44 research outputs found

    3D exploration and navigation with optimal-RRT planners for ground robots in indoor incidents

    Get PDF
    Navigation and exploration in 3D environments is still a challenging task for autonomous robots that move on the ground. Robots for Search and Rescue missions must deal with unstructured and very complex scenarios. This paper presents a path planning system for navigation and exploration of ground robots in such situations. We use (unordered) point clouds as the main sensory input without building any explicit representation of the environment from them. These 3D points are employed as space samples by an Optimal-RRTplanner (RRT ∗ ) to compute safe and efficient paths. The use of an objective function for path construction and the natural exploratory behaviour of the RRT ∗ planner make it appropriate for the tasks. The approach is evaluated in different simulations showing the viability of autonomous navigation and exploration in complex 3D scenarios

    Sampling-Based Exploration Strategies for Mobile Robot Autonomy

    Get PDF
    A novel, sampling-based exploration strategy is introduced for Unmanned Ground Vehicles (UGV) to efficiently map large GPS-deprived underground environments. It is compared to state-of-the-art approaches and performs on a similar level, while it is not designed for a specific robot or sensor configuration like the other approaches. The introduced exploration strategy, which is called Random-Sampling-Based Next-Best View Exploration (RNE), uses a Rapidly-exploring Random Graph (RRG) to find possible view points in an area around the robot. They are compared with a computation-efficient Sparse Ray Polling (SRP) in a voxel grid to find the next-best view for the exploration. Each node in the exploration graph built with RRG is evaluated regarding the ability of the UGV to traverse it, which is derived from an occupancy grid map. It is also used to create a topology-based graph where nodes are placed centrally to reduce the risk of collisions and increase the amount of observable space. Nodes that fall outside the local exploration area are stored in a global graph and are connected with a Traveling Salesman Problem solver to explore them later

    Risk-aware Path and Motion Planning for a Tethered Aerial Visual Assistant in Unstructured or Confined Environments

    Get PDF
    This research aims at developing path and motion planning algorithms for a tethered Unmanned Aerial Vehicle (UAV) to visually assist a teleoperated primary robot in unstructured or confined environments. The emerging state of the practice for nuclear operations, bomb squad, disaster robots, and other domains with novel tasks or highly occluded environments is to use two robots, a primary and a secondary that acts as a visual assistant to overcome the perceptual limitations of the sensors by providing an external viewpoint. However, the benefits of using an assistant have been limited for at least three reasons: (1) users tend to choose suboptimal viewpoints, (2) only ground robot assistants are considered, ignoring the rapid evolution of small unmanned aerial systems for indoor flying, (3) introducing a whole crew for the second teleoperated robot is not cost effective, may introduce further teamwork demands, and therefore could lead to miscommunication. This dissertation proposes to use an autonomous tethered aerial visual assistant to replace the secondary robot and its operating crew. Along with a pre-established theory of viewpoint quality based on affordances, this dissertation aims at defining and representing robot motion risk in unstructured or confined environments. Based on those theories, a novel high level path planning algorithm is developed to enable risk-aware planning, which balances the tradeoff between viewpoint quality and motion risk in order to provide safe and trustworthy visual assistance flight. The planned flight trajectory is then realized on a tethered UAV platform. The perception and actuation are tailored to fit the tethered agent in the form of a low level motion suite, including a novel tether-based localization model with negligible computational overhead, motion primitives for the tethered airframe based on position and velocity control, and two differentComment: Ph.D Dissertatio

    Risk-aware Path and Motion Planning for a Tethered Aerial Visual Assistant in Unstructured or Confined Environments

    Get PDF
    This research aims at developing path and motion planning algorithms for a tethered Unmanned Aerial Vehicle (UAV) to visually assist a teleoperated primary robot in unstructured or confined environments. The emerging state of the practice for nuclear operations, bomb squad, disaster robots, and other domains with novel tasks or highly occluded environments is to use two robots, a primary and a secondary that acts as a visual assistant to overcome the perceptual limitations of the sensors by providing an external viewpoint. However, the benefits of using an assistant have been limited for at least three reasons: (1) users tend to choose suboptimal viewpoints, (2) only ground robot assistants are considered, ignoring the rapid evolution of small unmanned aerial systems for indoor flying, (3) introducing a whole crew for the second teleoperated robot is not cost effective, may introduce further teamwork demands, and therefore could lead to miscommunication. This dissertation proposes to use an autonomous tethered aerial visual assistant to replace the secondary robot and its operating crew. Along with a pre-established theory of viewpoint quality based on affordances, this dissertation aims at defining and representing robot motion risk in unstructured or confined environments. Based on those theories, a novel high level path planning algorithm is developed to enable risk-aware planning, which balances the tradeoff between viewpoint quality and motion risk in order to provide safe and trustworthy visual assistance flight. The planned flight trajectory is then realized on a tethered UAV platform. The perception and actuation are tailored to fit the tethered agent in the form of a low level motion suite, including a novel tether-based localization model with negligible computational overhead, motion primitives for the tethered airframe based on position and velocity control, and two different approaches to negotiate tether with complex obstacle-occupied environments. The proposed research provides a formal reasoning of motion risk in unstructured or confined spaces, contributes to the field of risk-aware planning with a versatile planner, and opens up a new regime of indoor UAV navigation: tethered indoor flight to ensure battery duration and failsafe in case of vehicle malfunction. It is expected to increase teleoperation productivity and reduce costly errors in scenarios such as safe decommissioning and nuclear operations in the Fukushima Daiichi facility

    Autonomous Navigation for Mobile Robots in Crowded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Egospace Motion Planning Representations for Micro Air Vehicles

    Get PDF
    Navigation of micro air vehicles (MAVs) in unknown environments is a complex sensing and trajectory generation task, particularly at high velocities. In this work, we introduce an efficient sense-and-avoid pipeline that compactly represents range measurements from multiple sensors, trajectory generation, and motion planning in a 2.5–dimensional projective data structure called an egospace representation. Egospace coordinates generalize depth image obstacle representations and are a particularly convenient choice for configuration flat mobile robots, which are differentially flat in their configuration variables and include a number of commonly used MAV plant models. After characterizing egospace obstacle avoidance for robots with trivial dynamics and establishing limits on applicability and performance, we generalize to motion planning over full configuration flat dynamics using motion primitives expressed directly in egospace coordinates. In comparison to approaches based on world coordinates, egospace uses the natural sensor geometry to combine the benefits of a multi-resolution and multi-sensor representation architecture into a single simple and efficient layer. We also present an experimental implementation, based on perception with stereo vision and an egocylinder obstacle representation, that demonstrates the specialization of our theoretical results to particular mission scenarios. The natural pixel parameterization of the egocylinder is used to quickly identify dynamically feasible maneuvers onto radial paths, expressed directly in egocylinder coordinates, that enable finely detailed planning at extreme ranges within milliseconds. We have implemented our obstacle avoidance pipeline with an Asctec Pelican quadcopter, and demonstrate the efficiency of our approach experimentally with a set of challenging field scenarios. The scalability potential of our system is discussed in terms of sensor horizon, actuation, and computational limitations and the speed limits that each imposes, and its generality to more challenging environments with multiple moving obstacles is developed as an immediate extension to the static framework

    Improving crane safety by agent-based dynamic motion planning using UWB real-time location system

    Get PDF
    The safe operation of cranes requires not only the experience of the operator, but also sufficient and appropriate support in real time. Due to the dynamic nature of construction sites, unexpected changes in the site layout may create new obstacles for the crane that can result in collisions and accidents. Limited research has been done on efficient re-planning for cranes with near real-time environment updating while considering communications between construction crews. To improve the safety of mobile crane operations and to provide more awareness on site, the present research proposes a near real-time monitoring and motion planning approach to improve crane safety on construction sites using an ultra wideband (UWB) real-time location system (RTLS) technology. In addition, an agent system framework is proposed to guide crane operators for safe crane operations by enhancing environment awareness and by providing intelligent re-planning. Location data are collected from tags attached to cranes and are processed by the agent system to identify the poses of dynamic objects, which is used to generate a new motion plan to guide the crane movement and thus to avoid potential collision. A motion planning algorithm, RRT-Con-Con-Mod, is proposed to efficiently generate safe and smooth paths for crane motions, mainly for the boom movement, while taking into account the engineering constraints and the path quality. A dynamic motion planning algorithm, DRRT-Con-Con-Mod, is proposed to ensure safety during the execution phase by quickly re-planning and avoiding collisions. In addition, an anytime algorithm is proposed to search for better solutions during a given time period by improving the path smoothness and by reducing the path execution time. The proposed algorithms are compared with other motion planning and re-planning algorithms. The results show that the proposed algorithms can quickly find a safe and smooth motion plan. Several tests of a UWB system have been applied in the laboratory and in indoor and outdoor environments to investigate the requirements of applying UWB on construction sites, that is, requirements including accuracy, visibility, scalability, and real-time. To satisfy these requirements, the configuration of the UWB system has been analyzed in detail to decide the sensors’ and tags’ locations and numbers based on heuristic rules. These tests show a good potential for using UWB tracking technology in construction sites by processing and organizing location data into useful information for near real-time environment updating. Furthermore, the framework of an agent system is proposed to integrate the proposed methodologies of motion planning and near real-time tracking. Different agents are created to represent the equipment, to coordinate tasks, and to update the site information. The functions of these agents include exchanging information, deciding priorities, etc. The current research will benefit the construction industry by providing more awareness of dynamic construction site conditions, a safer and more efficient work site, and more reliable decision support based on good communications

    GENERALIZED PREDICTIVE PLANNING FOR AUTONOMOUS DRIVING IN DYNAMIC ENVIRONMENTS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Planning for Autonomous Operation of Unmanned Surface Vehicles

    Get PDF
    The growing variety and complexity of marine research and application oriented tasks requires unmanned surface vehicles (USVs) to operate fully autonomously over long time horizons even in environments with significant civilian traffic. The autonomous operations of the USV over long time horizons requires a path planner to compute paths over long distances in complex marine environments consisting of hundreds of islands of complex shapes. The available free space in marine environment changes over time as a result of tides, environmental restrictions, and weather. Secondly, the maximum velocity and energy consumption of the USV is significantly influenced by the fluid medium flows such as strong currents. Finally, the USV have to operate in an unfamiliar, unstructured marine environment with obstacles of variable dimensions, shapes, and motion dynamics such as other unmanned surface vehicles, civilian boats, shorelines, or docks poses numerous planning challenges. The proposed Ph.D. dissertation explores the above mentioned problems by developing computationally efficient path and trajectory planning algorithms that enables the long term autonomous operation of the USVs. We have developed a lattice-based 5D trajectory planner for the USVs operating in the environment with the congested civilian traffic. The planner estimates collision risk and reasons about the availability of contingency maneuvers to counteract unpredictable behaviors of civilian vessels. Secondly, we present a computationally efficient and optimal algorithm for long distance path planning in complex marine environments using A* search on visibility graphs defined over quad trees. Finally, we present an A* based path planning algorithm with newly developed admissible heuristics for computing energy efficient paths in environment with significant fluid flows. The effectiveness of the planning algorithms is demonstrated in the simulation environments by using systems identified dynamics model of the wave amplitude modular vessel (WAM-V) USV14
    corecore