72,070 research outputs found

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    View subspaces for indexing and retrieval of 3D models

    Full text link
    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithmsComment: Three-Dimensional Image Processing (3DIP) and Applications (Proceedings Volume) Proceedings of SPIE Volume: 7526 Editor(s): Atilla M. Baskurt ISBN: 9780819479198 Date: 2 February 201

    Optimizing Face Recognition Using PCA

    Full text link
    Principle Component Analysis PCA is a classical feature extraction and data representation technique widely used in pattern recognition. It is one of the most successful techniques in face recognition. But it has drawback of high computational especially for big size database. This paper conducts a study to optimize the time complexity of PCA (eigenfaces) that does not affects the recognition performance. The authors minimize the participated eigenvectors which consequently decreases the computational time. A comparison is done to compare the differences between the recognition time in the original algorithm and in the enhanced algorithm. The performance of the original and the enhanced proposed algorithm is tested on face94 face database. Experimental results show that the recognition time is reduced by 35% by applying our proposed enhanced algorithm. DET Curves are used to illustrate the experimental results.Comment: 9 page

    Associating object names with descriptions of shape that distinguish possible from impossible objects.

    Get PDF
    Five experiments examine the proposal that object names are closely linked torepresentations of global, 3D shape by comparing memory for simple line drawings of structurally possible and impossible novel objects.Objects were rendered impossible through local edge violations to global coherence (cf. Schacter, Cooper, & Delaney, 1990) and supplementary observations confirmed that the sets of possible and impossible objects were matched for their distinctiveness. Employing a test of explicit recognition memory, Experiment 1 confirmed that the possible and impossible objects were equally memorable. Experiments 2–4 demonstrated that adults learn names (single-syllable non-words presented as count nouns, e.g., “This is a dax”) for possible objectsmore easily than for impossible objects, and an item-based analysis showed that this effect was unrelated to either the memorability or the distinctiveness of the individual objects. Experiment 3 indicated that the effects of object possibility on name learning were long term (spanning at least 2months), implying that the cognitive processes being revealed can support the learning of object names in everyday life. Experiment 5 demonstrated that hearing someone else name an object at presentation improves recognition memory for possible objects, but not for impossible objects. Taken together, the results indicate that object names are closely linked to the descriptions of global, 3D shape that can be derived for structurally possible objects but not for structurally impossible objects. In addition, the results challenge the view that object decision and explicit recognition necessarily draw on separate memory systems,with only the former being supported by these descriptions of global object shape. It seems that recognition also can be supported by these descriptions, provided the original encoding conditions encourage their derivation. Hearing an object named at encoding appears to be just such a condition. These observations are discussed in relation to the effects of naming in other visual tasks, and to the role of visual attention in object identification

    Information theoretic approach for assessing image fidelity in photon-counting arrays

    Get PDF
    The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image’s entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier’s performance

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Detection

    Full text link
    Efforts to automate the reconstruction of neural circuits from 3D electron microscopic (EM) brain images are critical for the field of connectomics. An important computation for reconstruction is the detection of neuronal boundaries. Images acquired by serial section EM, a leading 3D EM technique, are highly anisotropic, with inferior quality along the third dimension. For such images, the 2D max-pooling convolutional network has set the standard for performance at boundary detection. Here we achieve a substantial gain in accuracy through three innovations. Following the trend towards deeper networks for object recognition, we use a much deeper network than previously employed for boundary detection. Second, we incorporate 3D as well as 2D filters, to enable computations that use 3D context. Finally, we adopt a recursively trained architecture in which a first network generates a preliminary boundary map that is provided as input along with the original image to a second network that generates a final boundary map. Backpropagation training is accelerated by ZNN, a new implementation of 3D convolutional networks that uses multicore CPU parallelism for speed. Our hybrid 2D-3D architecture could be more generally applicable to other types of anisotropic 3D images, including video, and our recursive framework for any image labeling problem
    corecore