6,635 research outputs found

    3D Reconstruction of 'In-the-Wild' Faces in Images and Videos

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record 3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and are among the state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled conditions. Thus, even though powerful 3D facial shape models can be learnt from such data, it is difficult to build statistical texture models that are sufficient to reconstruct faces captured in unconstrained conditions ('in-the-wild'). In this paper, we propose the first 'in-the-wild' 3DMM by combining a statistical model of facial identity and expression shape with an 'in-the-wild' texture model. We show that such an approach allows for the development of a greatly simplified fitting procedure for images and videos, as there is no need to optimise with regards to the illumination parameters. We have collected three new benchmarks that combine 'in-the-wild' images and video with ground truth 3D facial geometry, the first of their kind, and report extensive quantitative evaluations using them that demonstrate our method is state-of-the-art.Engineering and Physical Sciences Research Council (EPSRC

    3D Face Modelling, Analysis and Synthesis

    Get PDF
    Human faces have always been of a special interest to researchers in the computer vision and graphics areas. There has been an explosion in the number of studies around accurately modelling, analysing and synthesising realistic faces for various applications. The importance of human faces emerges from the fact that they are invaluable means of effective communication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing the automatic visual perception of human faces efficiently could open up many influential applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries, security and surveillance, entertainment, and many more. However, the vast variability associated with the geometry and appearance of human faces captured in unconstrained videos and images renders their automatic analysis and understanding very challenging even today. The primary objective of this thesis is to develop novel methodologies of 3D computer vision for human faces that go beyond the state of the art and achieve unprecedented quality and robustness. In more detail, this thesis advances the state of the art in 3D facial shape reconstruction and tracking, fine-grained 3D facial motion estimation, expression recognition and facial synthesis with the aid of 3D face modelling. We give a special attention to the case where the input comes from monocular imagery data captured under uncontrolled settings, a.k.a. \textit{in-the-wild} data. This kind of data are available in abundance nowadays on the internet. Analysing these data pushes the boundaries of currently available computer vision algorithms and opens up many new crucial applications in the industry. We define the four targeted vision problems (3D facial reconstruction &\& tracking, fine-grained 3D facial motion estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based essential systems for the automatic facial behaviour understanding and show how they rely on each other. Finally, to aid the research conducted in this thesis, we collect and annotate a large-scale videos dataset of monocular facial performances. All of our proposed methods demonstarte very promising quantitative and qualitative results when compared to the state-of-the-art methods

    FML: Face Model Learning from Videos

    Full text link
    Monocular image-based 3D reconstruction of faces is a long-standing problem in computer vision. Since image data is a 2D projection of a 3D face, the resulting depth ambiguity makes the problem ill-posed. Most existing methods rely on data-driven priors that are built from limited 3D face scans. In contrast, we propose multi-frame video-based self-supervised training of a deep network that (i) learns a face identity model both in shape and appearance while (ii) jointly learning to reconstruct 3D faces. Our face model is learned using only corpora of in-the-wild video clips collected from the Internet. This virtually endless source of training data enables learning of a highly general 3D face model. In order to achieve this, we propose a novel multi-frame consistency loss that ensures consistent shape and appearance across multiple frames of a subject's face, thus minimizing depth ambiguity. At test time we can use an arbitrary number of frames, so that we can perform both monocular as well as multi-frame reconstruction.Comment: CVPR 2019 (Oral). Video: https://www.youtube.com/watch?v=SG2BwxCw0lQ, Project Page: https://gvv.mpi-inf.mpg.de/projects/FML19

    MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

    Get PDF
    In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.Comment: International Conference on Computer Vision (ICCV) 2017 (Oral), 13 page

    3D Face Tracking and Texture Fusion in the Wild

    Full text link
    We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. With the use of a cascaded-regressor based face tracking and a 3D Morphable Face Model shape fitting, we obtain a semi-dense 3D face shape. We further use the texture information from multiple frames to build a holistic 3D face representation from the video frames. Our system is able to capture facial expressions and does not require any person-specific training. We demonstrate the robustness of our approach on the challenging 300 Videos in the Wild (300-VW) dataset. Our real-time fitting framework is available as an open source library at http://4dface.org

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks
    • …
    corecore