixels; for block v07 the reprojection errors were up to 2.5 pixels, but 
the data fitted well with the reference airborne laser scanning data that was available from the area. 
The dense point clouds had point densities of about 500–700 points per m2, and with approximately 
5 cm point distance. Point clouds were resampled to a grid CSM with a 5 cm point interval for the 
study. Height above ground (H) values were calculated for the points by subtracting the ALS-based 
DTM values from the point Z coordinate values, thus resulting in a canopy height model (CHM).

2.3.2 Radiometric processing

Our objective was to analyse different test areas simultaneously thus it was necessary to scale 
the radiometric values to a similar scale. The absolute reflectance calibration was the preferred 
approach. Reflectance reference panels of a size of 1 × 1 m and nominal reflectance of 0.03, 0.09 
and 0.50 were installed close to the take-off location in each study site in order to carry out the 
reflectance transformation using the empirical line method (Smith and Milton 1999). Unfortunately 
the targets were surrounded by tall trees, thus the illumination conditions in reference targets did 
not correspond to the illumination conditions on top of the canopy. Because of this they did not 
provide accurate reflectance calibration by empirical line method. A further challenge was that the 
illumination conditions were variable during many of the flights, providing large relative differ-
ences in radiometric values within the blocks and between different blocks.

Radiometric processing was carried out using the FGI’s in-house software (Honkavaara et 
al. 2013). Two different radiometric processing options were used. In the first, normalization was 
not used within or between the blocks, thus the DNs were used directly. Second approach was to 
transform the DNs to reflectance and use a radiometric block adjustment and inflight irradiance data 
to normalize the differences within and between the blocks. Area v06 (see Fig. 5b) was selected 
as the reference area and empirical line-based reflectance calibration was calculated using this 
area; the disturbance due to surrounding forest vegetation was the least in this area. Radiometric 
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adjustment was calculated within the images of each image block, and then relative correction was 
calculated between the reference block and each block using the irradiance observations; details of 
the processing are given by Nevalainen et al. (2017). Examples of uncalibrated and radiometrically 
calibrated image mosaics are presented in Fig. 5a (changing weather conditions during imaging 
flight) and Fig. 5b (uniform cloudy weather during imaging flight).

2.3.3 Mosaic calculation

Hyperspectral orthophoto mosaics were calculated with 10 cm GSD from the FPI images using 
the FGI’s processing software with the following radiometric processing options: no corrections; 
absolute calibration and relative normalizations. The RGB mosaics were calculated using the 
PhotoScan mosaicking module with a 5 cm GSD.

2.4 Extraction of remote sensing features

The remote sensing features were extracted for nine-metre radius circular sample plots, except for 
textural features where 16 × 16 m windows centred on the sample plots were used. The size was 
set to correspond to the size of the circular plots.

Fig. 5a. Original image mosaic (left) acquired in weather conditions changing from cloudy to clear during imaging 
flight and radiometrically calibrated mosaic (right).

Fig. 5b. Original image mosaic (left) acquired in uniform cloudy weather conditions during imaging flight and radio-
metrically calibrated mosaic (right).
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The following raster features were extracted from calibrated and non-calibrated hyperspec-
tral imagery, true colour (red, green and blue channels) imagery and rasterized point height data:

1. Spectral averages (AVG) of pixel values of channels 1–38 of the hyperspectral imagery and the first 
principal component calculated using all 38 hyperspectral channels (pixel values with a height 
above ground less than 2.0 metres were excluded)

2. Standard deviations (STD) of pixel values of data sets as for AVG (pixel values with a height above 
ground less than 2.0 metres were excluded)

3. Textural features based on co-occurrence matrices of pixel values of hyperspectral channels 18 
(red), 36 (near infrared); first band of the principal components images; R, G & B channels of 
the true colour imagery & H (Haralick et al. 1973; Haralick 1979)

a. Sum Average (SA)
b. Entropy (ENT)
c. Difference Entropy (DE)
d. Sum Entropy (SE)
e. Variance (VAR):
f. Difference Variance (DV)
g. Sum Variance (SV)
h. Angular Second Moment (ASM, also called Uniformity)
i. Inverse Difference Moment (IDM, also called Homogeneity)
j. Contrast (CON)
k. Correlation (COR)

The following features were extracted from photogrammetric (XYZ format) 3D point data 
(Næsset 2004; Packalén and Maltamo 2006, 2008):

1. Average value of H of vegetation points [m] (HAVG)
2. Standard deviation of H of vegetation points [m] (HSTD)
3. H where percentages of vegetation points (0%, 5%, 10%, 15%, …, 90%, 95%, 100%) were accu-

mulated [m] (e.g. H0, H05,...,H95, H100)
4. Coefficient of variation of H of vegetation points [%] (HCV)
5. Proportion of vegetation points [%] (VEG)
6. Canopy densities corresponding to the proportions points above fraction no. 0, 1, …, 9 to a total 

number of points (D0, D1, …, D9)
7. Proportion of vegetation points having H greater or equal to corresponding percentile of H (i.e. 

P20 is the proportion of points having H> = H20) (%) *
8. Ratio of the number of vegetation points to the number of ground points
9. Proportion of ground points (%), where:

H = height above ground
vegetation point = point with H > = 2 m
ground point = other than vegetation point

* the range of H was divided into 10 fractions (0, 1, 2,…, 9) of equal distance

2.5 Feature selection and estimation of forest variables

The k-nearest neighbour (k-nn) method was used for the estimation of the forest variables. The 
estimated stand variables were total volume of growing stock (volume), the volumes of Scots 
pine (vol.pine), Norway spruce (vol.spruce), Siberian larch (vol.larch) and broadleaved species 
(vol.broadleaved), mean diameter (d) and mean height (h). Different values of k were tested 
in the estimation procedure. In the k-nn estimation (Kilkki and Päivinen 1987; Muinonen and 
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Tokola 1990; Tomppo 1991), the Euclidean distances between the sample plots were calculated 
in the n-dimensional feature space, where n stands for the number of remote sensing features 
used. The stand variable estimates for the sample plots were calculated as weighted averages of 
the stand variables of the k-nearest neighbours (Eq. 1). Weighting by inverse squared Euclid-
ean distance in the feature space was applied (Eq. 2) for diminishing the bias of the estimates 
(Altman 1992). Without weighting, the k-nn method often causes undesirable averaging in the 
estimates, especially at the high end of the stand volume distribution, where the reference data 
is typically sparse.
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where:
di = Euclidean distance (in the feature space) to the ith nearest neighbour plot
k = number of nearest neighbours
g = parameter for adjusting the progression of weight with increasing distance*

* g = 0: equal weight for all distances; g = 1: weight inverse of distance; g = 2: weight inverse 
of squared distance, etc.

The accuracy of the estimates was calculated via leave-one-out cross-validation by comparing the 
estimated forest variable values with the measured values (ground truth) of the field plots. In the 
cross-validation all circular plots within same experimental plot were excluded from the nearest 
neighbours. The accuracy of the estimates was measured in terms of the relative root mean square 
error (RMSE) (Eq. 3) and relative bias (Eq. 4).
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yi = measured value of variable y on plot i
ŷi = estimated value of variable y on plot i

 = mean of the observed values
n = number of plots.

The remote sensing datasets encompassed a total of 144 aerial photograph features, 11 features from 
rasterised canopy height data and 35 3D point features. All aerial image and point features were 
scaled to a standard deviation of 1. This was done because the original features had very diverse 
scales of variation. Without scaling, variables with wide variation would have had greater weight 
in the estimation, regardless of their capability for estimating the forest variables.

Feature selection was carried out with two sets of features. One including features extracted 
from calibrated, the other from non-calibrated, hyperspectral imagery. From here on these are 
referred to as calibrated feature set and non-calibrated feature set.

The extracted feature set was large, presenting a high-dimensional feature space for the k-nn 
estimation. In order to avoid the problems of the high-dimensional feature space, i.e. the “curse 
of dimensionality”, which is inclined to complicate the nearest neighbour search (Beyer et al. 
1999; Hinneburg et al. 2000), the dimensionality of the data was reduced by selecting a subset of 
features with the aim of good discrimination ability. The selection of the features was performed 
with a genetic algorithm (GA) -based approach, implemented in the R language by means of the 
Genalg package (Willighagen and Ballings 2015; R Development Core Team 2016). This approach 
searches for the subset of predictor variables based on criteria defined by the user. Although there 
is no guarantee of finding the optimal predictor variable subset (Garey and Johnson 1979), and the 
algorithm does not go through all possible combinations, solutions close to optimal can usually be 
found in a feasible computational time.

The general GA procedure begins by generating an initial population of strings (chromo-
somes or genomes), which consist of a random combination of predictor variables (genes). Each 
chromosome is considered a binary string having values 1 or 0 indicating that certain variable is 
either “selected” in the subset or “not selected”. The strings evolve over a user-defined number 
of iterations (generations). This evolution includes the following operations: selecting strings for 
mating by applying a user-defined objective criterion (the more copies in the mating pool, the 
better), allowing the strings in the mating pool to swap parts (cross over), causing random noise 
(mutations) in the offspring (children), and passing the resulting strings to the next generation. The 
process is repeated until a pre-defined criterion is fulfilled or a pre-determined number of iterations 
have been completed (Broadhurst et al. 1997; Tuominen and Haapanen 2013; Moser et al. 2017).

Here the evaluation function of the genetic algorithm was employed to minimise the RMSEs of 
k-nn estimates for each variable in leave-one-out cross-validation. The feature selection was carried 
out for a combined set of forest variables as well as separately for each forest variable. The sets of 
selected features are referred to as common (for all variables at the time) or individual (for one variable 
at the time) from here on. In the combined set the individual forest variables were weighted as follows:

• total volume of growing stock: 30%
• volume of pine: 10%
• volume of spruce: 10%
• volume of larch: 10%
• volume of broadleaved trees: 10%
• stand mean height: 20%
• stand mean diameter: 10%

All 298 plots were used in the GA procedure for testing each generation of features.
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In the selection procedure, the population consisted of 200 binary chromosomes, and the 
number of generations was 60. Thirteen feature-selection runs were carried out for all forest vari-
ables at one time as well as separately for each variable to find the feature set that returned the 
best evaluation value. In selecting the feature weights, floating point chromosomes with values in 
the range of 0–1 were used and the number of generations was set to 60. Otherwise the selection 
procedure was similar to the feature selection. The values for parameters k and g (Eq. 1 and 2) 
were selected during the test runs. When selecting common features for all forest variables the 
number of nearest neighbours was 3 and 5, and g was 2.6 and 2.9 for the calibrated and non-
calibrated feature set, respectively. When selecting features individually for each forest variable 
the number of nearest neighbours varied between 3 and 6 for both feature sets depending on the 
variable, and g was between 1.5 and 2.6 for the calibrated feature set, and between 0.7 and 3.0 for 
the non-calibrated feature set.

3 Results

The main estimation results for the tested forest variables are presented in Table 5a (non-calibrated 
HS-mosaic & common features), Table 5b (non-calibrated HS-mosaic & individual features), 
Table 5c (calibrated HS-mosaic & common features) and Table 5d (calibrated HS-mosaic & indi-
vidual features). The Tables 5a–d present relative RMSE and bias of the estimates, as well as the 
value of k (number of nearest neighbours) and g (weighting factor within k-nn) returned by the 
GA. Furthermore, the number of features selected by the GA for each variable is listed in the tables 
specified for each data type: 3D CHM data (n.3D), HS imagery (n.HS), RGB imagery (n.RGB) 
and total number of selected features (n.feat). The relative RMSEs for the respective combinations 
are also illustrated in Fig. 6.

The calibration of the HS mosaic resulted in, to some extent, inconsistent effect in the 
estimation accuracy when compared to non-calibrated imagery. All estimation results were 
measured by the relative RMSEs of the tested variables. In the estimation of forest variables 
related to the size and amount of trees, such as mean diameter, height and total growing stock, 
the effect of the calibrated HS image mosaic was mostly negligible. The effect of the calibrated 
HS mosaic was slightly negative in estimating mean height and diameter; the estimation accu-
racy of diameter decreased 3–5% and height 2–4% (depending on whether RS features were 
selected for all forest variables at the time or individually for each forest variable). In the esti-
mation of total volume of growing stock, the use of the calibrated mosaic brought about a 14% 
improvement in the estimation accuracy, when using common features and estimation param-
eters for all variables, but a 6% decrease, when using features and parameters selected individu-
ally for volume estimation.

In the estimation volumes for individual tree species the calibrated mosaic generally per-
formed pronouncedly better than non-calibrated imagery. The estimation accuracy of pine volume 
was improved 8–14% (with common and individual feature sets, respectively), and spruce volume 
12–21%. The results for larch and broadleaved trees were, again, inconclusive. Calibrated imagery 
gave 34% improvement in the estimation accuracy of larch volume, when using common features 
and estimation parameters for all variables, but 12% decrease when using features and parameters 
selected individually for this variable. When estimating the volume of broadleaved trees, calibrated 
imagery decreased the estimation accuracy by 28%, when using common features and estimation 
parameters, but improved by 6% when using individually selected features and parameters.

There was a similar but more pronounced difference when comparing estimates based on RS 
features and estimation parameters common to all variables vs. estimates based on individual fea-
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Table 5a. Estimation results, non-calibrated HS-mosaic, common features.

Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.

D 3 2.6 18.32 –2.17 7 9 1 17
H 3 2.6 8.67 –0.40 7 9 1 17
Volume 3 2.6 31.47 –0.59 7 9 1 17
vol.pine 3 2.6 45.66 0.54 7 9 1 17
vol.spruce 3 2.6 97.58 1.18 7 9 1 17
vol.larch 3 2.6 91.53 –1.31 7 9 1 17
vol.broadleaved 3 2.6 63.98 –7.26 7 9 1 17

n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = 
total number of selected features.

Table 5b. Estimation results, non-calibrated HS-mosaic, individual features.

Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.

D 5 0.7 14.71 –0.52 4 11 0 15
H 5 1.3 7.36 –0.07 4 5 1 10
Volume 5 2.9 22.65 0.00 8 7 1 16
vol.pine 3 0.7 40.02 –0.03 4 5 1 10
vol.spruce 6 2.0 65.06 0.02 6 18 1 25
vol.larch 3 3.0 45.67 –3.00 6 11 3 20
vol.broadleaved 5 2.0 44.52 0.04 5 14 2 21

n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB 
features; n.feat. = total number of selected features.

Table 5c. Estimation results, calibrated HS-mosaic, common features.

Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.

D 5 2.9 19.19 –1.76 9 6 1 16
H 5 2.9 9.05 –0.43 9 6 1 16
Volume 5 2.9 26.93 –1.60 9 6 1 16
vol.pine 5 2.9 41.94 0.66 9 6 1 16
vol.spruce 5 2.9 77.52 –9.68 9 6 1 16
vol.larch 5 2.9 60.22 2.30 9 6 1 16
vol.broadleaved 5 2.9 81.98 –7.10 9 6 1 16

n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB 
features; n.feat. = total number of selected features.

Table 5d. Estimation results, calibrated HS-mosaic, individual features.

Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.

D 5 2.0 15.20 –1.76 4 8 0 12
H 6 1.5 7.50 –0.14 6 5 3 14
Volume 5 2.5 23.96 0.00 8 4 2 14
vol.pine 5 2.0 34.51 0.00 11 8 0 19
vol.spruce 5 2.3 57.16 –0.01 6 7 2 15
vol.larch 3 2.6 51.07 –0.29 5 5 2 12
vol.broadleaved 4 2.1 42.00 –1.38 7 13 2 22

n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB 
features; n.feat. = total number of selected features.
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tures and parameters. Using individually selected features and parameters improved the estimation 
accuracies of diameter by 20% and 21% (with non-calibrated and calibrated imagery, respectively), 
height 15% and 17% and total volume of growing stock 28% and 11%, respectively, and whereupon 
the best total volume estimate was based on features extracted using non-calibrated HS imagery. 
When estimating volumes per tree species, individually selected features and parameters improved 
the estimation accuracies (compared to features and estimation parameters common to all variables) 
for pine 12% and 18% (with non-calibrated and calibrated imagery, respectively), for spruce 33% 
and 26%, for larch 50% and 15% and for broadleaved trees 30% and 49%. For all tree species except 
larch, the best estimates were based on features extracted using calibrated HS imagery.

Generally, the accuracy of estimated volume of pine was closest to that of total volume, 
and it seemed to follow closely the total volume in the estimation results. For other tree species 
the estimation accuracies were markedly poorer, and had more variation with different feature 
combinations.

When selecting features and parameters individually for the forest variables, the total number 
of selected features varied from 10 to 25 and the value of k between 3 and 6. For all forest vari-
ables, both 3D features and HS features were highly represented in the selected ones, and their 
proportion together was approx. 80–100% of the selected features. Features from RGB imagery 
had low weight in the estimation, and the number of selected RGB features was 0–3. Generally, 
3D features were most highly represented in the estimation of height, total volume and also volume 
of pine. Otherwise, in the estimation of volumes per tree species, HS features were in the majority 
among the selected ones, as well as in the estimation of diameter. The value of k returned by the 

Fig. 6. Relative RMSEs of the estimated forest variables with the tested two calibration options (N-cal = non calibrated; 
Calib. = calibrated imagery) and feature selection strategies (common features for all variables vs. individual feature 
set for each variable).
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GA was in most cases between 4 and 6, but in the estimation of volume of larch k was 3 (as well 
as for pine volume, in the case of non-calibrated HS mosaic).

When using a common set of features for all forest variables, in total 16–17 features were 
selected; 3D features were in the majority in the case of calibrated HS mosaic (9/16 of the selected 
features), whereas HS features were in the majority in the case of non-calibrated HS imagery (9/17 
of the selected features); in both cases, only one RGB feature was selected.

Since the GA did not seem to be able to achieve a solution with a common set of features, 
which would result in good estimation accuracy for both variables related to tree dimension/
total volume and volumes per tree species, common feature selection aiming at good tree species 
recognition that weighted only volumes per main tree species were also tested: pine, spruce and 
broadleaved trees by 30%, 30% and 40 %, respectively. Only calibrated imagery was used in 
extracting HS features. This solution was markedly better in the estimation of volumes per tree 
species than other feature sets common to all forest variables (presented in Tables 5a and 5c). The 
estimation accuracies (measured by relative RMSEs) were somewhere in the middle between 
common features sets for all forest variables and individual features for all variables. However, 
especially the accuracy of the volume of pine was close to that of the individually selected feature 
set (results presented in Table 6).

4 Discussion

The general accuracy of the forest variable estimates in this study was high, when compared to 
estimates based on ALS and aerial CIR imagery or aerial imagery and photogrammetric 3D data in 
similar forest conditions. The lowest relative RMSE values for diameter, height and total volume 
were 14.7%, 7.4% and 22.7% and they were obtained by using individual predictor features for each 
estimated forest variable. Generally, for research purposes, such as in this case, it is worthwhile 
to test features tailored to each forest variable individually, whereas in practical forest inventory 
applications it is typical to use a common feature set for all variables, since the number of inventory 
variables is often high, and it would not be feasible to have separate features for them.

For comparison, results by, e.g. Järnstedt et al. (2012), who used ALS data with significantly 
higher point density than typically applied in operational ALS-based forest inventory (approx. 
10 pulses m–2), had still significantly larger RMSE values for diameter, height and total volume 
than presented in this study: 25.3%, 18.6% and 31.3%, respectively. Results by Tuominen et al. 
(2015) utilizing UAV-borne CIR camera imagery and photogrammetric CSM were also markedly 
poorer in estimating all tested forest variables; their best estimate for diameter had an RMSE 
value of 18.4%, height 14.4%, total volume 25.5% and volumes for pine spruce and broadleaved 
trees 70.9%, 70.7% and 72.8%, respectively. One factor worth noting is that this study, as well as 
Järnstedt et al. (2012), had extensive field reference data that can be considered well representa-
tive for the study area, which makes it possible to have an adequate number of potential reference 
plots required by the nearest neighbour estimators used in these studies. Instead, field reference 

Table 6. Estimation results, calibrated HS-mosaic, features optimized for tree species volumes.

Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.

vol.pine 5 3 40.63 –0.43 9 12 3 24
vol.spruce 5 3 75.78 –1.56 9 12 3 24
vol.broadleaved 5 3 50.05 –0.48 9 12 3 24

n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = 
total number of selected features.
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data used by Tuominen et al. (2015) was limited in number, which tends to impair the accuracy of 
nearest neighbour estimates. Puliti et al. (2015) have used UAV-borne CIR camera imagery and 
photogrammetric 3D data in Norwegian forest areas applying a roughly similar spatial resolution 
as in this study. Their estimation results are also quite similar to this study, with the exception that 
Puliti et al. tested also dominant height (which typically correlates highly with 3D canopy models) 
resulting in very high estimation accuracy with a relative RMSE value of 3.5%. The results may 
not be fully comparable since the distribution of measured heights and volumes (max–min) in the 
field data of Puliti et al. was significantly narrower than in this study. When using photogrammetric 
3D data in temperate Central European forest conditions, Ullah et al. (2015) have achieved relative 
RMSEs of 30% for total volume with k-nn estimator (Ullah et al. did not test volume estimation 
per tree species). Stepper et al. (2016) have reported relative RMSEs of 15.1%, 10.1%, and 35.3% 
respectively for diameter and height and volume for the spruce-dominated forest, and 15.9%, 9.7%, 
and 32.1% for the beech-dominated forest, respectively (Stepper et al. have used diameter and 
height of 100 largest trees ha–1, i.e. dominant diameter and height instead). The distribution and 
mean of the volume in the field data used by Stepper et al. (2016) was remarkably similar as in this 
study. Also the mean volume used by Ullah et al. (2015) was in the same magnitude as in this study.

Thus, based on the estimation results of the forest height and volume, it can be assessed that 
the photogrammetric 3D data used in this study was of remarkably high quality. The contributing 
factors here presumably are high spatial resolution and sufficient stereo overlap of the original 
imagery, even despite the fact that the imaging conditions were not optimal because of the chal-
lenging illumination conditions due to the changing cloudiness during the imaging flights.

As noted in the results, the calibration of the hyperspectral imagery had practically very 
little effect on the estimation accuracy of diameter, height and total volume of growing stock, 
whereas in estimating the volumes of individual tree species, the image calibration had clearly 
an improving effect on the results in most cases. As expected, the calibrated imagery resulted in 
higher accuracy for tree species other than larch, for which the effect was contrary to expectations. 
This, however, may not necessarily indicate any problem in the image calibration, but instead it 
may be caused by the composition of the field material. Larch formed a significant portion of the 
total growing stock in relatively few plots, but a number of plots in the high end of the volume 
distribution were dominated by larch, as indicated by Table 1, where the maximum larch volume 
was close to maximal total volume. On the other hand, the average volume of larch in the total 
field data was quite low. Because the volume distribution of the individual tree species was quite 
different, it is highly likely that 3D features alone were sufficient in predicting volumes of certain 
species such as larch. If the volume distributions of the tested tree species had been more alike, 
then the HS features in general would probably have had more weight in their estimation, and the 
effect of calibration would also have been more evident.

The hyperspectral dataset used in this study was challenging, which might have reduced the 
achieved accuracy. Conditions during the data capture were typical for the northern climate zone 
during summer with variable cloudiness and rain. Such conditions are challenging in the case of 
passive remote sensing because they cause variable image characteristics. As the UAVs are typi-
cally operated at low altitudes, and often below cloud cover, it is expected that clouds will cause 
challenges in many operational applications. Furthermore, the data capture was carried out in deep 
forest where it was not possible to utilize in-situ reflectance panels in most of the areas. Com-
pensation of the radiometric non-uniformities from the images is necessary in order to normalize 
the data. The frequently used methods based on reflectance panels or radiative transfer modelling 
(Zarco-Tejada et al. 2012; Büttner and Röser 2014; Lucieer et al. 2014; Suomalainen et al. 2014) 
are not suitable in such conditions. The novel radiometric processing approach based on radiomet-
ric block adjustment and on-board irradiance measurements (Hakala et al. 2013; Honkavaara et 
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al. 2013) compensated efficiently the differences between the images within flights and between 
different flights and mostly improved results in variables that were related to tree species. Future 
studies should improve the methods for radiometric calibration and examine the requirements for 
radiometric correction.

Our results showed that UAV-based photogrammetry and hyperspectral imaging is a promis-
ing method for stand variable estimation. The most important advantage is the markedly improved 
tree species recognition compared to traditional RGB and CIR aerial imagery, but also the estima-
tion accuracy of variables related to growing stock volume and size equals the accuracy of ALS.

Acknowledgments

This work was supported by the Finnish Funding Agency for Technology and Innovation Tekes 
through the HSI-Stereo project (grant number 2208/31/2013). The authors also wish to thank Prof. 
Jari Hynynen of Natural Resources Institute Finland for the support in the acquisition of field data 
for this study.

References

Aasen H., Burkart A., Bolten A., Bareth G. (2015). Generating 3D hyperspectral information 
with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration 
to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing 108: 245–259. 
https://doi.org/10.1016/j.isprsjprs.2015.08.002.

Altman N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. 
The American Statistician 46(3): 175–185. https://doi.org/10.1080/00031305.1992.10475879.

Anderson K., Gaston K.J. (2013). Lightweight unmanned aerial vehicles will revolutionize 
spatial ecology. Frontiers in Ecology and the Environment 11(3): 138–146. https://doi.
org/10.1890/120150.

Axelsson P. (1999). Processing of laser scanner data – algorithms and applications. ISPRS Journal 
of Photogrammetry and Remote Sensing 54(2–3): 138–147. https://doi.org/10.1016/S0924-
2716(99)00008-8.

Axelsson P. (2000). DEM generation from laser scanner data using adaptive TIN models. Interna-
tional Archives of Photogrammetry and Remote Sensing 33: 110–117.

Baltsavias E. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal 
of Photogrammetry and Remote Sensing 54(2–3): 83–94. https://doi.org/10.1016/S0924-
2716(99)00014-3.

Baltsavias E., Gruen A., Eisenbeiss H., Zhang L., Waser L.T. (2008). High-quality image matching 
and automated generation of 3D tree models. International Journal of Remote Sensing 29(5): 
1243–1259. https://doi.org/10.1080/01431160701736513.

Beyer K., Goldstein J., Ramakrishnan R., Shaft U. (1999). When is “nearest neighbor” meaning-
ful? In: Proceedings of the 7th International Conference on Database Theory (ICDT ’99), 
January 10, 1999, Jerusalem, Israel. p. 217–235. https://doi.org/10.1007/3-540-49257-7_15.

Bohlin J., Wallerman J., Fransson J.E.S. (2012). Forest variable estimation using photogrammetric 
matching of digital aerial images in combination with a high-resolution DEM. Scandinavian 
Journal of Forest Research 27(7): 692–699. https://doi.org/10.1080/02827581.2012.686625.

Broadhurst D., Goodacre R., Jones A., Rowland J.J., Kell D.B. (1997). Genetic algorithms as a 
method for variable selection in multiple linear regression and partial least squares regression, 

http://dx.doi.org/10.1016/j.isprsjprs.2015.08.002
http://dx.doi.org/10.1080/00031305.1992.10475879
http://dx.doi.org/10.1890/120150
http://dx.doi.org/10.1890/120150
http://dx.doi.org/10.1016/S0924-2716(99)00008-8
http://dx.doi.org/10.1016/S0924-2716(99)00008-8
http://dx.doi.org/10.1016/S0924-2716(99)00014-3
http://dx.doi.org/10.1016/S0924-2716(99)00014-3
http://dx.doi.org/10.1080/01431160701736513
http://dx.doi.org/10.1007/3-540-49257-7_15
http://dx.doi.org/10.1080/02827581.2012.686625


19

Silva Fennica vol. 51 no. 5 article id 7721 · Tuominen et al. · Hyperspectral UAV-imagery and photogrammetric…

with applications to pyrolysis mass spectrometry. Analytica Chimica Acta 348(1–3): 71–86. 
https://doi.org/10.1016/S0003-2670(97)00065-2.

Büttner A., Röser H.-P. (2014). Hyperspectral remote sensing with the UAS “Stuttgarter Adler” – 
system setup, calibration and first results. Photogrammetrie – Fernerkundung – Geoinformation 
2014(4): 265–274. https://doi.org/10.1127/1432-8364/2014/0217.

Colomina I., Molina P. (2014). Unmanned aerial systems for photogrammetry and remote sens-
ing: a review. ISPRS Journal of Photogrammetry and Remote Sensing 92: 79–97. https://doi.
org/10.1016/j.isprsjprs.2014.02.013.

Garey M.R., Johnson D.S. (1979). Computers and intractability; a guide to the theory of np-
completeness. W.H. Freeman & Co, New York, NY, USA.

Goetz A.F.H. (2009). Three decades of hyperspectral remote sensing of the Earth: a personal 
view. Remote Sensing of Environment 113(SUPPL. 1): S5–S16. https://doi.org/10.1016/j.
rse.2007.12.014.

Gruen A., Li Z. (2002). Automatic DTM generation from Three-Line-Scanner (TLS) images. 
International Archives of Photogrammetry and Remote Sensing 34: 131–137.

Haala N., Hastedt H., Wolf K., Ressl C., Baltrusch S. (2010). Digital photogrammetric camera 
evaluation – generation of digital elevation models. Photogrammetrie – Fernerkundung – 
Geoinformation 2010(2): 99–115. https://doi.org/10.1127/1432-8364/2010/0043.

Hakala T., Honkavaara E., Saari H., Mäkynen J., Kaivosoja J., Pesonen L., Pölönen I. (2013). 
Spectral imaging from uavs under varying illumination conditions. In: ISPRS – International 
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Sep-
tember 4, 2013, Paris. p. 189–194. https://doi.org/10.5194/isprsarchives-XL-1-W2-189-2013.

Haralick R.M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE 
67(5): 786–804. https://doi.org/10.1109/PROC.1979.11328.

Haralick R.M., Shanmugam K., Dinstein I. (1973). Textural features for image classification. IEEE 
Transactions on Systems, Man, and Cybernetics SMC-3(6): 610–621. https://doi.org/10.1109/
TSMC.1973.4309314.

Hinneburg A., Aggarwal C.C., Keim D.A. (2000). What is the nearest neighbor in high dimensional 
spaces? In: Proceedings of the 26th International Conference on Very Large Data Bases, Sep-
tember 10, 2000, San Francisco, CA, USA. p. 506–515.

Honkavaara E., Saari H., Kaivosoja J., Pölönen I., Hakala T., Litkey P., Mäkynen J., Pesonen L. 
(2013). Processing and assessment of spectrometric, stereoscopic imagery collected using a 
lightweight uav spectral camera for precision agriculture. Remote Sensing 5(10): 5006–5039. 
https://doi.org/10.3390/rs5105006.

Hruska R., Mitchell J., Anderson M., Glenn N.F. (2012). Radiometric and geometric analysis 
of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sensing 4(9): 
2736–2752. https://doi.org/10.3390/rs4092736.

Hyyppä J., Pyysalo U., Hyyppä H., Samberg A. (2000). Elevation accuracy of laser scanning-
derived digital terrain and target models in forest environment. In: Proceedings of EARSeL-
SIG-Workshop, June 14, 2000, Dresden. p. 139–147.

Järnstedt J., Pekkarinen A., Tuominen S., Ginzler C., Holopainen M., Viitala R. (2012). Forest 
variable estimation using a high-resolution digital surface model. ISPRS Journal of Photo-
grammetry and Remote Sensing 74: 78–84. https://doi.org/10.1016/j.isprsjprs.2012.08.006.

Kilkki P., Päivinen R. (1987). Reference sample plots to combine field measurements and satellite 
data in forest inventory. Department of Forest Mensuration and Management, University of 
Helsinki, Research Notes 19. p. 210–215.

Koh L.P., Wich S.A. (2012). Dawn of drone ecology: low-cost autonomous aerial vehi-
cles for conservation. Tropical Conservation Science 5(2): 121–132. https://doi.

http://dx.doi.org/10.1016/S0003-2670(97)00065-2
http://dx.doi.org/10.1127/1432-8364/2014/0217
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013
http://dx.doi.org/10.1016/j.rse.2007.12.014
http://dx.doi.org/10.1016/j.rse.2007.12.014
http://dx.doi.org/10.1127/1432-8364/2010/0043
http://dx.doi.org/10.5194/isprsarchives-XL-1-W2-189-2013
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.3390/rs5105006
http://dx.doi.org/10.3390/rs4092736
http://dx.doi.org/10.1016/j.isprsjprs.2012.08.006
http://dx.doi.org/10.1177/194008291200500202


20

Silva Fennica vol. 51 no. 5 article id 7721 · Tuominen et al. · Hyperspectral UAV-imagery and photogrammetric…

org/10.1177/194008291200500202.
Lillesand T.M., Kiefer R.W., Chipman J.W. (2004). Remote sensing and image interpretation (5th 

ed.). John Wiley & Sons Inc., New York, NY, USA. p. 763.
Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P. (2013). A photogrammetric workflow for 

the creation of a forest canopy height model from small unmanned aerial system imagery. 
Forests 4(4): 922–944. https://doi.org/10.3390/f4040922.

Lucieer A., Malenovský Z., Veness T., Wallace L. (2014). HyperUAS – imaging spectroscopy from 
a multirotor unmanned aircraft system. Journal of Field Robotics 31(4): 571–590. https://doi.
org/10.1002/rob.21508.

Mäkynen J., Holmlund C., Saari H., Ojala K., Antila T. (2011). Unmanned aerial vehicle (UAV) 
operated megapixel spectral camera. Proceedings of SPIE 8186: 81860Y. https://doi.
org/10.1117/12.897712.

Maltamo M., Malinen J., Packalén P., Suvanto A., Kangas J. (2006). Nonparametric estimation 
of stem volume using airborne laser scanning, aerial photography, and stand-register data. 
Canadian Journal of Forest Research 36(2): 426–436. https://doi.org/10.1139/x05-246.

Moser P., Vibrans A.C., McRoberts R.E., Næsset E., Gobakken T., Chirici G., Mura M., Marchetti 
M. (2017). Methods for variable selection in LiDAR-assisted forest inventories. Forestry 90(1): 
112–124. https://doi.org/10.1093/forestry/cpw041.

Muinonen E., Tokola T. (1990). An application of remote sensing for communal forest inventory. 
In: Proceedings from SNS/IUFRO Workshop, 1990, Umeå. p. 35–42.

Næsset E. (2002). Predicting forest stand characteristics with airborne scanning laser using a 
practical two-stage procedure and field data. Remote Sensing of Environment 80(1): 88–99. 
https://doi.org/10.1016/S0034-4257(01)00290-5.

Næsset E. (2004). Accuracy of forest inventory using airborne laser scanning: evaluating the first 
nordic full-scale operational project. Scandinavian Journal of Forest Research 19(6): 554–557. 
https://doi.org/10.1080/02827580410019544.

Nevalainen O., Honkavaara E., Tuominen S., Viljanen N., Hakala T., Yu X., Hyyppä J., Saari H., 
Pölönen I., Imai N., Tommaselli A. (2017). Individual tree detection and classification with 
UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sensing 9(3): 
185. https://doi.org/10.3390/rs9030185.

Packalén P., Maltamo M. (2006). Predicting the plot volume by tree species using airborne laser 
scanning and aerial photographs. Forest Science 52(6): 611–622.

Packalén P., Maltamo M. (2007). The k-MSN method for the prediction of species-specific stand 
attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environ-
ment 109(3): 328–341. https://doi.org/10.1016/j.rse.2007.01.005.

Packalén P., Maltamo M. (2008). Estimation of species-specific diameter distributions using 
airborne laser scanning and aerial photographs. Canadian Journal of Forest Research 38(7): 
1750–1760. https://doi.org/10.1139/X08-037.

Puliti S., Ørka H.O., Gobakken T., Næsset E. (2015). Inventory of small forest areas using an 
unmanned aerial system. Remote Sensing 7(8): 9632–9654. https://doi.org/10.3390/rs70809632.

Pyysalo U. (2000). A method to create a three dimensional forest model from laser scanner data. 
Photogrammetric Journal of Finland 17(1): 34–42.

R Development Core Team. (2016). R: a language and environment for statistical computing. 
Vienna, Austria. https://www.r-project.org. [Cited 2 March 2017].

Saari H., Pellikka I., Pesonen L., Tuominen S., Heikkilä J., Holmlund C., Mäkynen J., Ojala K., 
Antila T. (2011). Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest 
and agriculture applications. In: Proceedings of SPIE, October 6, 2011, Prague. p. 81740H. 
https://doi.org/10.1117/12.897585.

http://dx.doi.org/10.1177/194008291200500202
http://dx.doi.org/10.3390/f4040922
http://dx.doi.org/10.1002/rob.21508
http://dx.doi.org/10.1002/rob.21508
http://dx.doi.org/10.1117/12.897712
http://dx.doi.org/10.1117/12.897712
http://dx.doi.org/10.1139/x05-246
http://dx.doi.org/10.1093/forestry/cpw041
http://dx.doi.org/10.1016/S0034-4257(01)00290-5
http://dx.doi.org/10.1080/02827580410019544
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.1016/j.rse.2007.01.005
http://dx.doi.org/10.1139/X08-037
http://dx.doi.org/10.3390/rs70809632
https://www.r-project.org
http://dx.doi.org/10.1117/12.897585


21

Silva Fennica vol. 51 no. 5 article id 7721 · Tuominen et al. · Hyperspectral UAV-imagery and photogrammetric…

St-Onge B., Vega C., Fournier R.A., Hu Y. (2008). Mapping canopy height using a combination 
of digital stereo-photogrammetry and lidar. International Journal of Remote Sensing 29(11): 
3343–3364. https://doi.org/10.1080/01431160701469040.

Stepper C., Straub C., Immitzer M., Pretzsch H. (2016). Using canopy heights from digital aerial 
photogrammetry to enable spatial transfer of forest attribute models: a case study in central 
Europe. Scandinavian Journal of Forest Research, 1–14. https://doi.org/10.1080/02827581.
2016.1261935.

Suomalainen J., Anders N., Iqbal S., Roerink G., Franke J., Wenting P., Hünniger D., Bartholomeus 
H., Becker R., Kooistra L. (2014). A lightweight hyperspectral mapping system and photogram-
metric processing chain for unmanned aerial vehicles. Remote Sensing 6 (11): 11013–11030. 
https://doi.org/10.3390/rs61111013.

Tomppo E. (1991). Satellite image-based national forest inventory of Finland. International Archives 
of Photogrammetry and Remote Sensing 28: 419–424.

Törmä M. (2000). Estimation of tree species proportions of forest stands using laser scanning. 
International Archives of Photogrammetry and Remote Sensing 33(Part B7): 1524–1531.

Tuominen S., Haapanen R. (2011). Comparison of grid-based and segment-based estimation of 
forest attributes using airborne laser scanning and digital aerial imagery. Remote Sensing 3(5): 
945–961. https://doi.org/10.3390/rs3050945.

Tuominen S., Haapanen R. (2013). Estimation of forest biomass by means of genetic algo-
rithm-based optimization of airborne laser scanning and digital aerial photograph features. 
Silva Fennica 47(1) article 902. https://doi.org/10.14214/sf.902.

Tuominen S., Pitkänen J., Balazs A., Korhonen K.T., Hyvönen P., Muinonen E. (2014). NFI plots 
as complementary reference data in forest inventory based on airborne laser scanning and 
aerial photography in Finland. Silva Fennica 48(2) article 983. https://doi.org/10.14214/sf.983.

Tuominen S., Balazs A., Saari H., Pölönen I., Sarkeala J., Viitala R. (2015). Unmanned aerial 
system imagery and photogrammetric canopy height data in area-based estimation of forest 
variables. Silva Fennica 49(5) article 1348. https://doi.org/10.14214/sf.1348.

Ullah S., Dees M., Datta P., Adler P., Koch B. (2017) Comparing airborne laser scanning, and 
image-based point clouds by semi-global matching and enhanced automatic terrain extraction 
to estimate forest timber volume. Forests 8(6): 215. https://doi.org/10.3390/f8060215.

Vauhkonen J., Tokola T., Packalén P., Maltamo M. (2009). Identification of scandinavian commer-
cial species of individual trees from airborne laser scanning data using alpha shape metrics. 
Forest Science 55(1): 37–47.

Waser L.T., Ginzler C., Kuechler M., Baltsavias E., Hurni L. (2011). Semi-automatic classification 
of tree species in different forest ecosystems by spectral and geometric variables derived from 
Airborne Digital Sensor (ADS40) and RC30 data. Remote Sensing of Environment 115(1): 
76–85. https://doi.org/10.1016/j.rse.2010.08.006.

White J.C., Wulder M.A., Vastaranta M., Coops N.C., Pitt D., Woods M. (2013). The utility of 
image-based point clouds for forest inventory: a comparison with airborne laser scanning. 
Forests 4(3): 518–536. https://doi.org/10.3390/f4030518.

Willighagen E., Ballings M. (2015). genalg: R based genetic algorithm. https://cran.r-project.org/
web/packages/genalg/index.html. [Cited 2 March 2017].

Zarco-Tejada P.J., González-Dugo V., Berni J.A.J. (2012). Fluorescence, temperature and nar-
row-band indices acquired from a UAV platform for water stress detection using a micro-hy-
perspectral imager and a thermal camera. Remote Sensing of Environment 117: 322–337. 
https://doi.org/10.1016/j.rse.2011.10.007.

Total of 58 references.

http://dx.doi.org/10.1080/01431160701469040
http://dx.doi.org/10.1080/02827581.2016.1261935
http://dx.doi.org/10.1080/02827581.2016.1261935
http://dx.doi.org/10.3390/rs61111013
http://dx.doi.org/10.3390/rs3050945
http://dx.doi.org/10.14214/sf.902
http://dx.doi.org/10.14214/sf.983
http://dx.doi.org/10.14214/sf.1348
http://dx.doi.org/10.3390/f8060215
http://dx.doi.org/10.1016/j.rse.2010.08.006
http://dx.doi.org/10.3390/f4030518
https://cran.r-project.org/web/packages/genalg/index.html
https://cran.r-project.org/web/packages/genalg/index.html
http://dx.doi.org/10.1016/j.rse.2011.10.007

	Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables

	1	Introduction
	2	Materials and methods
	2.1	Study area and field data
	2.2	Aerial imagery
	2.3	Geometric and radiometric processing of images
	2.3.1	Geometric processing
	2.3.2	Radiometric processing
	2.3.3	Mosaic calculation

	2.4	Extraction of remote sensing features
	2.5	Feature selection and estimation of forest variables

	3	Results
	4	Discussion
	Acknowledgments
	References

