
ABSTRACT

Title of dissertation: PLANNING FOR AUTONOMOUS
OPERATION OF UNMANNED
SURFACE VEHICLES

Brual Shah, Doctor of Philosophy, 2016

Dissertation directed by: Professor Satyandra K. Gupta
Department of Mechanical Engineering

The growing variety and complexity of marine research and application ori-

ented tasks requires unmanned surface vehicles (USVs) to operate fully autonomously

over long time horizons even in environments with significant civilian traffic. The

autonomous operations of the USV over long time horizons requires a path planner

to compute paths over long distances in complex marine environments consisting of

hundreds of islands of complex shapes. The available free space in marine environ-

ment changes over time as a result of tides, environmental restrictions, and weather.

Secondly, the maximum velocity and energy consumption of the USV is signifi-

cantly influenced by the fluid medium flows such as strong currents. Finally, the

USV have to operate in an unfamiliar, unstructured marine environment with obsta-

cles of variable dimensions, shapes, and motion dynamics such as other unmanned

surface vehicles, civilian boats, shorelines, or docks poses numerous planning chal-

lenges. The proposed Ph.D. dissertation explores the above mentioned problems by

developing computationally efficient path and trajectory planning algorithms that

enables the long term autonomous operation of the USVs. We have developed a

lattice-based 5D trajectory planner for the USVs operating in the environment with

the congested civilian traffic. The planner estimates collision risk and reasons about

the availability of contingency maneuvers to counteract unpredictable behaviors of

civilian vessels. Secondly, we present a computationally efficient and optimal algo-

rithm for long distance path planning in complex marine environments using A*

search on visibility graphs defined over quad trees. Finally, we present an A* based

path planning algorithm with newly developed admissible heuristics for computing

energy efficient paths in environment with significant fluid flows. The effectiveness

of the planning algorithms is demonstrated in the simulation environments by using

systems identified dynamics model of the wave amplitude modular vessel (WAM-V)

USV14.

Planning for Autonomous Operation of Unmanned Surface Vehicles

by

Brual Shah

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Satyandra K. Gupta, Chair/Advisor
Professor Hugh Bruck
Associate Professor Nikhil Chopra
Assistant Professor Mark D. Fuge
Professor Dana S. Nau (Dean’s representative)

© Copyright by

Brual Shah
2016

Dedication

To my parents, my brother, and all my teachers.

ii

Acknowledgments

The completion of this thesis is a result of hard work, dedication and constant

support of many people. I would like to take this opportunity to thank them all for

their roles in my journey.

First and foremost, I would like to express my sincerest gratitude to Prof.

Satyandra K. Gupta, my mentor and advisor. His ideas inspired me and his passion

motivated me to pursue them. I would always be grateful to him for providing me

with the right prospects to fructify them and further steer me towards the goal with

his knowledge and wisdom. His attitude towards work and life, his thoughtfulness

and his finesse in handling challenges has influenced me and encouraged me to be a

better person.

I would like to thank Prof. Hugh Bruck, Prof. Nikhil Chopra, Prof. Mark

D. Fuge, and Prof. Dana S. Nau for accepting my request and thus being part of

my dissertation committee. I am thankful to them for their valuable time given

the busy academic schedules. I am also thankful for their expertise, comments and

suggestions which helped me identify unforeseen obstacles and areas of improve-

ment. I am grateful to Office of Naval Research and National Science Foundation

for supporting and funding by research work.

I am obliged to University of Maryland, Department of Mechanical Engineer-

ing and Institute of Systems Research for use of equipment and facility. I would like

to thank the administrative staff for their help with administrative work.

I am also obliged to Florida Atlantic University for use of equipment, and

iii

facility at Sea Tech. I would like to thank Prof. Karl von Ellenrieder, Ivan R.

Bertaska, Armando J. Sinisterra, Wilhelm Klinger and Prof. Manhar Dhanak for

their expertise and skill set which made it possible for me in conduct my experiments

with more ease.

I would like acknowledge my success to Dr. Petr Švec. I would like to thank

him for giving me a chance to work for him and eventually introducing me to the

field of motion planning. He provided me with stimulating work that triggered me to

learn more and expand my skill set. He cheered me to learn by questioning and thus

inculcated a new approach towards learning in me. He has grown from a supervisor

to a friend who continues to support me with his presence in my life.

I would like to thank my colleagues from Simulation-based System Design lab

and friends Sagar, Atul, Carlos, Josh, Michael, Iain, Pradeep, Di, Kajal, Apurva,

and Aditya for their support, encouragement and thought-provoking discussion on

varied topics. I am indebted for their company in the lab, their help with my work

and their friendship. I will always cherish my time spent with them.

Lastly but not the least, I would like to thank my family and the almighty.

The values taught by my parents make me the person I am today. Their backing

and emotional support has compelled me to continue my journey when faced with

impasse. Their constant reassurance and care has driven me to achieve success and

make them proud.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Goal and Scope . 5
1.3 Overview . 7

2 Literature Review 10
2.1 Dynamic Obstacle Avoidance . 10

2.1.1 Motion planning algorithms for dynamic environments 11
2.1.2 COLREGs compliant motion planning algorithms 15
2.1.3 Adaptive-search based motion planning algorithms 19

2.2 Path Planning . 23
2.2.1 Path planning in geometric spaces 23
2.2.2 Path planning in time-varying flow fields 25

3 Resolution-Adaptive Risk-Aware Trajectory Planning for Surface Vehicles
Operating in Congested Civilian Traffic 29
3.1 Introduction . 29
3.2 Problem Formulation . 34

3.2.1 Definitions . 34
3.2.2 State action space representation 36
3.2.3 Problem statement . 37

3.3 Risk and Contingency-Aware Trajectory Planning 38
3.3.1 Modeling risk consideration in cost function 39
3.3.2 Calculation of collision probabilities 40
3.3.3 Evaluation of USV’s state for COLREGs compliance 42
3.3.4 Intention motion model of civilian vessels 43
3.3.5 Search . 46

3.4 Adaptive Risk and Contingency-Aware Planning 46
3.4.1 Estimation of spatio-temporal workspace complexity 47
3.4.2 Adaptive sampling . 48

3.5 Computational Experiments . 54
3.5.1 Simulation setup . 54
3.5.2 Modeling scenario congestion 59
3.5.3 Design of evaluation scenarios 61
3.5.4 Results . 63

3.6 Tuning Planner Performance . 66
3.6.1 Planning parameter tuning . 66
3.6.2 Selection of re-planning frequency 78

3.7 Summary . 80

v

4 Speeding up A* Search on Visibility Graphs Defined Over Quadtrees to En-
able Long Distance Path Planning for Unmanned Surface Vehicles 83
4.1 Introduction . 83
4.2 Approach . 87
4.3 Computation of Edges on Tangent Graph 92
4.4 A New Heuristic . 94
4.5 Focusing A* Search . 97
4.6 Assessing Effectiveness of Focused Search 100
4.7 Handling Time Varying Free Space 109
4.8 Results and Discussion . 116
4.9 Summary . 129

5 Path Planning for Unmanned Vehicles Operating in Time-Varying Flow Fields131
5.1 Introduction . 131
5.2 Problem Formulation . 135

5.2.1 Terminology . 135
5.2.2 Medium Flow Model . 136
5.2.3 Motion Model . 137
5.2.4 Cost Model . 138
5.2.5 Problem Statement . 139

5.3 Approach . 141
5.3.1 Overview . 141
5.3.2 Path Planning . 141
5.3.3 Start Time Optimization . 142

5.4 Design of Heuristics . 143
5.4.1 Heuristic #1 . 143
5.4.2 Heuristic #2 . 144
5.4.3 Heuristic #3 . 147

5.5 Results and Discussion . 151
5.5.1 Simulation Setup . 151
5.5.2 Comparison of Heuristics . 152
5.5.3 Results on Example Scenarios 155

5.6 Summary . 158

6 Conclusions 162
6.1 Intellectual Contributions . 162

6.1.1 Risk-Aware Trajectory Planning in Congested Civilian Traffic 162
6.1.2 Path Planning over Long Distances 163
6.1.3 Trajectory Planning in Time-Varying Flow Fields 163

6.2 Anticipated Benefits . 164
6.3 Future Directions . 164

Bibliography 168

vi

List of Tables

3.1 Average number of states expanded by the RCAP and A-RCAP al-
gorithms. 67

3.2 Mean number of states expanded by varying the exponential and
linear increment parameters for scenario with different congestion value. 75

3.3 Mean of percentage additional distance traveled by varying the ex-
ponential and linear increment parameters for scenario with different
congestion value. 77

4.1 Computational results for Theta* and tangent graph with the devel-
oped new heuristic (see Section 4.4) (TG+HEU) in the same scenario
with different grid sizes. 121

4.2 Comparison between different variants of developed visibility graphs-
based algorithms on scenarios with a varying number of quadtree
nodes. VG+ECU: Visibility graph with Euclidean distance as heuris-
tic, TG+HEU: Tangent graph with the developed new heuristic (see
Section 4.4), and FS+HEU: Focused search in tangent graph with
the developed heuristic. 127

5.1 Comparison of the number of states expanded by the path planner
using the heuristic #2 and #3 with respect to the heuristic #1 in
scenario having medium flows with (a) constant magnitude and (b)
random magnitude. 153

5.2 Performance of the developed energy-efficient planner in randomly
generated scenarios with varying occupancy. Cost C1 is the cost in-
curred while using the shortest distance path planner and cost C2

is the cost incurred while using the developed path planner at time
tstart = 0. 155

5.3 Comparison between the energy-efficiency provided by the developed
path planner without start time optimization (i.e., ratio C1/C2) and
with start time optimization (i.e., ratio C1/C3). Cost C1 is the cost
incurred while using the shortest distance path planner, cost C2 is
the cost incurred while using the developed path planner at time
tstart = 0, and cost C3 is the cost incurred while using the developed
path planner at time tstart = toptimal. 160

vii

List of Figures

1.1 (a)Topography of the complex marine environment and (b)A typical
bay with multiple moving boats. 4

1.2 Planning architecture. 8

3.1 A harbor scenario with an USV and several civilian vessels approach-
ing their destinations. 30

3.2 COLREGs head-on, crossing from right, and overtaking behaviors. . . 31
3.3 Calculation of CPA time and CPA distance. 43
3.4 A set of control action primitives divided into three sub-regions. . . . 49
3.5 An example of a computed risk and contingency-aware, dynamically

feasible trajectory using adaptive control action primitives in a sce-
nario with 3 civilian vessels . 51

3.6 Simulation Scenario. 54
3.7 (a) The autonomous USV14; (b) The human-controlled johnboat [1]. 55
3.8 (a) A dynamically feasible control action set Uc,d, and (b) a dynami-

cally feasible contingency control action set Ue,d for the USV14 with
different initial surge speeds. 57

3.9 Computation of the congestion metric for an example scenario. 60
3.10 The experimental results of the USV14 autonomously dealing with

“head-on” (see a) and b)), “crossing from right” (see c) and d)), and
“overtaking” (see e) and f)) situations 62

3.10 The experimental results of the USV14 autonomously dealing with
“head-on” (see a) and b)), “crossing from right” (see c) and d)), and
“overtaking” (see e) and f)) situations 63

3.11 The percentage reduction in the number of collisions recorded per
1000 boat lengths traveled by the USV using the RCAP and A-RCAP
algorithms over the VO-based planner 68

3.12 Percentage of the additional distance traveled by the USV over the
zero congestion travel distance for the RCAP, VO-based, and A-
RCAP planners. 69

3.13 Percentage of the additional time traveled by the USV over the zero
congestion travel time for the RCAP, VO-based, and A-RCAP planners 70

4.1 Topography of a complex marine environment. 84
4.2 Quadtree representation of a complex polygon. 86
4.3 Computation of visible nodes in quadtree. 88
4.4 Eliminating visible interior vertices from the visibility graph (. 89
4.5 Eliminating nodes in the interior of the convex hull (we assume the

start and the goal node are not inside any convex hull) 91
4.6 Elimination of non-visible nodes using the computed tangents for the

islands in H . 93
4.7 Designed heuristic . 96

viii

4.8 Pathological scenario where a node in tangent graph has a large
branching factor. 97

4.9 Procedure to add nodes to the focused visibility graph. 98
4.10 Selection of nodes that lie inside the local and extended search regions.101
4.11 Distribution of distances between the islands in four out of ten ran-

domly generated scenarios. 103
4.11 Distribution of distances between the islands in four out of ten ran-

domly generated scenarios. 104
4.12 Absolute percentage of next node on the optimal path that lie inside

the local search region. 105
4.13 (a)Absolute percentage, and (b) Proportional percentage of next node

on the optimal path that lie inside the extended search region. 107
4.14 (a)Absolute percentage, and (b) Proportional percentage of next node

on the optimal path that are discovered by the back connection. . . . 108
4.15 Distribution of length of line segments on the optimal path in four

out of ten randomly generated scenarios. 110
4.15 Distribution of length of line segments on the optimal path in four

out of ten randomly generated scenarios. 111
4.16 Absolute percentage of next nodes on the optimal path do not lie in

the local and extended search region and are not discovered by the
back connection approach. 112

4.17 (a)Example illustrating the computation of travel cost from the cur-
rent node nc to node n in an environment with two quadtrees M1

Q

and M2
Q.(b) Graph of time v/s distance shows the progression of the

computed path with traversal time for each segment denoted by ts
and wait time by tw . 114

4.18 Experimental scene with two quadtrees, start and goal nodes. (a)
Quadtree M1

Q. (b) Quadtree M2
Q . 117

4.19 Path computed by the planner at different values of time t1. 118
4.19 Path computed by the planner at different values of time t1. 119
4.20 Experimental scene with two quadtrees, start and goal nodes. (a)

Quadtree M1
Q. (b) Quadtree M2

Q. (c) Quadtree M3
Q. 120

4.20 Experimental scene with two quadtrees, start and goal nodes. (a)
Quadtree M1

Q. (b) Quadtree M2
Q. (c) Quadtree M3

Q. 121
4.21 Path computed by the planner at different values of time t1 and t2. . 122
4.21 Path computed by the planner at different values of time t1 and t2. . 123
4.22 Experimental setup and sample any-angle path from the start node

nI to the goal node nG. 124
4.23 Example scenario to compare the scaling between Theta* and our

approach. 125
4.24 Computed path on a real world scenario. 126

5.1 Surface currents in the Atlantic ocean. 133
5.2 Model of the flowing medium. 137
5.3 Computation of vehicle’s forward velocity under medium flow. 139

ix

5.4 Calculation of heuristic #2. 146
5.5 Calculation of additional compensation cost-to-go for free-flowing ac-

tion uf,d(s). 149
5.6 Comparison of paths for the scenario A with different start times. The

green circle represents the initial location and the red circle represents
the goal location of the vehicle. Each blue segment is a free-flow action
and each black segment is a thrust-producing action. 156

5.6 Comparison of paths for the scenario A with different start times. The
green circle represents the initial location and the red circle represents
the goal location of the vehicle. Each blue segment is a free-flow action
and each black segment is a thrust-producing action. 157

5.7 Optimal path produced by the path planner for scenarios B, C, and
D at optimal start times produced by the optimizer. 159

5.7 Optimal path produced by the path planner for scenarios B, C, and
D at optimal start times produced by the optimizer. 160

x

Chapter 1

Introduction

1.1 Motivation

In recent years, Unmanned Surface Vehicles (USVs) have been increasingly used in

many marine applications including ocean sampling, maritime search and rescue,

hydrologic surveys, harbor surveillance, and defense [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. USVs are also used to assist Au-

tonomous Underwater Vehicles (AUVs) for studying various types of marine species,

coral reefs, and searching for natural resources [26].

There are a number of civilian applications where deploying a single USV or

a team of small USVs can significantly reduce costs, improve safety, and increase

operational efficiencies. Some representative applications include:

� Remote/Persistent Ocean Sensing: The use of a team of USVs for re-

mote sensing can improve the measurement processes by permitting scientists

to adaptively change sensing strategies as data is collected or to reposition

sensors, as needed. There are certain types of measurements that can only be

made at the air water interface, such as enthalpy/entropy flux, that are im-

portant for obtaining a complete picture of the energy transfer in the ocean.

The use of small USV teams will also permit scientists to perform coordinated

measurements utilizing multiple platforms and sensors.

1

� Marine Search and Rescue: USVs can be deployed to perform finer-scale

searches with data obtained from aerial vehicles. Search and rescue operations

typically use drift model simulations, supplemented with periodically updated

meteorological conditions to direct search efforts by estimating the possible

locations of people or objects at sea. Wide-area satellite-based meteorological

measurements could be supplemented by point measurements acquired from

the USVs, refining the simulation estimates and improving the search pro-

cess. USV teams could also be used to assist unmanned underwater vehicles

as surface-underwater communications gateways and to improve underwater

localization.

� Maritime Operations in Congested Port Environments: When large

ships arrive at a port, the control of the vessel is transferred from the ship

captain to an experienced pilot, an officer specifically trained in the conditions

specific to the port (such as currents, bathymetry, underwater obstacles, and

local traffic). In coordination with tugboats and dock workers, the pilot guides

the ship into port and docks it. Ship-piloting operations appear to be an area

that can substantially benefit from human-guided USV teams by providing

improved situational awareness to the pilot.

According to the survey done by 16 UK volunteer ports, covering 594,126

docking operations in 2012, reported 292 casualties (injury/loss of life; dam-

age to ship or property; environmental pollution resulting from a collision or

incident) and 348 incidents (near misses or accidents, not included in the num-

2

ber of casualties) [27]. Most casualties and incidents occurred while underway

in harbor waters and 84% of the incidents happened in either good or fair

weather conditions. The top four incident types (74%) were: (1) contact with

a fixed object, (2) other on-board incidents, (3) machinery or hull failure, and

(4) collision with another vessel. The top four incident factors (70%) were: (1)

equipment failure, (2) breach of regulation bylaw or direction, (3) inappropri-

ate vessel navigation, and (4) incorrect procedures. Given that most incidents

occur in fair weather, where communication, sensing, and perception are eas-

ier, and that most of the factors leading to marine incidents in harbors involve

navigation or a breach of procedure/regulation, it is expected that a team of

USVs can make substantial improvements in port safety.

� Industrial Offshore Supply and Support: The offshore extraction of both

fossil fuels and renewable energies requires the maintenance and sustainment

of large, distributed offshore systems, often in harsh environments, such as

the North Sea, where operations can be costly, monotonous, and dangerous.

Human-guided USV teams could reduce the risk to life and extend the spatial

coverage of prognostic, health- and condition-monitoring systems.

Each USV operating in the complex marine environment encounter certain

unique challenges that are not faced by robots operating indoors:

� The USVs will need to comply with the International Regulations for the

Prevention of Collisions at Sea (COLREGs) [28] to avoid accidents and to

ensure nearby manned vessels are not threatened by unexpected movements

3

(a) (b)

Figure 1.1: (a)Topography of the complex marine environment and (b)A typical

bay with multiple moving boats.

of the USVs.

� Local current, wave, and wind conditions can impact a USV’s performance by

reducing the dynamic range of its sensors and actuators; the USVs must be

able to compensate for this.

� Outdoor on-water operations involve some degree of risk and urgency. In most

situations, completely eliminating risk is not feasible. Therefore, USVs must

assess risks and make risk-informed decisions.

� Operations are carried out in highly dynamic environments and roles of indi-

vidual USVs may need to change rapidly in response to changing situations.

4

1.2 Goal and Scope

This work presents the trajectory and path planning algorithms for USVs operating

in dynamic and complex marine environments.

The main research issues this work addresses are as follows:

i. Resolution-Adaptive Risk-Aware Trajectory Planning for Surface Vehicles Op-

erating in Congested Civilian Traffic:

The USVs will be operating in an unfamiliar, unstructured marine environ-

ment (see Figure 1.1 (b)) with obstacles of variable dimensions, shapes, and

motion dynamics, such as other unmanned surface vehicles, civilian boats,

shorelines, or docks posing numerous planning challenges. Efficient and safe

navigation in a highly cluttered, dynamic environment requires prediction of

the future movement of dynamic obstacles that can interact with each other

in complex ways. The planner needs to perform reasoning about the risk asso-

ciated with each expected avoidance maneuver. Additionally, it also needs to

reason about the availability of contingency maneuvers to counteract the un-

predicted behaviors of the vessels. These features cannot be incorporated into

existing purely reactive planners [1, 29, 30]. By contrast, traditional, lattice-

based, deliberative planners [31, 32, 33] can find a global optimal trajectory by

employing multi-step look-ahead search. However, they are computationally

slow when dealing fast moving obstacles. We have developed an algorithm that

integrates a lattice-based, risk and contingency-aware planner (RCAP) which

searches for trajectories in a 5D state space and reasons about the collision

5

risk and availability of contingency maneuvers (see Section 3.3). An adaptive

variant (A-RCAP) dynamically scales the control action primitives based on

the estimated spatio-temporal complexity of the local work-space around each

state being expanded during the search for a trajectory.

ii. Speeding up A* Search on Visibility Graphs Defined Over Quadtrees to Enable

Long Distance Path Planning for Unmanned Surface Vehicles:

Unmanned surface vehicles are increasingly used on missions with a large op-

erating environment and long operating times. Often the marine environments

are comprised of complex convoluted polygons that cannot be represented by

the standard simple geometrical shapes. We have developed an algorithm

that computes optimal paths using A* search on visibility graphs defined over

quadtrees. We have also developed an admissible heuristic that accounts for

large islands while estimating cost-to-go and provides a better lower bound

than Euclidean distance-based heuristic.

iii. Path Planning for Unmanned Vehicles Operating in Time-Varying Flow Fields:

The USVs operating in the marine environment encounter significant fluid

medium ows such as strong currents. These fluid flows influences the maximum

operating velocity and energy consumption of the vehicle. Weather forecast

reports provide an estimate of the medium flow and can be utilized to generate

low-cost paths that exploit medium flow to aid the motion of the vehicle and

conserve energy. We have developed an A* based path planning approach

that can handle complex dynamic obstacles and arbitrary cost functions. The

6

efficiency of the A* search is improved by the new admissible heuristics for

estimating cost-to-go by taking into account flow considerations.

1.3 Overview

An unmanned surface vehicle on a long voyage (see Figure 1.1(a)) and 5.1) will need

to employ the three following planner types:

i. A global path planner to compute a sequence of waypoints from the start to

the goal location which form a collision-free path [34, 35, 36, 37]. Often, only

static obstacles are handled by this planner.

ii. A trajectory planner to compute risk-aware, dynamically feasible trajectories

[38, 32] via the waypoints generated by the global path planner.

iii. A reactive planner for locally avoiding highly dynamic obstacles [39, 30, 40].

The planners described in Chapter 4 and 5 fall into the global path planning

category and the planner in Chapter 3 fall into risk-aware trajectory planning cat-

egory. Figure 1.2 shows a typical planning architecture used for unmanned surface

vehicles. The path planner (shown in green) computes the geometrically feasible

collision free path given the geographical map (typically of the order of several hun-

dred kilometers) and the weather model to compute energy efficient path planner.

The paths computed by the path planner are provided as an input to the trajectory

planner which then computes risk-aware, COLREGs-compliant, and dynamically

feasible trajectory for shorter portions on map (typically of the order of several

7

Figure 1.2: Planning architecture.

8

hundred meters). During the computation of risk-aware trajectory the planner ac-

counts for the motion of all the civilian traffic and considers the USVs dynamical

model and low-level controller. Finally, the trajectory computed by the trajectory

planner is followed using a COLREGs-compliant reactive planner described in one

of our previous works [41]. The reactive planner is deployed to ensure collision free

operation in the case of emergencies.

In the scenario where the geometrically feasible path computed by the global

path planners are not valid and the USV cannot compute a dynamically feasible

trajectory, then it sends an exception to the global path planner forcing it to compute

a new trajectory. For example, the trajectory planner was unable to find a valid

trajectory due to the discrepancy of obstacles regions in the real-world and the

geographical map provided to the global path planner. In these situations, the

trajectory planner is expected to throw an exception to the global path planner

along with the information of the newly discovered obstacles. Thus, the global

planner will compute a new path that can be followed by the USV.

9

Chapter 2

Literature Review

2.1 Dynamic Obstacle Avoidance

In this section, we provide a review of existing research paradigms related to motion

planning for highly dynamic environments. Our primary focus is on approaches

that consider other robots and human driven vehicles as actively avoiding entities,

as opposed to considering them only as passively moving obstacles.

In the broader context of robotics, most of the obstacle avoidance paradigms

can be categorized into 1) local reactive approaches that consider static as well as

dynamic obstacles only in the vicinity of the robot, 2) deliberative approaches that

require the complete state of the environment in order to compute a globally optimal

trajectory, and 3) hybrid approaches that use a deliberative planner to compute a

nominal trajectory and a reactive planner to follow the nominal trajectory while

yielding to dynamic obstacles according to a set of predefined navigation rules (e.g.,

COLREGs).

The review is divided into three subsections, namely, motion planning al-

gorithms for dynamic environments (see Section 2.1.1), algorithms incorporating

COLREGs into planning (see Section 2.1.2), and motion planning algorithms which

dynamically scale motion primitives based on the spatio-temporal complexity of the

scene to improve the efficiency of the search (see Section 2.1.3).

10

2.1.1 Motion planning algorithms for dynamic environments

Planning algorithms developed for robotic systems operating in dynamic environ-

ments are highly dependent on their kinodynamical constrains [42], the number of

look-ahead planning steps, behavior models [43] of dynamic obstacles, etc. In this

subsection, wefirst summarize the more widely used reactive or local planning ap-

proaches and discuss their limitations. Second, we will present major sampling-based

deliberative planning approaches. Finally, we will summarize graph search-based

approaches.

Most local obstacle avoidance paradigms [44, 45, 46, 30, 47, 29, 48] compute

greedy avoidance actions to avert a collision with obstacles. These planners rely

on a very high replanning rate to deal with fast and dynamic moving obstacles. In

some cases, the algorithms take the robot’s kinematics and dynamics into account

when deciding which avoidance action to execute. The other approaches [49, 50, 51,

52, 53, 40] estimate the future positions of obstacles by projecting their observed

velocities in time. In an environment with a high traffic density, every obstacle

usually yields to one or more other obstacles and thus does not maintain a constant

velocity for a finite duration of time. Hence, it is very difficult to infer the future

positions of the obstacles by only considering their current velocity vectors. This is

the reason why these approaches do not perform efficiently in environments with a

large number of obstacles.

Other techniques for dynamic obstacle avoidance [54, 55, 56, 57, 58] assume to

have a model of the robot’s environment up to a given time horizon. The approaches

11

typically assume dynamic obstacles to behave strictly as per the given model. How-

ever, in reality, the actions performed by the robot generate a reciprocal response by

the dynamic obstacles which is very difficult to accurately predict. One approach to

improve this prediction is through gathering statistics of the past obstacle’s behavior

for different configurations of the environment [59, 43].

Several descendants [60, 61, 62] of the classical Velocity Obstacles (VO) tech-

nique [39] address the above mentioned problem of reciprocal motion planning. But,

these planners rely on the assumption of precisely knowing the avoidance strategies

of dynamic obstacles. Also, the approach presented in [63] presents the probabilis-

tic version of VO which computes a collision cone by incorporating the uncertainty

in the behavior of the obstacles. These extensions of VO assume the robot to be

holonomic and capable of adapting to abrupt changes in the velocity vectors of

the obstacles. This assumption is unrealistic given the kinodynamic constraints of

physical systems. These methods are extended by [52, 64, 65, 66] for robots with

kinodynamic constraints. The approach presented in [52] combines the probabilistic

VO [63] with an occupancy grid which incorporates the dynamics and sensing uncer-

tainty of the robot. The approach presented in [64], extends the optimal reciprocal

collision avoidance (ORCA) [62] for multiple robots with car-like dynamics. Alonso-

Mora in [65] also extends ORCA by adding non-holonomic constraints in the velocity

space to achieve dynamically feasible velocity vectors for non-holonomic robots. Re-

cently, Bareiss in [66] extended the concept of LQR-obstacles [67] (extension of VO)

for robots with non-homogeneous and non-linear dynamics.

Rufli et. al. [68] proposed a reciprocal local obstacle avoidance method as

12

an extension to RVO [60]. The technique computes so-called continuous controlled

obstacles COn-CO which represent feasible feedback controlled trajectories that may

lead to a collision. The set outside COn-CO represents a set of safe trajectories that

ensure continuity of a control sequence rather than piecewise linearity as proposed

in VO-based techniques.

There are many hybrid approaches [69, 70, 1, 71, 72, 73, 74, 75] which compute

a nominal trajectory by only considering static obstacles and use a local planner

to deal with dynamic obstacles when tracking the nominal trajectory. These ap-

proaches work reliably when the density of dynamic obstacles in the environment

is less and the obstacles do not share any complex reciprocal relationship among

themselves and the robotic system.

In the domain of sampling-based motion planning algorithms, the approach

presented in [51] uses a variant of the rapidly exploring random tree (RRT) algo-

rithm to compute efficient paths in high dimensional state spaces for robots with

kinodynamical constraints. The work introduces a concept of partial motion plan-

ning (PMP) which returns partial plans at the end of a given planning interval.

The algorithm relies on the inevitable collision state concept to ensure safety of the

partial plans. However, in general, the computed paths are not smooth because of

the random sampling used during the search. This promblem is solved by recently

developed variant of the algorithm named RRT* [76]. In addition, the approach

presented in [51] does not consider the uncertainty in the motion of dynamic obsta-

cles.

Kushleyev et al. [77] developed a deliberative motion planning approach as

13

a variant of the A* algorithm that searches in a time-extended state space to be

able to consider future predicted states of dynamic obstacles. The algorithm models

dynamic obstacles using the differentially-constrained Ackerman steering model [42].

It estimates their future positions and accounts for the corresponding uncertainty

using a sequence of Gaussian distributions with increasing variances in time. The

developed approach introduces a concept of a time-bounded lattice, which ignores

the presence of a dynamic obstacle after a certain time horizon when the probability

of the obstacle being at its mean drops below a given threshold. In addition, the

search beyond the time horizon does not consider the time dimension; it only uses

position and orientation state variables. This reduces the computational resources

and makes the planning efficient. However, this approach also considers obstacles as

passive agents (i.e., agents that do not reciprocally react to the robot’s maneuvers)

and assumes that they maintain their trajectories for the entire planning cycle. This

assumption stands void in a cluttered, real-world environment where each dynamic

obstacle reacts to actions the robot takes.

Philips et al. introduced an algorithm named SIPP (Safe Interval Path Plan-

ning) for path planning in dynamic environments [78]. Unlike the algorithm pre-

sented in [77], the authors do not explicitly include the time dimension into the

search, which increases the computation time and decreases the re-planning fre-

quency. They define a notion of a safe interval, during which a robot is collision-free

for a specified time period if it maintains its current position. Hence, given deter-

ministic paths of dynamic obstacles, a search space can be constructed in which

each state consists of the position and the safe interval period. A path can be com-

14

puted in this new search space by finding safe intervals starting from the robot’s

current state to the goal state. This planning approach is efficient when the robotic

system has the knowledge of the deterministic movement of all dynamic obstacles.

However, it is prone to fail in highly uncertain and cluttered environments. Finally,

the approach presented in [79] is a combination of [78] and [77] and also assumes

deterministic motion of dynamic obstacles.

In a real-world scenario, it is challenging to accurately predict the motion of

obstacles. This is because the motion of an obstacle is sometimes dependent on the

path the robot chooses to pursue. The developed RCAP algorithm models dynamic

obstacles as intelligent decision making agents. In particular, the planner predicts

the motion of a vessel in response to the avoidance maneuvers performed by the

USV at each node during the search for a trajectory. The RCAP algorithm searches

for the trajectory in 5D state space with the time as one of the dimensions. It also

reasons about the availability of contingency maneuvers along the trajectory which

are executed in response to unpredictable behavior exhibited by obstacle vessels.

2.1.2 COLREGs compliant motion planning algorithms

The International Maritime Organization (IMO) has developed a standardized set

of rules called the International Regulations for the Prevention of Collisions at Sea

(COLREGs) [28] which serves as a guide for selecting avoidance maneuvers. In order

to ensure increased operational safety, it is mandatory for all vessels to comply with

these rules throughout their missions.

15

The development of long-term autonomy for USVs requires incorporating

COLREGs directly into their behavior-based architectures. The recent survey by

Campbell et al. [80] highlights the fact that a majority of guidance systems does not

implement these rules satisfactorily to ensure safe operation of unmanned systems

in complex scenes.

Purely rule-based planning systems for USVs which implement COLREGs

guidelines [28] include the Springer USV planner [81]. The planner integrates a

simple waypoint guidance using line-of-sight (LOS) with a manual biasing schema

to follow the rules of the road.

Another approach presented in [82] solves collision avoidance in accordance

with COLREGs by choosing an appropriate short-term trajectory or a maneuver

from a list of candidate trajectories using a prioritized list of predefined criteria. The

criteria include the shortest execution time, safety distance, rules 14, 15, 16, and 17

from the COLREGs guidelines, and minimize the deviation of the vehicle from the

user specified path. In [83], the deliberative part of the navigation planner contains

a rule-based module to compute trajectories consistent with COLREGs during all

planning stages. The developed rule-based system determines the compliance of

the planned trajectory with COLREGs by finding points of closest approach along

the trajectory and applying a set of hand-coded rules that make decisions based on

the course and velocity of other friendly vehicles. A 2D-grid based path planning

algorithm (DPSS) was adapted in [84] to generate COLREGs-compliant paths. To

handle head-on collision scenarios according to the rule 14, a virtual obstacle is

placed on the left side of the vehicle. Similarly for the MEREDITH UAV, a set of

16

simple rules to handle a head-on situation was developed in [85].

Dynamic obstacle avoidance (OA) combined with the VO method and a tech-

nique for computing projected obstacle areas, which moving obstacles could occupy

along their future trajectories, is presented in [70]. In this approach, the shape of

the projected obstacle area is skewed to allow the OA to comply with the basic rules

of the road. Similarly, the VO method was also adapted for following COLREGs in

[86] and demonstrated using both simulation and on-water experimental tests. The

technique generates a safety buffer to handle the uncertain movement of other boats

and prevents oscillation in the execution of rules through hysteresis. The developed

technique was integrated into the NASA JPL CARACaS system [87].

The Interval Programming (IP) within a behavior-based architecture for op-

timal blending of action outputs of behaviors implementing COLREGs has been

developed in [3, 88, 89]. Each behavior produces a single objective function over the

actuator’s space of the vehicle that is combined with objective functions of other

behaviors to produce a single action for execution. The developed approach was

tested on the MIT kayak platform.

In terms of variations of the potential field method, the work in [90] uses the

Virtual Force Field method modified to operate in either collision avoidance or track-

keeping modes. The collision avoidance mode has the ability to handle both static

and dynamic obstacles and specifically follow the COLREGs guidelines. The Virtual

Force Field method computes the overall force generated by the combination of the

force for pulling the vehicle toward the next waypoint and the force for directing the

vehicle away from an obstacle. The method is parameterized so that the user can

17

define a typical behavior of the vehicle using fuzzy logic expert rules. These rules

influence the behavior of the vehicle in dangerous and safe regions of the space and

also serve in solving more complex obstacle avoidance situations. Similarly in [91],

the work adapts the artificial potential field method for planning in accordance with

COLREGs. A fuzzy logic based decision making process was used to implement

COLREGs for autonomous guidance and navigation in [92], [93] and [94].

Evolution-based Cooperative Planning System (ECo PS) was adapted to sup-

port COLREGs in [95]. The planner considers head-on and crossing collision sce-

narios. The work in [96] reported preliminary investigation of COLREGs-compliant

collision avoidance maneuvers bas- ed on a biased waypoint guidance and genetic al-

gorithm. The genetic algorithm is used for computation of safe, evasive trajectories

compatible with COLREGs. The stu- dy in [97] presents another EA-based path

planning algorithm for dealing with multiple obstacles in close-range. The algorithm

determines the collision risk with each obstacle and suitability of candidate paths

to comply with COLREGS.

Several recent efforts have been made to integrate COLREGs into a path plan-

ning algorithm for USVs [86, 1]. However, these approaches can only operate safely

in relatively simple scenarios with less civilian traffic. The approaches also assume

that each vessel has the same amount of information about the current COLREGs

situation and thus it perceives and reacts in the same way. This assumption may

not hold in real-world scenarios where every sailor has his own interpretation of

COLREGs depending upon his perception, the size, speed, and heading estimate of

other vessels in the boat’s surrounding. Additional factors include a limited field of

18

view, environmental conditions (e.g., ocean currents or wind), and the sailor’s own

experience to infer when COLREGs is breached by any of the civilian vessels, etc.

Hence, it is non-trivial to encode standard COLREGs rules into the general path

planning framework used in complex and busy scenarios that involve many vessels.

The approaches described above work satisfactorily in low congested scenario

with a few civilian vessels. The current state-of-the-art planning approaches for

COLREGs compliant obstacle avoidance [86, 1] are local in nature. This is because

local planners have lower computational requirements and thus can rely on frequent

replanning to handle the dynamicity of the environment. However, reactive planners

work satisfactorily only in scenarios with simple and relatively low traffic.

2.1.3 Adaptive-search based motion planning algorithms

The search-based deliberative planners have been widely used in the robotics com-

munity for automated guidance of unmanned vehicles [98, 99, 100, 101]. The

challenge with these planners is that the computation time significantly increases

with the increase in the dimension of the state space, complexity of the motion

primitive set, complexity of the environment, number of dynamic obstacles, etc.

Hence, researchers have developed several techniques to reduce the computation

time to achieve planning within allowable time limit. In our review, we will be pri-

marily focusing on techniques involving grid and lattice-based planning paradigms

[33, 102, 103] that were developed to enhance the capability as well as performance

of the classical discrete search algorithms such as A* [104], D* Lite [34], Anytime

19

Dynamic A* [35], etc.

The computation efficiency of a path planning algorithm is highly dependent

on the resolution of the grid that is used to discretize the robot’s continuous state

space. This selection is dependent on several factors such as the minimum distance

between obstacles, size of the obstacles, the speed of the obstacles, the complexity

of the control action set of a robot, etc. However, the greater the resolution is, the

higher is the computation time, and better is the quality of a computed path and

vice-versa.

In recent years, several extensions to the standard grid-based algorithms have

been proposed to achieve balance between their computational efficiency and tra-

jectory optimality. For example, the Accelerated A* technique developed by Šǐslák

et al.[105, 106] varies the magnitude of the transition between the current state

and its neighbor based on the available free space. This magnitude is determined

through finding an empty square region with the maximum size around the current

state. The detection of the maximum size of the square is quad- ratic in the num-

ber of cells. This approach closely resembles our approach. However, our planner

expands control primitives (i.e., determines the magnitude of state transitions) in

an asymmetric way. In particular, the presence of an obstacle in one direction does

not affect the magnitude of the state transition in the other. Also, in our applica-

tion, the position of an obstacle is dynamic and stochastic in nature. Hence, the

algorithm needs to compute a collision probability to determine the magnitude of a

specific state transition. Our algorithm gradually varies the magnitude of the state

transition at every successor state with respect to the collision probability. Hence,

20

the magnitude of a state transition is determined in constant time.

In addition, Yap et. al. developed an algorithm called Block A* [107, 108] in

which the whole workspace is divided into several disjoint rectangular blocks of a

predefined constant size. Each block is further discretized into grid cells. For each

block, the algorithm precomputes a database of all possible configurations with free

and obstacle cells, and the list of optimal distances for each pair of boundary cells

for each obstacle configuration. Unlike standard A*, the Block A* expands each

block at a time, instead of expanding each cell as it is in the standard A*. It looks

up the best optimal path through a particular block.

Barraquand and Latombe in [109] proposed a motion planning algorithm to

find a resolution complete path for a non-holonomic mobile robot. The algorithm

expands a search tree using control of non-holonomic mobile robot and is dependent

on the time discretization and depth of the search tree. If the solution exists, the

algorithm guarantees to provide one by finely discretizing the time space and increas-

ing the depth of the search tree. Thus, making the search exhaustive. Lindemann in

[110] developed a multi-resolution algorithm which incrementally reduces the time

discretization and increases the depth of a search tree until the feasible solution is

found. Thus, one can quickly find feasible paths without exhaustively searching the

space. Unlike our algorithm, this approach does not vary the resolution based on

the distribution of obstacles and is unable to deal with the uncertainty in position

of the obstacles.

The computation time of a path planning algorithm is also dependent on the

dimension of the state space. Researchers in the robotics community have devel-

21

oped several problem-specific algorithms which vary the set of motion primitives

used during the search to save computational resources. For example, Cohen et al.

demonstrates a variant of the A* algorithm with adaptive motion primitives using

a 7 DOF manipulator in [111]. In this work, the authors define a set of motion

primitives used in a state space with reduced dimension (i.e., defined by the number

of joints that are modified by the motion primitives). They also define a set of

primitives used in a state space with full dimensionality. The algorithm switches

from the reduced primitive set to a complete set when the currently expanded set

is below a certain threshold distance from the goal state. Another recent example

includes the work by Gochev et al. [112, 113, 114], where the algorithm starts with

a lower dimensional state space and iteratively keeps adding higher dimensional

states to the state space until it finds an entire trajectory made up of a sequence of

higher dimensional states. In other words, the algorithm iteratively decides where

to replace lower dimensional regions by higher dimensional ones in order to make

the trajectory feasible for the robot to successfully execute. In our previous work

[101], we developed a planning approach which utilizes a set with a higher number

of motion primitives in regions close to the initial state of an unmanned vehicle and

vice versa in distant regions to improve the computational efficiency.

The developed RCAP algorithm searches in a 5D state space which requires

high computational resources. We have enhanced RCAP to dynamically scale con-

trol action primitives depending upon the estimated spatio-temporal complexity of

the workspace. This significantly improves the computational performance of the

planner. It exploits the fact that dense sampling is only required in highly complex

22

regions of the workspace where the paths of most civilian vessels intersect. However,

it sparsely samples the regions of the workspace which are relatively less complex

with lower civilian traffic.

2.2 Path Planning

2.2.1 Path planning in geometric spaces

Path planning is a well-studied problem in robotics and AI communities. Many dif-

ferent approaches have been developed to solve the path planning problem [42, 115].

The body of work that is most closely related to the theme of this dissertation is

the path planning problem for a given complete map. We will review methods that

deal with known stationary obstacles with no uncertainty in the environment or

the outcome of the vehicle actions. Readers are referred to [116, 117, 118] for an

overview the planning methods in partially known maps. Methods for planning un-

der uncertainty are discussed in [119]. The planning methods developed for dealing

with dynamic obstacles is given in [62, 120, 121, 86].

Path planning problems over the long distances can be divided into two cate-

gories. The first category includes problems where configuration spaces associated

with the collision-free regions of the space can be easily computed explicitly. Prob-

lems in 2D workspaces (i.e., 3D configuration spaces) belong to this category. Path

planning for unmanned surface vehicles belongs to this category. The second cate-

gory belongs to the class of problems where explicitly computing configuration space

is computationally challenging. Sampling based methods such as Rapidly Exploring

23

Random Trees (RRT) [36] and Probabilistic Road Maps (PRM) [122] have been

successfully used to deal with such problems. In this dissertation, we will focus on

methods that use explicitly computed configuration spaces.

Finding optimal paths requires abstracting the given configuration space into

a discrete graph over which search can be performed to compute the optimal path. If

the application requires solving the planning problem multiple times over the same

configuration space, then it is useful to construct roadmaps [123], and Voronoi graphs

[124, 125] associated the configuration space. Even though this takes significant

computational effort upfront, the roadmap and/or Voronoi graphs can be reused over

the multiple planning instances. If the planning problem is not being solved multiple

times, then it is computationally preferable to construct the relevant portions of the

search graph on-the-fly. In this dissertation, we are interested in methods that do

not precompute the search graph.

There are three main methods for representing the path planning problems

as graph search. The first class of methods represents the configuration space as

uniform grids [126, 104, 34, 35] or multi-resolution grids [107]. At any point in the

grid, the vehicle can move only to the adjacent grid points using a fixed number of

actions. This method limits the branching in the search trees, but leads to a large

number of nodes in the search tree. Paths produced by these methods are not smooth

and often not optimal. The second class of the methods is based on the idea that the

optimal path will move the vehicle in straight line paths between obstacles and it will

only pass through visible vertices of the obstacles. The underlying representation

used during the search is called visibility graph [127, 128, 129]. These methods

24

significantly reduce the number of nodes in the search graph. However, the branching

factor can be high. This leads to computationally slow performance when the spatial

region over which the planning is being done is large. These methods produce

optimal paths. Recent development in any-angle search represents a third class of

methods. These methods combine features from the above two class of methods and

limit the branching at the search node and yet do not constrain the vehicle to move

along the grid edges. These methods are fast and produce significantly better paths

than the grid based methods. However, paths produced by these methods may not

be optimal. Notable methods belonging to this class are Incremental Phi* [130],

Theta* [131] and its variants [132, 133, 134], and Field D* [135].

Several researchers have used quadtrees as the underlying representation for

path planning [136]. Recent work in the area that uses quadtree to represent the

operating environment of the robot included [137], [138].

2.2.2 Path planning in time-varying flow fields

Several path planning approaches to realize energy-efficient, autonomous operations

of robotic systems in non-linear, time-varying fields were developed in the past. In

particular, a purely local path optimization technique was developed by Kruger et al.

[139] to allow autonomous guidance of an autonomous underwater vehicle (AUV)

in a fast flowing tidal river. The technique employs a gradient based approach

to locally modify an initial straight path between two given locations according

to a predefined cost function. Similarly, Witt et al. [140] developed a technique

25

for searching paths in a time-extended state space that balances the path execution

time and energy requirements. The approach searches over a predefined set of global

static paths represented as splines and is combined with a local random, simulated

annealing-inspired search. This choice of search techniques, however, does not allow

a systematic exploration of complex search spaces.

Thompson et al. [141] developed a wavefront based path planning algorithm

for an UAV to follow paths that ensure fastest arrival of the vehicle to given locations

through uncertain, time-varying current fields. The algorithm, however, does not

explicitly balance the energy expenditure of the vehicle with the path execution time,

prune the search space, or account for the uncertain dynamics of the field (contrary

to the claims in the paper). Similarly, the approach developed by Lolla et al. [142]

is also based on the forward evolution of a wavefront from the initial to the goal

vehicle’s states, and determining a series of states along the evolving wavefronts that

optimize a given objective (in this case, travel time). In contrast to this approach,

the technique presented in this paper prioritizes states during the expansion, which

increases its computational performance. In addition, the use of the free-flow action

allows a variable resolution search. Soulignac [143] developed a sliding wavefront

expansion algorithm that computes physically controllable, globally optimal and

feasible paths for a vehicle operating in an environment with strong currents (i.e.,

currents that may overcome the physical capabilities of the vehicle). Although

theoretically sound, the algorithm is based on the classical wavefront expansion and

as such does not consider the evolution of currents in time.

Garau et al. [144] evaluated several heuristic functions as candidate compo-

26

nents of the A* algorithm. The developed approach, however, is suitable only for

static fields. Similarly, Isern-Gonzalez et al. [145] developed a method based on

the A* and Nearest Diagram (ND) algorithms. The method finds an initial path

that is further locally optimized. The A* algorithm was also combined with the

fast marching algorithm into the FM* algorithm in [137] that has the capability of

computing smooth paths in continuous environments. However, the work does not

explicitly address the energy-efficiency as well as time-varying fields.

Al-Sabban et al. [146] developed an energy-efficient path planning algorithm

for an unmanned aerial vehicle (UAV) operating in an uncertain wind field. The

problem was defined as a Markov Decision Process (MDP) to consider local, stochas-

tic nature of the field vectors. The algorithm, however, does not explicitly account

for a time-varying field. The work was further adapted in [147] for path planning of

AUVs.

Sampling-based methods were also used for energy-efficient, probabilistic-complete

path planning. For example, a path planner based on the Rapidly Exploring Ran-

dom Trees (RRT) was introduced in [148] for computing paths to realize a long-term,

autonomous operation of underwater gliders.

Long-term path planning in time-varying fields with obstacles is computa-

tionally as well as space expensive due to the large size and complexity of the

search space. Most recently, the approach developed by Fathpour et al. [149, 150]

computes paths or navigation functions for autonomous guidance and reachability

analysis of a hot-air balloon in time-invariant, time-varying, as well as stochastic

wind fields. The approach allows space and computationally (as a by-product of

27

the space-efficient planning) efficient planning through decomposing the planning

problem into subproblems, and solving each of them sequentially.

28

Chapter 3

Resolution-Adaptive Risk-Aware Trajectory Planning for Surface

Vehicles Operating in Congested Civilian Traffic

In this chapter1, we present a lattice-based 5D trajectory planner for unmanned

surface vehicles (USVs) operating autonomously over long time horizons in environ-

ments with significant civilian traffic.

3.1 Introduction

The growing variety and complexity of research and application oriented tasks re-

quires unmanned systems to operate fully autonomously over long time horizons

even in environments with significant traffic comprised of manned, commercial, and

recreational vehicles (these vessels are referred to as “Civilian Vessels” (CVs) in

this chapter). The complexity of the environments creates significant challenges for

autonomous avoidance of CVs by the USVs. For example, the vessels as well as the

unmanned systems have different dynamic characteristics depending on their types

and dimensions which in turn affects their braking distance and minimum turning

radius.

Let us consider an example of a harbor scenario shown in Figure 3.1. The

USV enters the harbor from the south channel with the objective of reaching the

1 The work in this chapter is derived from the published work in [38] and accepted work in [151]

29

Figure 3.1: A harbor scenario with an USV and several civilian vessels approaching

their destinations.

west channel. Under ideal conditions, each vessel is assumed to follow COLREGs

while avoiding its fellow vessels.

As per the scenario described in Figure 3.1, CV1 is crossing from the right side

and the COLREGs ”Rule 15” applies (see Figure 3.2). In this situation, the USV

can either yield to CV1 (the vessel has the right of way) by slowing down to a steady

state or passing it to the right. Or alternatively, the USV can breach COLREGs by

not yielding to CV1 and CV3 while moving to the west channel.

In both cases, CV1 is under a “crossing-from-right situation” with respect to

CV3, and thus it is supposed to yield to CV3 from right. It may be in CV1’s best

interest to slow down and avoid passing through the narrow space between CV3 and

the land mass. This is mostly because of the risk of collision with the land mass.

If the USV chooses the first option, i.e., to slow down and wait for CV1 to

30

Figure 3.2: COLREGs head-on, crossing from right, and overtaking behaviors.

clear its way, then it will block the entire south east channel for some time and thus

obstruct the way of CV2. In such a scenario, the USV as well as CV2 will have to

wait and try to maintain their states and avoid collisions with each other as well as

the surrounding land areas. This may not only be highly inefficient, but also risky.

In a marine environment, it may be a challenge to maintain vessel position because

of forces due to winds, ocean waves and wake generated due to the motion of other

vessels.

On the contrary, if the USV breaches COLREGs with respect to CV1 and

CV3, the intersection of the south and south east channels becomes free for CV2

to pass through. However, in this case, the USV will need to evaluate the collision

risk with the vessels (e.g., CV4) coming out of the west and north east channels.

31

Although the USV has the right of way with respect to the vessels coming from the

west channel, the vessels might not be able to see the USV because of the limited

visibility due to the land area. In this example, we assume the USV knows about

the presence of CV4 in the west channel and is able to execute the appropriate

avoidance maneuvers.

This example shows that trajectory planning in an environment with signifi-

cant civilian traffic requires enhanced reasoning about the motion of each vessel in

the entire scenario in response to a planned trajectory of the USV.

Safe navigation in a highly dense and dynamic environment is a challenging

problem [152] and requires good prediction capabilities of the future movement of

dynamic obstacles. In addition, the trajectory planner needs to perform enhanced

reasoning about the risk associated with each avoidance maneuver by predicting

response behaviors of civilian vessels. It also needs to reason about the availability

of contingency maneuvers to counteract the unpredicted behaviors of the vessels.

These advanced features cannot be incorporated into local planners [1, 29, 30] with

a limited number of look-ahead steps.

On the other hand, traditional, lattice-based, deliberative planners [31, 32, 33]

require a significant amount of computation to find a global trajectory that opti-

mizes a given performance measure. This is mostly because they employ multi-step

look-ahead search in a higher dimensional state space to globally reason about the

collision risk. Even though the operating frequency of these planners is generally

lower than that of the local planners, it is still necessary that they keep their com-

putational efficiency at a satisfactory level.

32

The classical lattice-based deliberative approaches use control action primi-

tives with constant execution times while searching the state space for dynamically

feasible trajectories. The planners that use control primitives with short time scales

are successful in finding trajectories in highly complex and cluttered scenarios, but

they are computationally expensive, which leads to low re-planning rates. On the

other hand, the approaches that use primitives with longer time scales fail to pro-

duce effective trajectories in dense scenarios, even though they are computationally

efficient and thus have a satisfactory replanning rate. So, the right balance between

the computational demand and optimality of a trajectory can be achieved by finding

the correct combination of long and short time-scaled control action primitives.

We have developed an adaptive, risk and contingency-aware trajectory plan-

ning algorithm (A-RCAP, see Section 3.4) for dynamically scaling control action

primitives based on estimated spatio-temporal complexity of the local work-space

around each state being expanded during the search for a trajectory. This spatio-

temporal complexity depends on the distribution and concentration of civilian ves-

sels and their future predicted trajectories. It also depends on the history of spatio-

temporal complexity of the states along a trajectory leading to the local workspace.

The planner estimates the complexity of each region around the USV by actively

probing the state space during the search. It dynamically scales the control action

primitives while preserving their dynamical feasibility. Dividing the workspace into

several regions allows the planner to independently scale the primitives.

The developed algorithm integrates a lattice-based, risk and contingency-aware

planner (RCAP) that search- es for trajectories in a 5D state space and reasons about

33

the collision risk and availability of contingency maneuvers (see Section 3.3). In-

corporating the knowledge of avoidance behaviors of civilian vessels into trajectory

planning allows us to find safe trajectories in complex and congested scenes. Inte-

grating contingency maneuvers into a trajectory significantly reduces the collision

rate of the USV with the vessels that may breach COLREGs or behave unpredictably

in general.

Our results in Section 3.5.4 demonstrate that the developed planners signifi-

cantly reduce the number of collisions in comparison to a baseline variation of the

Velocity Obstacles (VO) planner [86]. In order to increase the replanning frequency,

the adaptive planner incorporates the capability of dynamically scaling control ac-

tion primitives during the search for a trajectory. This leads to significant reduction

in the number of states expanded and thus improved performance. In particular, the

results presented in Section 3.5.4 shows a 500% reduction in the number of states

expanded while not sacrificing the quality of computed trajectories. This compu-

tational enhancement leads to greater replanning frequency which in turn leads to

shorter trajectories with smaller execution times as compared to the baseline VO-

based planner [86].

3.2 Problem Formulation

3.2.1 Definitions

Let X = Xη × Xν × T be a continuous state space of the USV that consists of

states x = [ηT , νT , t]T . Here, η = [x, y, ψ]T ∈ Xη ⊂ R
2 × S

1 is the USV’s pose

34

and ν = [u, v, r]T ∈ Xν ⊂ R
3 is its velocity composed from the surge u, sway v,

and angular r speeds about the z axis in the North-East-Down (NED) coordinate

system [153], and t ∈ T is time. A lower dimensional, discrete 5D version of this

space is defined as S. Each state s = [x, y, ψ, u, t]T ∈ S consists of the position,

orientation, surge speed, and time state variables.

Let Uc(xU) ⊂ R × S
1 be a continuous, state-dependent, control action space

of the USV in which each control action uc = [ud, ψd]
T consists of the desired surge

speed ud and heading ψd variables. A discrete version of this set is defined as

Uc,d(sU). Each discrete control action in Uc,d(sU) is defined as uc,d.

Let Ue(xU) ⊂ Uc(xU) be a set of contingency maneuvers. A discrete version of

this subset is defined as Ue,d(sU) which allows to keep the computation requirements

within given bounds. Each discrete control action in Ue,d(sU) is defined as ue,d.

Let ẋU = fU(xU,uh) be a 3 degree of freedom (DOF) dynamic model [1] of the

USV. The simulation model of the vehicle includes actuators that produce thrust

and moment by taking uh as the control input. This control input is determined by

the controller hU(xU,uc, PU), where PU is the set of its parameters.

Let B = {bl}
L
l=1 be a set of all the civilian vessels, where bl represents a single

civilian vessel and L is the total number of civilian vessels. Let Xbl denote the

continuous state space of a civilian vessel bl. The estimated state of bl is given as

xbl
∈ Xbl . The geometric region occupied by all the civilian vessels is defined as

OB =
⋃L
l=1 b(xbl

) ⊂ R
2. Similarly, the geometric region occupied by static obstacles

is defined as OS =
⋃K

k=1 os,k ⊂ R
2.

Finally, let m(xU, B, {xbl
}Ll=1, {Ol}

L
l=1,OS) be an intention model that is used

35

to estimate future trajectories of the civilian vessels (see Section 3.3.4). Here, {Ol}
L
l=1

are history states of the civilian vessels.

3.2.2 State action space representation

The continuous state space X is discretized into a lower-dimensional 5D state space

S. Each state s = [x, y, ψ, u, t]T ∈ S consists of the position, orientation, surge

speed, and time state variables. The continuous control action space Uc(x) is dis-

cretized into a discrete control action set Uc,d(s) consisting of control actions that

allow dynamically feasible transitions between adjacent states in S. A discrete con-

trol action uc,d = [ud, ψd]
T ∈ Uc,d(s) is defined as a combination of the desired surge

speed ud and heading ψd of the vehicle.

For planning purposes, the discrete control actions are mapped to motion

primitives {[x, y, ψ, t]T}Lk

i=1 of desired poses and arrival times of the USV. We have

used 3 degrees of freedom system identified model of the USV [1] to generate the

motion primitives. The continuity of a trajectory is retained by selecting the final

state of each motion primitive in the center of its respective state space cube.

We have designed a discrete contingency control action set Ue,d(s) ⊂ Uc(xU).

This control action set consists of extreme input values of the surge speed and head-

ing state variables, i.e., ud,min, ud,max, −ψd,max, ψd,0, and ψd,max. This contingency

control action primitive set is used to determine the overall safety of the USV’s tra-

jectory. In particular, the planner incorporates the collision probability of executing

the contingency maneuvers into the evaluation of the overall collision probability

36

of the trajectory (see Section 3.3.1). The contigency maneuvers are a vital part of

the nominal trajectory and can be executed in response to any of the civilian vessel

breaching COLREGs.

The designed state-action space enables us to perform efficient discrete search.

It captures the vehicle’s differential constraints and thus ensures computation of

smooth and dynamically feasible trajectories. The user can define the resolution of

the state-action space depending upon the complexity of the scene and the dynamic

characteristics of the USV.

3.2.3 Problem statement

We are interested in developing a deliberative planning algorithm for efficient com-

putation of dynamically feasible, risk and contingency-aware trajectories for the

USV. The trajectories should minimize the execution time and risk of collision with

obstacles. Further, the algorithm should reason about the availability of contingency

maneuvers along a planned trajectory in order to avoid an imminent collision due to

unpredictable, COLREGs breaching behaviors of civilian vessels. In addition, the

civilian vessels are assumed to be intelligent decision making agents whose behaviors

are influenced by the maneuvers of the USV and other vessels. This requires the

algorithm to perform enhanced reasoning regarding the reciprocal avoidance strate-

gies exhibited by the civilian vessels in response to the planned trajectory of the

USV.

More specifically, given, (1) a continuous state space X of the environment,

37

(2) the initial state xU,I of the USV, (3) the final state xU,G of the USV, (4) a 3

degree of freedom dynamic model fU of the USV, (5) static obstacle regions OS,

(6) estimated states {xbl
}Ll=1 of civilian vessels B, (7) the geometric regions OB

occupied by the vessels, and (8) the intention model m along with a classifier c for

predicting future trajectories of the civilian vessels.

The task is to compute a collision-free, dynamically feasible trajectory τ :

[0, T] → X such that τ(0) = xU,I, τ(T) = xU,G and its cost is minimized. Each state

xU(t) along τ thus belongs to the free state space Xfree = X\Xobs = {xU(t)|U(ηU(t))∩

O(t) = ∅} for t ∈ [0, T], where O(t) = OS ∪ OB(t) and U(ηU(t)) ⊆ R
2 is a region

occupied by the USV at ηU(t).

We assume civilian vessels to follow COLREGs unless the classifier c(bl, Ol)

reports otherwise. We also assume that the USV uses a Kalman filter [154] to

estimate its own state and that the states of civilian vessels are either provided

through radio communication or estimated using Kalman filtered sensor information

acquired by the USV.

3.3 Risk and Contingency-Aware Trajectory Planning

The deliberative risk and contingency-aware trajectory planner (RCAP) searches in

a 5D state space to compute a low risk, dynamically feasible trajectory τ : [0, T] →

X from the initial state xU,I to the goal state xU,G. The entire trajectory τ is

computed by concatenating action primitives from Uc,d. The primitives are designed

using system identified dynamics model of the USV [1], and thus guaranteeing the

38

dynamical feasibility of τ . The planner is based on the lattice-based A* heuristic

search [33].

3.3.1 Modeling risk consideration in cost function

The cost function used during the search for a trajectory τ is given by f(s′) =

g(s′)+ǫh(s′), where g(s′) is cost-to-come, h(s′) is cost-to-go, and ǫ is the parameter for

balancing the computational speed of the search and the optimality of the trajectory.

The expected cost-to-come from the initial state sI and the current state under

evaluation s′ is given as follows.

g(s′) = g(s) + ps(cg,s′/cg,max)

cg,s′ = (1− pnc,s′)cs′ + pnc,s′((1− pec,s′)ce + pec,s′ce,c))

(3.1)

In the above equation, s is the predecessor state and s′ is the current state

under evaluation. The probability of success to reach the state s from the initial state

sI without any collision over K trajectory segments is given by ps =
∏K

k=1 1− pc,sk,

where pc,sk is the collision probability of transition between two consecutive states sk

and sk+1 (see Section 3.3.2 for calculation of collision probabilities). The transition

cost between s and s′ by using control action uc,d is given by cs′ = ωn(ωcts,s′/tmax+

(1 − ωc)ds,s′/dmax) + c¬COLREGs, where ωn and ωc are user-specified weights, ts,s′

is the execution time, ds,s′ is the length of the control action, and c¬COLREGs is

the penalty for the state s′ being in a COLREGs-breach region (see Section 3.3.3).

Finally, the cost of executing emergency contingent action uc,e is given by ce and the

cost of collision during the execution of contingency action is ce,c. The user defined

39

cost weights follow the order cs′ < ce < ce,c. Hence, the maximum value which cg,s′

can take is equal to cg,max = ce,c, when p
n
c,s′ = pec,s′ = 1.

The cost-to-go from the current state s′ to the final goal state sG is the weighted

sum of the heuristic time estimate and distance required by the USV to reach sG,

and is given by h(s′) = ωc(ts′,sG/tmax) + (1− ωc)(ds′,sG/dmax).

3.3.2 Calculation of collision probabilities

Evaluation of each state requires calculation of several types of collision probabilities

during the search for a trajectory τ .

(i.) pnc,s′ is the probability of collision when executing a control action uc,d from

s to reach its neighboring state s′. It is calculated by taking a weighted

sum of pc,s′,U (see Definition ii.) and pc,s′,B (see Definition iii.) given by

pnc,s′ = e−γtsI ,s((1− ωc,U,B)pc,s′,U + ωc,U,B pc,s′,B). In the above equation, γ ≥ 0

is a discount factor and tsI ,s is the total traversal time of the USV to arrive at

the current state s being expanded from the initial state sI.

(ii.) pc,s′,U is the probability of collision of the USV with civilian vessels B. Let

pc,s′,U,bl =

∫∫

[x,y]T∈Pc
pbl,t(x, y;µbl,t,

∑

bl,t
) dx dy be the probability of collision of the USV

with the civilian vessel bl. Here, Pc = {[xbl,t, ybl,t]
T |bl(xbl,t, ybl,t) ∩ U(ηU

T (t))

6= ∅} is the set of all locations at which the civilian boat bl may collide with

the USV at time t. The geometric regions occupied by the civilian vessel bl

and the USV is given by U(ηU
T (t)) and bl(xbl,t, ybl,t), respectively. Finally, µbl,t

40

and
∑

bl,t
are the mean and the covariance matrix of the uncertainty in the

position of civilian vessel bl at time t (see Section 3.3.4). Then, the collision

probability with respect to all the vessels is pc,s′,U = 1−
∏L

l=1(1− pc,s′,U,bl).

(iii.) pc,s′,B is the probability of collision among the civilian vessels themselves. In

this chapter, we assume the positions of all civilian vessels to be normally

distributed. Hence, computing pc,s′,B is a computationally demanding task.

In order to maintain the efficiency of the search, we precompute the collision

probabilities pc,s′,bi,bj of the civilian vessels bi and bj by sampling their bivari-

ate Gaussian probability densities. More specifically, if the distance between

the two sampled positions of the civilian vessels is less than the user-specified

distance threshold dc,min, then we consider it as a collision. The user-specified

threshold dc,min is estimated based on the size and profile of the civilian ves-

sels. The collision probability pc,s′,bi,bj is then calculated by taking the ratio of

the number of samples that resulted in collision to the total number of sam-

ples. The calculated look-up table outputs the probability pc,s′,bi,bj given the

input discrete values of variances σ2
x,i, σ

2
y,i (see Equation 3.2) of the Gaussian

probability density function of bi, discrete values of variances σ2
x,j, σ

2
y,j of the

Gaussian probability density function of bj , the relative mean position xj , yj

of bj with respect to bi, and the relative mean heading ψbj . The probability of

collision is then calculated as pc,s′,B = maxbi∈B,bj∈B,i 6=j pc,s′,i,j.

(iv.) pec,s′ is the probability of collision of a contingency control action primitive

uc,e when transitioning between the state s to the contingency state s′e. It

41

is calculated as pec,s′ = minue,d,i∈Ue,d pec,s′,i, where Ue,d is the discrete set of

contingency control action primitive (see Section 3.2.2), and pec,s′,i is calculated

the same way as pc,s′,U (see Definition ii.).

3.3.3 Evaluation of USV’s state for COLREGs compliance

Each candidate USV’s state s is evaluated for its COLREGs compliance with respect

to all civilian vessels during the search for a trajectory. Primarily, we determine

whether the USV at the state s is on a collision course with any of the civilian vessels.

This is evaluated through the conditions dCPA < dCPA,min and tCPA < tCPA,max.

Here, the closest distance between a civilian vessel and the USV when it follows

its planned trajectory for a given time horizon is regarded as the closest point of

approach (CPA). The computed distance from the current USV’s state s to CPA

is termed as the distance to CPA, dCPA, and the time to reach CPA at planned

surge speed is termed as the time to CPA, tCPA [1] (See Figure 3.3). The user-

specified distance dCPA,min and time tCPA,max thresholds are determined based on

the minimum turning radius, maximum surge speed, and acceleration of the USV.

If the above stated primary conditions hold true, the USV determines the

appropriate COLREGs rule such as, for example, the “head-on” (rule 14), “crossing

from right” (rule 15), and “overtaking” (rule 13) [28] as described in [1]. If the USV’s

state s is in any of the “give-away” situations, the planner evaluates the state s for

its COLREGs compliance with respect to the appropriate COLREGs rule.

More specifically, let ηU(t) and ηU(t0) be the poses of the USV at s and its

42

Figure 3.3: Calculation of CPA time and CPA distance.

parent state s0, respectively, and t be the actual transition time between the states.

Let ηb(t) be the pose of the civilian vessel at time t. Let n̂U,b = [nU,b,x, nU,b,y]
T be the

unit vector in the direction between ηU(t0) and ηb(t). Let n̂U,t0,t be the unit vector

in the direction between ηU(t0) and ηU(t). Then, the state s is COLREGs-compliant

with respect to a civilian vessel bl in NED if ([−nU,b,y, nU,b,x]
T · n̂U,t0,t) > 0 (s is in

the right half-plane between ηU(t0) and ηb(t)) [1].

3.3.4 Intention motion model of civilian vessels

In this chapter, we consider civilian vessels to be intelligent decision making agents.

Hence, the planning algorithm needs to account for reciprocal avoidance maneuvers

performed by the vessels. It also needs to consider the variations in the avoidance

maneuvers due to the different driving styles and intentions of the vessels. For

example, some sailors might be more conservative and COLREGs compliant, while

43

some might demonstrate risky, COLREGs-breaching behaviors. We have developed

an intention motion model that estimates the future trajectories of the civilian

vessels given their current and past states, dimensions, estimated goals, and the

knowledge of static obstacle regions. The model consists of the following three

components:

(i.) Classifier c(bl, Ol): Each civilian vessel bl is classified as COLREGs compliant

or COLREGs breaching given the observation history of its past states Ol =

{xbl
(t),xbl

(t− 1), ...,xbl
(t−∆t)}.

(ii.) Motion prediction model m(xU, B, {xbl
}Ll=1, {Ol}

L
l=1, OS): The inputs to the

model are the current state xU of the USV, the set of civilian vessels B together

with their characteristics (i.e., their dimensions), the current and past states

{xbl
}Ll=1 , {Ol}

L
l=1 of the civilian vessels, respectively, and the geometric region

OS occupied by static obstacles.

The output of the model are estimated future trajectories τbl : [0, Tbl] → Xx,y

for each vessel bl ∈ B. Here, Xx,y ⊂ X represents the position subset of the

entire state space X , and Tbl is the time horizon.

We assume that the prediction model has a priori knowledge of local goals of

all the civilian vessels (e.g., by estimating their mission goals or through radio

communication). In addition, the motion prediction model utilizes a classifier

c(bl, Ol) to determine whether a vessel follows COLREGs based on the history

of its states. The prediction model for each of the civilian vessel incorporates

the reactive obstacle avoidance component that is used to avoid the USV as

44

well as all the other civilian vessels present in the environment.

(iii.) Distribution of position uncertainty of a civilian vessel along its predicted tra-

jectory: We represent the uncertainty of a civilian vessel bl deviating from its

estimated trajectory τbl : [0, Tbl] → Xx,y using a bivariate normal distribution

for different time slices t along the trajectory. The mean of the USV’s positions

along the trajectory is defined as µbl,t ∈ R
2. The corresponding covariance ma-

trix that captures the deviations of the vessel from this trajectory at time t is

defined as
∑

bl,t
∈ R

2×2. Initially, the variances of x and y coordinates increase

with time as the civilian vessel deviates from its planned trajectory. Later,

the variances remain the same or decrease as the civilian vessel approaches its

intended goal location.

We performed Monte Carlo simulations to estimate
∑

bl,t
for a scene with a

given number of civilian vessels. We recorded deviation of the civilian vessel bl

from a trajectory τbl along the x and y coordinates at discrete time intervals

t. The trajectory was estimated using the motion prediction model. We then

calculated the covariance matrix
∑

bl,t
with respect to t. We carried out a

polynomial regression to fit a two degree polynomial αΣ(t) = α1t
2 + α2t + α3

to the deviation for both of the coordinates. The actual covariance matrix for

continuous time t is given by:

∑

bl,t

=

c −s

s c

−1

αΣ,x(t) 0

0 αΣ,y(t)

c −s

s c

(3.2)

Here, c stands for cos(ψbl), s stands for sin(ψbl), and αΣ,x(t) and αΣ,y(t) are

45

variances for the x and y coordinates, respectively.

3.3.5 Search

The RCAP algorithm is based on the lattice-based A* heuristic search [33]. During

the search, each state s is evaluated using the cost function described in Section

3.3.1. The cost function assigns a cost to each state based on the collision risk

(see Section 3.3.2), COLREGs compliance (see Section 3.3.3), and availability of

contingency maneuvers with respect to the vessels.

Unlike traditional approaches (see Section 2.1.1), the developed trajectory

planner considers the reciprocal behaviors of civilian vessels in each USV’s future

expanded state s. More formally, the planner employs the motion prediction model

m(s, B, {xbl
}Ll=1, {Ol}

L
l=1,OS) (see Section 3.3.4) to determine the desired action the

other civilian vessels B will pursue with respect to the current discrete state of the

USV and its control action uc,d ∈ Uc,d. The future state of each civilian vessel

bl ∈ B is determined by forward simulating it for the execution time of uc,d. The

uncertainty in the state of the civilian vessels is determined by performing a Monte

Carlo simulation as described in Section 3.3.4.

3.4 Adaptive Risk and Contingency-Aware Planning

The search for a risk and contingency-aware, dynamically feasible trajectory in a

complex 5D state space is computationally expensive, which significantly reduces the

replanning frequency. In this section, we introduce an adaptive risk and contingency-

46

aware planner (A-RCAP) that dynamically scales control action primitives to speed

up the search and thus significantly reduce the computational requirements. The

algorithm takes advantage of the fact that dense sampling is needed only in regions

with a high number of civilian vessels, where it is necessary to utilize high-fidelity

maneuvers to minimize the execution time of a trajectory and probability of collision.

On the other hand, the planner saves considerable amount of computational effort by

sparsely sampling the regions with low or no congestion. Thus, dynamic adaptation

of the execution time of action primitives during the search substantially increases

the efficiency of the planner, while sacrificing the quality of a computed trajectory.

3.4.1 Estimation of spatio-temporal workspace complexity

The developed approach is dependent upon the estimation of spatio-temporal com-

plexity of sub-regions of the surrounding workspace of each expanded state s dur-

ing the search. The spatio-temporal complexity is determined using the collision

probability pc,s′,U (see Section 3.3.2) of each control action primitive uc,d ∈ Uc,d(s)

emanating from s. It also depends on the spatio-temporal complexity of past states

along a trajectory leading to s.

We divide the workspace around the current state s into the left, front, and

right regions (see Figure 3.4). Let Uc,d,l(s), Uc,d,f(s), and Uc,d,r(s) be the subsets of the

set of discrete control action primitives Uc,d(s) used by the USV. The spatio-temporal

complexity for the left region is given by λl = maxuc,d,i∈Uc,d,l pc,s′,U . Similarly, we

compute the spatio-temporal complexity values λf and λr for the front and the right

47

workspace regions, respectively. The spatio-temporal complexity values are always

between 0 and 1, where 0 signifies minimum complexity and 1 signifies maximum

complexity. Naturally, the measure of the spatio-temporal complexity provides an

estimation of the risk of collision when executing a control action primitive from the

USV’s state s in each region.

3.4.2 Adaptive sampling

The adaptive sampling of the state space is achieved by time scaling of individ-

ual control action primitives in their corresponding subsets Uc,d,l(s), Uc,d,f(s), and

Uc,d,r(s). Let ml, mf , and mr ∈ Mu be the multipliers used for scaling the control

action primitives in the left, front, and right region, respectively. The multipliers

are computed by Algorithm 2 using the estimated collision probabilities λl, λf , and

λr. The multiplier values of states that are successors of s are computed using the

multiplier values of that state.

The partitioning of the workspace into the three regions around s allows the

algorithm to independently scale the primitives in their corresponding subsets. In

other words, the spatio-temporal complexity of one region will not affect the time

scaling of primitives in other regions. For instance, as the algorithm advances the

search tree through the state space, the USV might encounter a heavy traffic on its

left and almost zero traffic on its right in one of the states of the search tree. In

such a situation, the algorithm increases the multiplier value mr of the right region

and reduces the multiplier value ml of the left region. Thus, the control primitives

48

Figure 3.4: A set of control action primitives divided into three sub-regions.

in the right region will be expanded and those in the left region will be contracted.

In addition, there may be a situation during the search in which all of the

possible action primitives expanded using the scaling multipliers ml, mf , and mr ∈

Mu lead to a collision from a given state s (i.e., λl, λf , and λl are close to 1).

This may occur mostly when transitioning from states in regions with a low spatio-

temporal complexity to states in regions with a high spatio-temporal complexity.

In this case, the algorithm reconsiders the same state s (that is already in the

closed set) by adding it to the priority queue (i.e., to the open set) and reduces

all the scaling multipliers ml, mf , and mr by half. This state is then reevaluated

using the reduced control action primitives in each region. If the value of all the

spatio-temporal complexity parameters (λl, λf , and λr) is again close to 1, then the

algorithm backtracks to the default, minimum value of the multiplier values, i.e.,

49

ml = mf = mr = 1, and the state is reinserted into the priority queue. In Algorithm

1 and 2, the boolean variable that triggers the reinsertion of the state into the queue

is labeled as rr, rf and rl ∈ R for right, front and left region respectively.

The discrete state transition function used to determine the neighboring states

during the search is given by fU,d(s,uc,d, mx) = [x+ lu(mx − 1)cos(ψd), y+ lu(mx −

1)sin(ψd), t+(lumx)/ud]
T , where mx can be substituted by ml, mf ormr. The input

of the state transition function are the current state s, the default control action

primitive uc,d, and one of the scaling multipliers ml, mf , or mr depending on the

subset Uc,d,l, Uc,d,f , or Uc,d,r the control action uc,d belongs to. After the execution

of uc,d for the time t, the terminal position and orientation of the USV is given by

[x, y]T and ψd, respectively, and the length of the entire executed trajectory from the

initial state of the USV is given by lu. At all times, the scaling multiplier mu ≥ 1.

This guarantees the expanded control action primitives U ′c,d(s) to be dynamically

feasible and executable by the USV’s low level controller (e.g., PID, backstepping,

etc.).

Figure 3.5 shows a risk and contingency-aware trajectory computed using

adaptive control action primitives. The scenario consists of the USV and 3 civilian

vessels moving towards their motion goals. The intention model described in 3.3.4

is used to predict the reciprocal trajectories of all the vessels with respect to the

USV’s trajectory. The uncertainty in a vessel’s position is represented as a sequence

of Gaussian distributions (shown as a multi-color cloud around the planned trajec-

tory) and increases with time. The trajectory consists of control action primitives

of varying magnitude and thus execution times. In this figure, the magnitude of

50

Figure 3.5: An example of a computed risk and contingency-aware, dynamically

feasible trajectory using adaptive control action primitives in a scenario with 3 civil-

ian vessels

control action primitives near the initial location of the USV is high and gradually

decreases as the search progresses towards areas with high congestion (from 40 m

to 80 m north along the x axis). The magnitude of the primitives starts to increase

again at the distance of 80 m along the x axis until the search reaches the motion

goal of the USV.

51

Algorithm 1 ComputeTrajectory(sI , SG,Uc,d)
Input: USV’s initial state sI, desired goal region SG, and a default, dynamically feasible control action primitive set Uc,d.

Output: A trajectory τ .

1: Let SO ← {sI} be a priority queue of states sorted in ascending order according to the cost function f (see (3.3.1)).

2: Let SC ← ∅ be the set of all expanded/closed states.

3: LetM = {mr , mf , ml} ← 1 be the set containing scaling multipliers for the left, front, and right workspace regions

(see Figure 3.4).

4: Let R = {rr , rf , rl} ← false be the sets containing a re-evaluation indicator for the left, front, and right workspace

regions.

5: Let fnew be a boolean function which is used to distinguish newly opened states from states undergoing re-evaluation.

6: while SO not empty do

7: SC ← s← SO.First()

8: if s ∈ SG then

9: return A trajectory τ generated by recursively tracing the predecessors of s up to sI .

10: end if

11: fnew(s) = ¬rl ∧ ¬rf ∧ ¬rr

12: for all Uc,d,x ∈ {Uc,d,l, Uc,d,f , Uc,d,r} ⊂ Uc,d do

13: Let rx ∈ R be a re-evaluation indicator corresponding to region x.

14: if rx ∨ fnew(s) then

15: for all uc,d ∈ Uc,d,x do

16: Let mx ∈ M be a scaling multiplier corresponding to region x.

17: s
′ ← fU,d(s,uc,d,mx) (see Section 3.4.2)

18: if s′ /∈ SC then

19: Estimate current states {xb
l
(t′)}Ll=1

of all civilian vessels at time t′ by forward simulating their

intention models {ml}
|B|
l=1

.

20: Compute pn
c,s′

and pe
c,s′

(see Section 3.3.1) for the USV moving between s and s′.

21: if (s′ /∈ SO) ∨ (s′ ∈ SO ∧ (fnew(s′) < fold(s
′))) then

22: Set s
′ as the best successor state of s.

23: Insert/update s′ into/in SO.

24: end if

25: end if

26: end for

27: {mx, rx} ← ComputeScalingFactor(Uc,d,x,mx, rx)

28: end if

29: end for

30: if rl ∨ rf ∨ rr then

31: Remove s from SC and insert it into SO.

32: end if

33: end while

34: return τ = ∅ (no suitable trajectory has been found).

52

Algorithm 2 ComputeScalingFactor(Uc,d,x, mx, rx)
Input: A set Uc,d,x is a set of control action primitive in region x, the control action primitive scaling

multiplier mx, and the re-evaluation boolean indicator for region x. The region x can be either left,

front, or right regions (see Section 3.4.1).

Output: A new control action primitive scaling factor m′
x and state re-evaluation boolean indicator r′x

for the current region x.

1: Let λ1, λ2, λ3, and λ4 ∈ [0, 1] be the user-defined, ascending spatio-temporal complexity levels, i.e.,

0 < λ1 < λ2 < λ3 < λ4 < 1.

2: Let λstc = maxuc,d,i∈Uc,d,x
pc,s′,U be the measure of the spatio-temporal complexity for the region x.

3: Let δe > 1 be the exponential increase of the multiplier mx.

4: Let δm be the linear increment/decrement of the multiplier mx.

5:

m′

x ←

δemx if λstc < λ1

mx + δm if λ1 < λstc < λ2

mx if λ2 < λstc < λ3

mx − δm if λ3 < λstc < λ4

mx/2 if λ4 < λstc and rx is false

1 otherwise

(3.3)

6: m′
x ← min(m′

x,mx,max), where mx,max is the user-specified scaling factor threshold.

7: m′
x ← max(m′

x, 1).

8: r′x ← λstc > λ4.

9: return {m′
x, r

′
x}

53

Figure 3.6: Simulation Scenario.

3.5 Computational Experiments

3.5.1 Simulation setup

The developed planning algorithms were evaluated using a simulation setup (see

Figure 4.22) consisting of an experimental area of 200m X 200m, the wave amplitude

modular USV (labeled as the USV14), and civilian vessels (see Figure 3.7). The

motion of the USV14 was simulated using a system-identified 3 DOF dynamic model

[1]. Each civilian vessel was modeled using a simple car kinematic model with the

Ackermann steering geometry [42].

The set of default as well as contingency control action primitives of the USV14

were designed using its dynamics model. The default control primitive set Uc,d (see

54

(a)

(b)

Figure 3.7: (a) The autonomous USV14; (b) The human-controlled johnboat [1].

55

Figure 3.8(a)) consisted of ψd = 0o,±10o,±40o and ud ranging from 0 to 3 m/s in

steps of 0.5 m/s. This resulted in the total of 30 default control action primitives

consisting of 5 levels of ψd and 6 levels of ud.

The control action primitives were precomputed by placing the USV14 at the

initial state and applying control inputs through a PD-controller until the vehicle

achieved the desired heading ψd and surge speed ud. Each resulting trajectory was

recorded as a finite sequence of [x, y, t]T positions, speeds, and arrival times of the

USV14. We have discretized the heading of the USV14 into 5 levels and continuous

surge speed into 6 levels, which results in 30 control actions in the control primitive

action set. During the search, the transitions between states were only allowed to

adjacent levels of speed.

The contingency actions (see Figure 3.8(b)) of the vehicle include ue,d,1 =

[0, 0]T (i.e., maintain the same heading with the minimum desired speed), ue,d,2 =

[3,−90]T (i.e., steer left with the maximum desired speed), ue,d,3 = [0,−90]T (i.e.,

steer left with the minimum desired speed), ue,d,4 = [3, 90]T (i.e., steer right with

the maximum desired speed), and ue,d,5 = [0, 90]T (i.e., steer left with the minimum

desired speed). These maneuvers were designed by considering the most common

reaction exhibited by humans on a collision course. The USV14 always selects a

contingency maneuver with the maximum dCPA (see Section 3.3.3) with respect to

all civilian vessels to maximize safety.

For all experiments, the values of constants required by the cost function for

trajectory planning (see Section 3.3.1) are dmax = 200 (i.e., twice the length of a

straight path between sU,I and sU,G), tmax = dmax/1.5 (i.e., the average speed of

56

(a)

(b)

Figure 3.8: (a) A dynamically feasible control action set Uc,d, and (b) a dynamically

feasible contingency control action set Ue,d for the USV14 with different initial surge

speeds.

57

1.5 m/s), ωn = 1000, ωc = 0.5, c¬COLREGs = 1000, ce = 500, ce,c = 10000, γ = 0.1,

ωc,U,B = 0.3, and ǫ = 4. The threshold values for CPA parameters used to evaluate

USV’s states for COLREGs compliance are dCPA,min = 50 m and tCPA,max = 30 s.

The obstacle avoidance behavior of civilian vessels is realized through the

Velocity Obstacle (VO) [39] based local obstacle avoidance planner. The planner

allows us to forward simulate the motion of a civilian vessel with increased realism.

The parameters of the planner were tuned during physical tests [1], which involved

COLREGs compliant obstacle avoidance by civilian vessels [155] (see Figure 3.10).

During the search for a global trajectory, we place the USV14 at each expanded

state and forward simulate the behavior of each vessel using the VO planner. The

planner computes the best velocity vector for each civilian vessel given its pose,

speed, and motion goal while ignoring its dynamics. This allows us to capture a

reciprocal trajectory computed by the civilian vessels in response to the USV14’s

trajectory.

The time for which the civilian vessels are forward simulated is equal to the

execution time of the USV14’s control action primitive. The computed velocity

vector of each civilian vessel is integrated throughout the forward simulation time

of control action to determine its future state. We assume that all civilian vessels

maintain their velocity vectors for the entire forward simulation time of each con-

trol action. This increases the uncertainty in the actual states of the vessels while

executing their planned trajectories. This uncertainty increases with the simulation

time as civilian vessels tend to wander away more from their trajectories.

We have modeled the uncertainty in the positions of a civilian vessel using a

58

sequence of 2D Gaussian distributions with the means corresponding to the way-

points of the planned trajectory. The variances of the distributions are estimated by

performing a Monte Carlo simulation (see Section 3.3.4) for each scenario. We have

calculated the variances for discrete time slices of 5 to 100 s and interpolated them

by fitting a 2 degree polynomial with the forward simulation time as a variable.

3.5.2 Modeling scenario congestion

In order to evaluate the performance of the planner, we have designed a metric for

measuring congestion of a scenario with respect to a given position of the USV (see

Figure 3.9). A scenario can be classified as congested, for example, if there are only

a few large civilian vessels with a large turning radius and low speed. Alternatively,

a scenario is considered to be congested if there are many small highly maneuverable

vessels moving at high speeds within the same region. In addition, congestion of a

scene also varies depending on how far the vessels are from the current position of

the USV. For example, the vessels that are far away are considered to contribute

less to the congestion of the scenario as compared to the vessels that are close to

the USV.

The developed metric Λcgn considers the size, velocity, and the distance dl of

each civilian vessel bl from the USV within a circular area Ar with the radius r

around the USV. The characteristics of a vessel bl such as its size and velocity are

used to compute a region of inevitable collision RICl [156] with respect to the USV

and the vessel. The USV is inside RICl if there is no control action uc,d ∈ Uc,d(xU)

59

Figure 3.9: Computation of the congestion metric for an example scenario.

that would prevent it from colliding with bl. We assume the USV to move at

its maximum speed when computing RICl. We define RICr = ∪Ll=1,dl<r
RICl as

the union of all the inevitable collision regions of civilian vessels up to the given

distance threshold r. The congestion of the whole scenario is calculated as Λcgn =

∫∞

r=0
RICr/Ar dr.

For scenarios with civilian vessels in the vicinity to the USV, the degree of

congestion Λcgn gradually increases with the increase of the radius r as more vessels

fall into Ar. Beyond a certain radius, Λcgn gradually decreases as the total area Ar

becomes more significant compared to RICr.

The regions of inevitable collision RICl were precomputed for the vessels with

the maximum surge speed between 1 and 5 m/s in increments of 0.1 m/s and the

length between 4 and 30 m in increments of 1 m. During the computation of Λcgn,

we increased the radius r of the area Ar starting from 5 to 200 m (max. size of the

60

workspace) in increments of 5 m. Note that scenarios with different types of civilian

vessels and their distribution in the area can lead to the same congestion value. For

example, the congestion value of 7 corresponds to a scenario with 4 civilian vessels

with the length of 10 m and the maximum surge speed of 4 m/s. This congestion

value also corresponds to a scenario with 8 civilian vessels with the length of 5 m

and the maximum surge speed of 1 m/s.

3.5.3 Design of evaluation scenarios

We have designed 10 groups of evaluation scenarios with a similar congestion value

ranging from 0 to 50. For each congestion group, we randomly generated 1000

evaluation scenarios. In each evaluation scenario, the USV14 was positioned at the

same initial state sU,I = [0, 100, 0, 0, 0]T and commanded to reach its stationary goal

state sU,G = [200 , 100]T (we neglected the heading and surge speed state variables in

the goal state). The simulation runs were performed on Intel(R) Core(TM) i7-2600

CPU @ 3.4 GHz machine with 8GB RAM.

The number of vessels was generated uniformly at random ranging from 3 to 8.

The poses of the civilian vessels were randomly generated with no vessels positioned

inside a circle of 20 m radius around the USV14 (i.e., corresponding to the minimum

turning radius of the USV14) to avoid an imminent collision at the beginning of an

evaluation run. The length of each vessel was randomly generated to be between

4 and 30 m, and its maximum surge speed was determined to be between 1 and 5

m/s.

61

(a) (b)

(c) (d)

Figure 3.10: The experimental results of the USV14 autonomously dealing with

“head-on” (see a) and b)), “crossing from right” (see c) and d)), and “overtaking”

(see e) and f)) situations

62

(e) (f)

Figure 3.10: The experimental results of the USV14 autonomously dealing with

“head-on” (see a) and b)), “crossing from right” (see c) and d)), and “overtaking”

(see e) and f)) situations

3.5.4 Results

We have carried out simulation experiments to evaluate the collision risk, length,

and execution time of trajectories computed by the RCAP and A-RCAP algorithms.

The planners were evaluated using multiple scenarios with different congestion levels.

The RCAP algorithm is computationally expensive, which leads to a low re-

planning frequency. To be able to avoid highly dynamic obstacles, we use a VO-based

local planner [1] to track a global trajectory computed by the RCAP algorithm. In

the simulation results presented below, the global risk and contingency-aware tra-

jectory is computed once by the RCAP at the beginning of a simulation run. The

trajectory is then tracked by the VO-based local planner [1] until the USV reaches

63

its goal.

As can be seen in the plot in Figure 3.11, the use of the RCAP algorithm

combined with the VO-base local planner results in significantly fewer number of

collisions as compared to the state-of-the-art VO-based local planner [86] used in ma-

rine missions. The collision rate represents the percentage reduction in the number

of collisions per 1000 boat lengths traveled distance by the USV14. The percentage

reduction in the number of collisions by the A-RCAP is approximately the same

to its non-adaptive predecessor. This signifies that the gain in the computational

efficiency does not degrade the quality of risk-aware trajectories.

There are several reasons for the reduction in the collision rate. First, the

planners consider differential constraints of the USV when computing a trajectory.

In case of RCAP, this allows the VO-based local planner to successfully track the

trajectory. Second, the planners minimize the overall collision risk by breaching

COLREGs with respect to selected vessels and choose a lower risk workspace over

a high risk, dense workspace. A local VO-based planner with a limited number of

look-ahead steps cannot reason about the collision risk over a larger portion of the

workspace. Thus, breaching COLREGs locally may prove disastrous in later stages.

Finally, by incorporating contingency maneuvers into a global trajectory ensures

that the USV has at least one contingency maneuver available to avoid an imminent

collision due to unpredictable behaviors of civilian vessels.

The results presented in Figure 3.12 and Figure 3.13 describe the percentage

of additional distance and time traveled by the USV using the VO-based planner,

the RCAP, and the A-RCAP over the distance and time computed for a scene with

64

zero congestion. The distance traveled in a scene with zero congestion is equivalent

to the Euclidean distance from the initial to the goal state. The travel time in

this zero congestion scenario is equivalent to the time required by the USV14 to

travel from the initial to the goal state at the maximum surge speed of 3 m/s.

The additional travel time (see Figure 3.13) is greater than the additional traveled

distance (see Figure 3.12) for all the planners. This is due to the fact that the USV

yields to several civilian vessels by slowing down and not performing large avoidance

maneuvers, which decreases the distance traveled.

It can be seen from the plots in Figs. 3.12 and 3.13 that the additional traveled

distance and time significantly increase for the RCAP with the increase in congestion

as compared to the VO-based and A-RCAP planners. Due to the lack of replanning

capability of global, risk-aware trajectories by the RCAP, the local VO-based planner

used in conjunction with the RCAP has to perform large avoidance maneuvers to

handle the dynamics of the environment while simultaneously tracking a global

trajectory. In other words, the USV14 has to return to the global trajectory after

performing a local avoidance maneuver, which results in larger travel distance and

time. On the other hand, the replanning rate of the local VO-based planner is high.

This allows to deal with the highly dynamic nature of the environment and to find

shorter and faster paths as compared to RCAP, but at the cost of higher collision

rate (see Figure3.11).

The results presented in Table 3.1 show approximately 500% improvement in

the computational performance of the A-RCAP as compared to its non-adaptive pre-

decessor RCAP. The performance is given in terms of the number of states expanded

65

during the search for a trajectory. The computational speed-up allowed the USV

to replan its trajectory with the average frequency of 0.1 Hz per 7.5 boat lengths

of traveled distance. This frequent replanning of global risk and contingency-aware

trajectories results in minimizing the USV’s total travel distance and time to reach

the goal. Hence, A-RCAP shows approximately 20% reduction in the travel dis-

tance and 25% reduction in the travel time as compared to RCAP. The replanning

frequency of the A-RCAP is smaller as compared to the replanning frequency of

the VO-based planner. However, the local VO-based planner does not minimize the

global objective of the total traversal time and distance. Also, the VO-based plan-

ner does not have multi-step look-ahead capability to predict the motion of other

civilian vessels, which results in longer travel time and distance.

3.6 Tuning Planner Performance

3.6.1 Planning parameter tuning

(i.) User preference parameters: These parameters alter trajectories generated by

the planner according to the preference of the user. The parameters that fall

under this category are:

– ωc: The parameter ωc ∈ [0, 1] is used to balance the total travel time and

distance of the computed trajectory. The value of ωc = 0 will provide

trajectories with short travel distance and long travel time (i.e. the USV

will travel less distance at slower speed) and vice versa with ωc = 1.

66

Table 3.1: Average number of states expanded by the RCAP and A-RCAP algo-

rithms.

67

Figure 3.11: The percentage reduction in the number of collisions recorded per

1000 boat lengths traveled by the USV using the RCAP and A-RCAP algorithms

over the VO-based planner

68

Figure 3.12: Percentage of the additional distance traveled by the USV over the

zero congestion travel distance for the RCAP, VO-based, and A-RCAP planners.

69

Figure 3.13: Percentage of the additional time traveled by the USV over the zero

congestion travel time for the RCAP, VO-based, and A-RCAP planners

70

Thus, ωc helps the user to capture the USV’s mission objective in terms

of total travel time and distance.

– ωn: The parameter ωn ∈ [0, 1] balances the USV’s mission objective

(i.e. total travel time and distance) against its COLREGs-compliance.

The planner will provide the safest COLREGs-compliant trajectory with

no constraint on the travel time and distance at lower values of ωn. At

ωn = 0, the planner may provide a solution that will command the USV to

remain at its current position until the civilian traffic vehicles are cleared

from the environment. However, at ωn = 1 the planner will compute

trajectories that are optimal in travel time and distance (depending on

ωc) and disregard the COLREGs rules. Thus, the user need to tune this

parameter depending upon the assigned mission to find a right balance

between the COLREGs-compliance and the mission objectives.

– ωc,U,B: The parameter ωc,U,B ∈ [0, 1] balances the collisions between the

USV and the civilian vessels against the collisions among the civilian

vessels themselves. At the values below 0.5, the planner will prioritize

the collisions of the USV over the other civilian vessels and vice versa for

the values above 0.5.

– tmax and dmax: These parameters are dependent on the mission objectives

of the USV, where tmax specifies the maximum allotted time and dmax

specifies the maximum allocated distance that the USV can travel in the

currently assigned mission.

71

Initially, the user can set the default parameter values and evaluate the tra-

jectory produced by the planner on three fronts: travel time, travel distance,

and risk of breaching COLREGs. Then, the user can tweak these parameters

(ωc, ωn, ωc,U,B) to improve the quality of the trajectory on each front until the

computed trajectory meets the desired quality.

(ii.) COLREGs parameters: These parameters are used to perform COLREGs-

based obstacle avoidance and are usually tuned by the experts with the knowl-

edge of the physical capabilities of the vessel. Parameters that fall in this

category are divided into two subgroups:

– dCPA,min and tCPA,max: These parameters are distance and time to closest

point of approach and are used for collision detection. The USV will

perform large and conservative avoidance maneuvers with high values of

dCPA,min and tCPA,max, and with lower values of dCPA,min and tCPA,max

the USV will perform short and risky avoidance maneuvers. Thus, it

requires an expert to tune these parameters in order to achieve optimum

avoidance maneuvers.

– Cost parameters: The execution cost of the emergency control action (ce),

the collision cost of emergency control action (ce,c), and the penalty for

breaching COLREGs (c¬COLREGs). These parameters are used to model

risk of the computed trajectory.

The COLREGs parameters have to be tuned in two phases. Firstly, the de-

fault values of the planner are selected by interviewing the experts about the

72

standard practices and avoidance strategies given the specification of the USV

and the type of the environment. The user can use these default values in

the planner and generate sample trajectories. Secondly, the generated sam-

ple trajectories are critiqued by the expert in a Learning from Critique (LfC)

framework. Depending upon the information provided by the expert the user

can tweak the parameter set and generate a new trajectory. This procedure

is iteratively performed until the planner provides trajectories that meet the

satisfactory limits of the expert.

(iii.) Planning speed parameters: These parameters are us- ed to improve the com-

putation performance of the planners and are primarily used by A-RCAP.

Most of unmanned systems (including USVs) have finite on-board computa-

tional resources. The planner take large/short computational time to produce

optimal trajectories which may not be viable in a dynamic and rapidly chang-

ing environment having high congestion. On the other hand, the trajectories

computed by the planner in short amount of computational time will be highly

sub-optimal. Thus, given the on-board computational resources and the con-

gestion of the environment the user has to optimize and find the right set

of parameters that will enable the planner to compute trajectories in the re-

quired computational time. The parameters falling under this category are the

spatio-temporal complexity levels (λ1,λ2, λ3 , and λ4) and the exponential (δe)

and linear (δl) scaling factors that are used for adaptively scaling the control

primitives in A-RCAP.

73

Ideally, these parameters should be optimized by performing combinatorial

search over the entire parameter set [λ1, λ2, λ3, λ4, δe, δl]. We decided to

perform partitioned optimization to reduce computational overhead. For par-

titioned optimization, the parameter set has been divided into spatio-temporal

complexity parameters [λ1, λ2, λ3, λ4], and scaling factors [δe, δl].

The values of spatio-temporal complexity parameters λ1, λ2, λ3, and λ4

significantly influence the collision rate, and thus the overall performance of

the A-RCAP algorithm. The parameters are optimized by performing combi-

natorial search over 15 different combinations of [λ1, λ2, λ3, λ4] to achieve the

least collision rate. The parameters in each combination follow a strict prece-

dence order 0 < λ1 < λ2 < λ3 < λ4 < 1. Each combination was evaluated

using 1000 randomly generated test cases for three congestion groups with

congestion values Λcgn = 10 − 15, 25 − 30, and 40 − 45. For optimization of

the spatio-temporal complexity parameters, we randomly sampled the values

of the exponential (δe) and linear (δl) scaling factors. Finally, the parameters

set Λ∗stc = {0.25, 0.4, 0.55, 0.7} resulted in the minimum collision rate for all

the three congestion groups.

Secondly, the values for scaling factors of control action primitives (δe and

δl) influences the computational performance, the total travel time, and the

total travel distance by the USV. The parameters are optimized by performing

combinatorial search over the range of discrete values of δe and δl. The table

presented in Table 3.2 is the number of states expanded with respect to δe

74

Table 3.2: Mean number of states expanded by varying the exponential and linear

increment parameters for scenario with different congestion value.

75

and δl at constant optimum value of the spatio-temporal complexity levels

(Λ∗stc). We can observe from the table that at higher values of δe and δl, the

number of states expanded reduces. At higher values of δe and δl, the planner

rapidly increases the time scaling of the control action primitives resulting in an

improvement in the computational performance. However, this improvement

in the computation performance of the planner comes at the cost of increase in

total travel distance by the USV. This behavior of the planner is demonstrated

in Table 3.3, where the percentage additional distance traveled by the USV is

evaluated with respect to discrete values of δe and δl.

Ideally, the best values of δe and δl are the ones which provide the shortest

travel distance and the fewest expanded states. Unlike, spatio-temporal com-

plexity parameters it is difficult to select one optimum value of δe and δl that

will work for all the scenarios with different level of congestion value. For the

scenarios with high congestion value (i.e. 40-45), the environment has large

number of civilian vessels and less free space. Thus, it is beneficial to select

lowest values of δe and δl and gradually scale the control action primitives.

From the Table 3.3 we can see that in the scenarios with high congestion value

(i.e. Λcgn = 40 − 45), it is beneficial to select the lowest values of δe and δl

(i.e. δe = 1.4 and δl = 0.1) because it provides the shortest travel distance.

Similarly, for the scenarios with low congestion values (i.e. Λcgn = 10 − 15)

we want to rapidly scale the control primitives. Thus we can select the higher

values of δe and δl (i.e. δe = 2 and δl = 0.1) which provide only 0.415% of

76

Table 3.3: Mean of percentage additional distance traveled by varying the exponen-

tial and linear increment parameters for scenario with different congestion value.

77

additional travel distance .

3.6.2 Selection of re-planning frequency

Unmanned surface vehicles (USVs) rely on several finite time variables for

successfully avoiding static as well as dynamic obstacles in the environment.

These variables include:

(i.) tperception: Time taken by the perception system to identify and estimate

the state of the obstacle in the given environment.

(ii.) tplanning: Computational time required by the planner to compute avoid-

ance strategies after getting state information from the perception sys-

tem.

(iii.) treaction: Finite reaction time required by the USV to start executing

commands issued by the high level planner (deliberative or reactive).

(iv.) texecution: Time required by the USV to execute an emergency control

action to avoid collision.

Now, the planning frequency required for collision free operation of USV in

an environment with given congestion value is governed by the time equation

tCPA > (tperception + treaction + texecution + tplanning). The planning time can be

further divided into the computation time required by the deliberative planner

A-RCAP (tdelibrative) and the computational time required by the VO-based

reactive planner (treactive) i.e. tplanning = tdelibrative+ treactive. The computation

78

time for the deliberative planner is higher than that of the reactive planner

(i.e. tdelibrative > treactive). Thus, the planning cycle for the reactive planner

is significantly smaller than that of the deliberative planner. The deliberative

planner provides the global path by considering the current state of the world.

However, until the next planning cycle of deliberative planner if the USV

comes across any unpredicted situation the reactive planner is used perform

the avoidance maneuver.

In our experiments, the computation time for the reactive planner is approx-

imately treactive = 300 ms and the average planning time for the deliberative

planer (A-RCAP) is approximately tdeliberative = 10 s. The approximate values

of the reaction time treaction = 1 s and the execution time texecution = 10 s are

computed using the system identified dynamics model of the USV [1]. The ex-

ecution time texecution is equal to the maximum of all the execution time taken

by the USV to execute contingency control action primitives. Finally, the

value of time to CPA used by the A-RCAP planner to perform the avoidance

maneuver is set to be tCPA,max = 30 s. This value of tCPA,max is determined

from our previous physical experiment described in [1]. We assume the time

taken by the perception system to be approximately tperception = 1 s. Thus,

the deliberative planner (A-RCAP) can successfully yield to all the civilian

vessels having time to CPA above tCPA > 30 s.

Now, the value of tCPA,max will depend upon the relative velocity of the

USV and the civilian vessels in the current environment. If the USV has to

79

operate in environment with high-speed civilian vessels (i.e. lower values of

tCPA,max), then the computational performance can be further improved by

better hardware and parallelization.

3.7 Summary

Dynamic obstacle avoidance is one of the most extensively studied research areas

in the field of mobile robotics. However, the existing planners developed for ob-

stacle avoidance in highly dynamic environments have one or more of the following

limitations:

� Do not consider the civilian vessels (or dynamic obstacles) as an active agents

and assume the obstacles will continue with the same heading and velocity.

� Do not consider the uncertainty in the predicted state of the civilian vessels.

� Do not consider the kinodynamical constraints of the USV (or robot).

� Avoids the collision locally and do not reduce the collision risk globally.

In this chapter, we introduced a lattice-based, 5D trajectory planner for an

unmanned surface vehicle (USV) operating in an environment with civilian traffic.

The planner:

� Estimates the collision risk of a trajectory and reasons about the availability

of contingency maneuvers to counteract the unpredictable behaviors of civilian

vessels.

80

� Incorporates the avoidance behaviors of civilian vessels into the search to min-

imize collision risk.

� Introduces uncertainty in the predicted state and the avoidance strategy of

the civilian vessels.

� Considers the USV’s dynamics and the tuned low-level controller (used to

track the computed trajectory) while computing the trajectory.

� Globally minimizes the risk of collision not only between the USV and the

civilian vessels but also between the civilian vessels themselves.

� Dynamically scales control action primitives based on the congestion of state

space regions to maximize search performance.

We have carried out simulations to evaluate the collision rate, length, and

execution time of trajectories, and computational efficiency in terms of the num-

ber of states expanded during the search for a trajectory by the developed planner.

We have introduced a novel congestion metric to compare the complexity of dif-

ferent scenarios when evaluating the planner. The trajectories computed by the

planner result in a smaller number of collisions as compared to a variation of the

VO-based local planner [86] used in marine missions. This is mostly due to the

consideration of the USV’s dynamics, contingency maneuvers, and fast replanning

through a dynamic adaptation of control action primitives. In addition, the adap-

tive planner computes shorter trajectories with smaller execution times compared

to its non-adaptive variant as well as the VO-based planner.

81

The planner developed in this chapter is designed for under actuated, two-

dimensional non-holonomic robots. We assume that the position of the civilian

vessels and the USV does not change significantly in the time interval required

by the planner to generate two consecutive paths, thus the spatial uncertainty in

the position of the vessels is low. At the planned operating speed of the USV,

the re-planning frequency of the planner (A-RCAP) is sufficient to maintain the

positional uncertainty of the vessels within satisfactory bounds. This enables the

planner to generate low-risk paths without increasing the travel path length and

travel time. However, when the developed planner with same re-planning frequency

is deployed on USVs traveling at high speeds (especially with vehicles traveling

above 15 knots) this results in high uncertainties in the position of the civilian

vessels. This increased positional uncertainty will result in correspondingly higher

chances of collision between the vessels. In order to minimize the risk of collision,

the planner will generate long paths with large travel times. In the future, it will be

advantageous to develop an anytime-variant of the planner that can compute paths

quickly to deal with highly dynamic environment and compute low-risk paths that

have low travel time and distance.

82

Chapter 4

Speeding up A* Search on Visibility Graphs Defined Over Quadtrees

to Enable Long Distance Path Planning for Unmanned Surface

Vehicles

In this chapter2, we introduce an algorithm for long distance path planning in com-

plex marine environments.

4.1 Introduction

Over the last ten years, substantial progress has been made in the development of

low-cost unmanned surface vehicles (USVs) [2, 4]. There are a number of civilian ap-

plications where deploying USVs can significantly reduce costs, improve safety, and

increase operational efficiencies. Representative applications include remote/persistent

ocean sensing, marine search and rescue, and industrial offshore supply and support.

In this chapter, we are interested in path planning over long distances in

complex marine environments. Figure 4.1 shows an example of an environment

that consists of hundreds of islands of complex shapes. The available free space

in such marine environments changes over time as a result of tides, environmental

restrictions, and weather. Low tides may make it infeasible to go through regions

with shallow waters. Environmental restrictions may prevent the unmanned surface

2 The work in this chapter is derived from the published work in [37]

83

Figure 4.1: Topography of a complex marine environment.

vehicle from passing through certain protected marine regions for certain periods of

times. Weather induced waves may prohibit traveling over certain areas due to high

collision risks. As a result of these considerations, the free space region in marine

environments needs to be dynamically generated and updated.

Consider a representative marine region of 100 sq. km. This region may

need thousands of complex polygons to represent the land areas (or obstacles) in

the marine environment. Roadmap-based methods work well with polygons-based

representations [123] and have been shown to be quite useful in ground applica-

tions. However, as mentioned earlier, the free space may change in marine environ-

ments. Hence, we cannot justify the computational time and efforts needed to build

roadmaps. Instead, we will need to import the obstacle field data from NOAA nau-

tical charts by applying the appropriate height filters based on the tide conditions

84

at the time of the mission. Additional obstacles will need to be identified based on

weather and environmental restrictions applicable at the time of the mission. These

requirements restrict us to only consider those methods that can compute plans

without the need for computing roadmaps.

Grid-based methods can be used to represent complex obstacle fields [126,

104]. If a grid is defined over a 100 km by 100 km region using a 10 m resolution

in each dimension, the resulting grid will contain 100 million nodes. The large

regions typically contain large land masses that may span several kilometers. It

appears that quadtrees [136] are better spatial data structures to represent complex

marine environments compared to grids (see Figure 4.2). A 100km by 100km region

can be represented with a hundred thousand or fewer nodes in a quadtree. This

leads to a reduction of more than a thousand nodes in terms of spatial complexity.

Environmental and weather based restricted areas can be easily incorporated in

quadtrees as obstacles. Hence, in this chapter we will use quadtrees as the spatial

data structure to represent the free space.

In this chapter, we present an algorithm for long distance path planning in

complex marine environments using A* search on visibility graphs defined over quad

trees. Section 5.3 defines the visibility graphs. Visibility graphs have been shown

to be useful in computing optimal paths in the presence of complex obstacle fields.

However, the computational performance of visibility graphs degrades as the region

to be searched becomes large and the number of nodes in the visibility graph in-

creases rapidly. This chapter introduces a number of techniques to speed up the A*

search process and makes it feasible to compute paths using visibility graphs over

85

Figure 4.2: Quadtree representation of a complex polygon.

large regions. Previous work has shown that the optimal path goes through tangent

edges in the visibility graph [157]. We exploit the data structures and the modified

rotational plane sweep algorithm (RPS) [158] to compute tangent edges efficiently

(see Section 4.3).

We have presented an improved heuristic to handle large obstacles in the

region (see Section 4.4). Finally, we have described methods for focusing the search

by looking for child nodes in certain spatial regions (see Section 4.5). The path

computed using the proposed approach can be used to generate trajectories and

support a wide variety of missions [151, 159, 160].

86

4.2 Approach

In this paper, we are interested in computing an optimal path τ on a workspace with

large maps represented using a quadtree MQ (see Figure 4.24), given the start nI

and goal nG node. Each leaf node in a quadtree is represented as l = [ηT , d, t] ∈ MQ,

where η = [x, y]T is the center of the node in 2D space, d ∈ [0, dmax] is the current

depth of the node ranging from 0 (i.e. the rootnode) up to the maximum depth of

the quadtree dmax, and t denotes the type of the node, i.e. a free node (t = 0), a

solid or obstacle node (t = 1), and a node with additional branches (t = 2). In this

paper, the word ‘node’ (or ‘nodes’) is used for the nodes of the visibility graph [128].

The quadtree nodes will be referred to as ‘leaf nodes’ (see Figure 4.3).

Any shortest path between the start nI and the goal nG node in the workspace

with a set of polygonal obstacles O is a poly-line path whose inner vertices are

vertices of O [158]. Two vertices v and v′ are mutually visible if the line segment

connecting v and v′ does not intersect with the interior of the polygonal obstacle

oi ∈ O, where oi is the i
th obstacle in the set O. Now, vertices v and v′ will be nodes

n and n′ in the visibility graph V with an edge between them. The Visibility graph

V is a graph whose nodes are vertices of polygonal obstacles along with the initial

nI and the goal nG nodes. The edges of the graph represent the pair of mutually

visible vertices. The shortest path between the start nI and goal nG nodes is the

shortest path in the visibility graph V.

In our problem, the polygonal obstacles are the solid leaf nodes (t = 1) of the

quadtree MQ and the vertices of these solid leaf nodes are the nodes of the visibility

87

Figure 4.3: Computation of visible nodes in quadtree.

graph V. The set of visible nodes at node n is denoted as vn. The example in

Figure 4.3 shows the candidate visible nodes (marked by green) and non-visible

nodes (marked by red) of the current node n.

The set of visible nodes vn is calculated by iterating over all the N nodes

in the visibility graph V and performing N − 1 collision checks to determine the

visibility of the nodes. This computation proves to be computationally expensive.

The complexity of the visibility graph (i.e. the number of visibility checks per node

n) can be reduced by incorporating the concept of tangent graphs (i.e. reduced

visibility graph) [157].

To reduce the complexity of the graph we need to eliminate the nodes that

will never be part of the optimal path τopt. First, we accumulate the connected solid

leaf nodes of the quadtree tree which are termed island hi. Each map represented

88

Figure 4.4: Eliminating visible interior vertices from the visibility graph (.

by quadtree MQ may have several such islands denoted by the set H . Second, we

compute the convex hull regions cj ∈ Ci for all the island regions, where Ci ∈ C is

the set of all the convex hulls for the ith island in H . The convex hull cj is computed

such that the hull does not intersect with obstacle region O. Thus, each island hi

can be represented by multiple convex hulls.

Let us consider a simple case shown in Figure 4.4, where (1) hi ∈ H is an island

(i.e. the solid quadtree leaf node). Let, Ci be the set of convex hulls of island hi,

(2) τfeasible is a feasible path that includes an interior visible node nint (i.e. interior

vertex) of the island hi that is not on the boundary of cj ∈ Ci, and (3) the start

nI and the goal nG node are outside of both the island hi and all the convex hulls

in cj ∈ Ci and no other obstacle in O intersects with cj ∈ Ci. In this case, τfeasible

will cross the convex hull twice on its course to reach interior visible node nint and

then to come out of cj. This path τfeasible can always be improved by just moving

89

along the convex hull rather than going inside and coming out. There is no other

obstacle intersecting with cj to prevent this. Therefore, the interior vertex nint will

never be in the optimal path τopt.

Now, let us consider a more general case as depicted in Figure 4.5 where (1)

Ci = {c1, c2, c3}, (2) cj ∈ Ci does not intersect with any other obstacle in O, and

(3) nint is an interior node that belongs to island hi but not to cj. The optimal path

τopt will not pass through nint if nI and nG are outside of the convex hulls in Ci.

Hence nint can be removed from the list of potential candidate nodes for visibility

graph V. Similarly, in Figure 4.5, the nodes of the visibility graph marked with red

color are interior nodes nint that lie in the interior of the convex hulls C. Now, as

per the theorem stated above, these nodes marked with red color can be eliminated

because they will not be included in the optimal path τopt. Also, the nodes that are

shared by the convex hulls within the same island can be eliminated. Each island

will have a set of candidate nodes after the elimination of the interior nodes nint

that are used for computing tangent edges.

The interior nodes nint lying in the same convex hull as the initial node nI or

the goal node nG are not eliminated, thus not altering the optimality of the path.

It has been shown that the optimal path only passes through edges that are tangent

to the polygonal obstacles in the visibility graph [157]. Let us denote the graph

comprised of only tangent edges (i.e. tangent graph or reduced visibility graph) by

Vt. The shortest distance path between nI and nG is comprised of a combination

of shortest straight line paths between two polygons and line segments along the

exterior boundary of the polygonal obstacles. Now, the number of visible edges of

90

Figure 4.5: Eliminating nodes in the interior of the convex hull (we assume the

start and the goal node are not inside any convex hull)

91

the current node n ∈ Vt can be restricted to the tangent edges from the current

node n. This reduces the size of the visibility graph without altering the quality

and optimality of the path.

4.3 Computation of Edges on Tangent Graph

Traditionally, the visibility and tangent graph-based path planning approaches pre-

compute the entire structure of the graph with edges connecting the visible nodes.

The computation of all the edges of the tangent graph Vt is computationally ex-

pensive. In our approach, the edges of the graph are computed on the fly during

the search for the optimal path τ . The search is performed by expanding nodes in

the least-cost A* [104] fashion according to the cost function f(n) = g(n) + h(n),

where g(n) is the cost-to-come to node n from the initial node nI, and h(n) is the

heuristic estimate of the cost-to-go from the current node n to the goal node nG.

During the expansion of each node n ∈ Vt, we need to determine tangents for

each island hi ∈ H and these tangents have to be checked for collisions in order

to determine the visible nodes vn
t . This process of determining the visible nodes

vn
t is computationally intensive and hence reduces the performance of the search

algorithm.

The computational performance of the search can be improved by reducing

the number of collision checks required during the determination of visible nodes.

The reduction in collision checks is achieved by our implementation of a modified

variant of the rotational plane sweep algorithm (RPS) [158], in which we compute

92

Figure 4.6: Elimination of non-visible nodes using the computed tangents for the

islands in H

93

the angle and distance to each node in Vt from the current node nc. During the

computation of these angles and distances, we determine maximum and minimum

angle for each island hi which serve as tangents from the current node. The list of

all the tangents are sorted based on their angles with respect to the current node

nc.

Now, these tangents to each island hi ∈ H form cone like structures with the

apex at the current node n. We refer to these cones as visibility cones for the island

hi. During the visibility check, we can directly eliminate all the candidate nodes

with an angle lying in between the two edges of the cone and distances greater than

the tangent nodes for the nearest visible convex hull hi. This drastically reduces

the number of collision checks required during the determination of visible tangent

nodes and improves the efficiency of the algorithm. For example, in Figure 4.6

the tangent nodes of island 138 and one of the tangent nodes of island 129 can be

directly eliminated by a visibility cone of island 130. Finally, the collision checks

for determining visible tangent edges that cannot be eliminated by the modified

RPS algorithm are performed by a modified Bresenham’s collision test algorithm

described in [161].

4.4 A New Heuristic

The performance of the A* based path planning algorithm depends on the estimation

of the cost-to-go (or h-cost) from the current state nI to the goal state nG. If the

path planner significantly underestimates the cost-to-go, then it has to expand more

94

nodes until it finds an optimal path to the goal. On the other hand, if the path

planner overestimates the cost-to-go, then the h-cost is inadmissible and the paths

are no longer optimal.

The most widely used heuristic by the path planning algorithms [1, 159, 38,

34, 35] is the Euclidean distance from the current node nI to the goal node nG. This

heuristic expands nodes nearest to the goal in a greedy fashion. This assumption

works perfectly on maps without any large obstacle regions. In scenarios with large

obstacles, the shortest optimal path has to circumvent at least one obstacle before

heading towards the goal, unless the goal is in line-of-sight to the initial location.

The heuristic based on Euclidean distance will expand all the nodes lying on the

perimeter of the obstacle in a greedy fashion until a straight line path is available

to the goal. However, in most of the complex marine environments (see Figure 4.1)

we have large islands and the use of the heuristic based on Euclidean distance often

degrades the performance of the path planner.

We have developed a heuristic that exploits the fact that the optimal path

reaching towards the goal has to pass through one of the corners of the obstacle

obstructing the straight line path to the goal node. Let us consider a scenario

shown in Figure 4.7. In this example, the straight line path from the current node

nc to the goal node nG intersects two obstacles o1 and o2. The Euclidean distance

heuristic from n to nG is given by hE(n) = d(n,nG), where d(n,nG) is the straight

line distance. The vertices vR1 and vR2 are the rightmost vertices of obstacles o1

and o2 and their corresponding orthogonal distances are denoted by dR1 and dR2.

Similarly, the leftmost vertices are vL1 and vL2 and their corresponding orthogonal

95

Figure 4.7: Designed heuristic

distances are denoted by dL1 and dL2. The shortest route to the goal will have to

pass through at least one of the extreme vertices of obstacle o1 or o2 represented

in the configuration space, i.e. the path will be triangular with the middle vertex

vXn ∈ {vR1,vR2,vL1,vL2}, where X ∈ {R,L} and n ∈ {1, 2}. Let the extreme

vertex corresponding to distance dXn be denoted by vXn.

The triangular path length to travel from the right side of the obstacle is

given by hRT (n) = d(n,v(max(dR1, dR2))) + d(v(max(dR1, dR2)),nG). Similarly, the

path length to travel from the left side is denoted by hLT (n). Finally, the admissible

triangular heuristic cost is computed as hT (n) = min(hLT (n), h
R
T (n)).

96

Figure 4.8: Pathological scenario where a node in tangent graph has a large branch-

ing factor.

4.5 Focusing A* Search

In order to guarantee optimality, the A* algorithm needs to explore all possible

child nodes for a node being expanded. In large spatial regions, there can be a

large number of nodes that need to be examined to determine if the straight line

between them and the node being expanded belong to the tangent graph. In certain

pathological cases, the number of edges on the tangent graph can be very large (see

Figure 4.8). This can lead to poor computational performance during the search.

In order to improve the computational performance of the algorithm, we can

focus the search and examine only certain kinds of edges on the tangent graph. For

97

Figure 4.9: Procedure to add nodes to the focused visibility graph.

example, we can search for the edges in a spatial region that lies within a certain

radius of the current node. However, if a fixed radius is used, then we may not be

able to find any edge to explore if all other obstacles lie outside of the given radius.

Therefore, in addition to the radius, we also consider adding the edges that lie on

obstacles that intersect with the straight line path from the node being expanded

and the goal (see Figure 4.9). This approach focuses the search and ensures that we

do not encounter pathological cases. Also, during the search the child nodes of the

current node nc are checked for direct line-of-sight connection with the parent node.

This enables a line-of-sight connection between the current node and the nodes that

lie outside the constrained region.

The path generated by the focused search is not necessarily optimal. Hence

98

we are interested in characterizing the path with respect to the optimal path. Let us

assume that L is the length of the path generated using the focused search. Now, let

us construct a circle of radius L at the start node nI and identify the set of visible

nodes vn
t,L ∈ Vt that lie inside the circle of radius L. Any node on the reduced

visibility graph (i.e. tangent graph) that is outside of the radius L will have a path

length of more than L from nI, hence it cannot be on the optimal path.

Now we will compute the sum of cost-to-come g(n) and cost-to-go h(n) for all

the visible node n ∈ vn
t,L. Let L′ be the minimum among all the visible nodes in

vn
t,L. The optimal path length cannot exceed L′ because the optimal path has to go

through nodes in vn
t,L. If L ≥ L′, then L is the optimal solution. If this condition

is not satisfied, then L′ can be used to compute a bound on how far off L is from

the optimal solution. The optimal solution cannot improve the path length given

by L by more than 100(L − L′)/L percent. If this bound is relatively small, then

the search can be terminated and L can be returned as the solution.

If L′ is much smaller than L, then a second round of the search can be con-

ducted with an adaptive radius of focus. At the start node we can use L as the

radius of focus. As the search progresses, this radius can be reduced to L minus

the cost-to-come for the node being expanded. Let nc be the current node being

expanded and g(nc) be its cost-to-come, then the remaining cost of the optimal path

cannot exceed L− g(nc), therefore there is no need to look for successor nodes that

are more than L − g(nc) distance away from nc. This search always produces the

optimal answer.

99

4.6 Assessing Effectiveness of Focused Search

In the previous section, we have introduced the concept of focusing the A* search

to reduce the branching factor of the search tree and improving the computational

efficiency of the algorithm. The approach used to focus the A* search selectively

considers the nodes that have higher chances of being on the optimal path and

prunes the rest. The nodes that are selected can be broadly categorized in two

regions. First, the nodes that lie inside a circular region around the current node

nc and is termed the ”local search region” (see Figure 4.10). Let L be the radius

of the local search region, then all the visible nodes inside the local search region is

given by vn
t,L. Second, the nodes that lie on the nearest island that intersects the

direct line connecting the current node nc and the goal node nG (see Figure 4.10).

This region is named the ”extended search region”. The visible nodes selected from

the extended search region guides the search in the direction of the goal and are

denoted as by vn
t,E .

We are interested in studying the influence of the radius of local search region

on the probability of finding the optimal path. The optimal path τ opt comprises of

linear line segments that connect nodes in direct line-of-sight from the initial node

nI to the goal node nG. The focused search approach is able to compute the optimal

path provided it captures the next node on the optimal path from the current node.

Let the next node on the optimal path be denoted by noptnext.

The effect of the size of local search region L on the probability of capturing

the next node on the optimal path is governed by the distribution of the obstacles

100

Figure 4.10: Selection of nodes that lie inside the local and extended search regions.

or nodes in the given scene. For example, if the region is sparse, then the absolute

size of the local search region required to capture the next node on the optimal

path should be large and vice versa. Thus, we require a common metric that is

independent of the distribution of the scenario and can be used to study the effect

of L on probability of capturing noptnext. We have selected the mean length of tangents

Lmeanscn between the islands in the scene as a metric to study the effect of size of local

search region on probability of capturing the next node on the optimal path.

We are interested in characterizing the probability of capturing the next node

on the optimal path when using the focused search. The next node that lies on the

optimal path falls into any one of the following four possibilities:

1. The next node on the optimal path lies in the local search region i.e., noptnext ∈

101

vn
t,L, which is denoted as noptlocal

2. The next node on the optimal path lie in the extended search region i.e.,

noptnext ∈ vn
t,E , which is denoted as noptext

3. The next node on the optimal path does not lie in the local or extended search

region but is able to connect to the current node nc via back connection. Back

connection is a method in which the child nodes are checked for a direct line-

of-sight connection with the parent of current node i.e. grandparent. This

method helps us to determine the direct connection between the nodes that

lie marginally outside the local search region and the current node. The next

node on the optimal path that are discovered by back connection are denoted

as noptback.

4. The last possibility is that the next node on the optimal path cannot be found

as a result of focusing the search.

The distance distribution plot shown in Figure 4.11(a-d) shows the distances

between the islands in few of the scenarios. The plots shows that length of the

tangents gradually decays and most of the tangents in the scenario are less than the

mean (shown by the red line). Figure 4.12 shows the percentage of next node on

the optimal path that lie inside the local search region by varying the size of the

local search region from 10 to 250% of the mean tangent length. We can see that

initially, the curve increases in super-linear fashion and then begins to saturate as

we reach higher percentage of the mean tangent length. At the mean tangent length

102

(a)

(b)

Figure 4.11: Distribution of distances between the islands in four out of ten ran-

domly generated scenarios.

103

(c)

(d)

Figure 4.11: Distribution of distances between the islands in four out of ten ran-

domly generated scenarios.

104

Figure 4.12: Absolute percentage of next node on the optimal path that lie inside

the local search region.

(i.e. 100 %) approximately 55-60% of the next node on the optimal path lies inside

the local search region.

The plots in Figure 4.13(a) shows the absolute percentage of next node on

the optimal path that lies inside extended search region (noptext). We see the curve

dropping as the size of the local search region is increased from 10 to 250% of the

mean tangent length. This reflects the fact that the nodes lying on the nearest island

intersecting the current-to-goal node line falls inside the local search region and are

thus eliminated from the extended search region. The plots in Figure 4.13(b) shows

the proportional number of the ”next node” on the optimal path that falls inside

105

the extended search region i.e. , the percentage of remaining nodes on optimal path

after eliminating the nodes that lie inside the local search region (100− noptlocal). We

see that from the remaining nodes the approximately 65% of the nodes lie inside the

extended search region. At mean tangent length (100%), approximately 65% of the

remaining nodes lie inside extended search region. This further reduces the chances

of not finding the next node on the optimal path.

We can see the plot in Figure 4.14(a) shows the absolute percentage of the next

nodes on the optimal path that are discovered using the back connection approach

(noptback). We can see the plot increasing until the size of the local search region reaches

50% of the mean tangent length. This behavior is due to the fact that when the size

of local search region is small, less nodes lie inside the region and there are more

nodes on the optimal path yet to be discovered. However, when the size of the local

search region increases from 50 250% the curve starts to decay, primarily because

there is a low number of undiscovered nodes.

Figure 4.14(b) shows the proportional number of the next nodes on the optimal

path that are discovered by the back connection approach i.e. , the percentage of

nodes from the remaining undiscovered nodes left after eliminating nodes that lie

in the local and extended search region. In contrast to the previous plot, we can

see that the curve increases up to 150% and saturates from 150 250% of the mean

tangent length. With the increase in size of local search region, the distance between

the child nodes and the current node increases. In the back connection approach,

we check for connection between the grandparent and the children of the current

node. This helps us to discover the nodes that lie at a distance greater than the size

106

(a)

(b)

Figure 4.13: (a)Absolute percentage, and (b) Proportional percentage of next node

on the optimal path that lie inside the extended search region.

107

(a)

(b)

Figure 4.14: (a)Absolute percentage, and (b) Proportional percentage of next node

on the optimal path that are discovered by the back connection.

108

of the local search region but smaller than twice the size of local search region.

Figure 4.15(a-d) shows the histogram of the ratio of optimal path segment

lengths v/s mean tangent lengths of few scenarios from the experimental data. We

can see that still there is significant number of optimal path segments that lie be-

tween the mean tangent length and the twice mean tangent length of the scenario.

These larger segments of optimal path are discovered by the back connection ap-

proach until the size of the local search region increases up to 150%. At the mean

tangent length (100%), we see that approximately 80% of the remaining undiscov-

ered next nodes that lie on the optimal path are discovered.

Finally, the Figure 4.16 shows the absolute percentage of the next nodes on the

optimal path do not lie in the local and extended search region and are not discovered

by the back connection approach. We see that the curve decays drastically and

almost reaches 0% when the size of the local search region is 125% of the mean

tangent length.

Thus, by selecting a local search region size of approximately one and half times

the mean tangent length ensures that the probability of not finding the optimal path

is below 1%.

4.7 Handling Time Varying Free Space

In marine environment, the available free space varies over time as a result of ocean

current and tides, environmental restrictions and weather. For example, areas where

low tides reduces the depth of the water are inaccessible for certain type of marine

109

(a)

(b)

Figure 4.15: Distribution of length of line segments on the optimal path in four

out of ten randomly generated scenarios.

110

(c)

(d)

Figure 4.15: Distribution of length of line segments on the optimal path in four

out of ten randomly generated scenarios.

111

Figure 4.16: Absolute percentage of next nodes on the optimal path do not lie in

the local and extended search region and are not discovered by the back connection

approach.

112

vessels. Also, inclement weather increases the sea-state (or tide) level, making nar-

row passages in the environment extremely risky to travel. The path planner have to

account for the changing free-space during the computation of long distance paths

for a USV.

Previously, in 4.2, we have described the procedure to compute a reduced

visibility graph given the quadtree representation of the nautical chart data corre-

sponding to the area of the mission. In order to capture the time-varying nature

of obstacles (or the free space) of a given geographical area, we need to consider

the nautical chart data for the duration of the mission (tmission). We can compute

discrete quadtree representation of the nautical chart data observed over mission

duration. Each quadtree representation Mi
Q is valid form ti to ti+1. We compute a

reduced visibility graph V it structure for each quadtree representation having time

0 ≥ ti, ti+1 < tmission. The nodes of this reduced visibility graph V it are denoted

by nij . During the computation of the collision free path, the nodes in V it are only

available for time duration of the quadtree i.e., ti to ti+1. However, there will be set

of nodes that will be available throughout the duration of the mission and will be

part of all the reduced visibility graphs. For example, the initial node nI and the

goal node nG.

Let us consider the example shown in Figure 4.17. The blue squares M1
Q and

M2
Q are the quadtree representation of the obstacles. The nodes on M1

Q denoted by

n1
1 and n1

2 are the nodes of the visibility graph V1
t that are valid for time duration t1

to t2. There are several ways we can traverse from the current node nc to the next

node n. One of the option is to traverse via n1
1, n

2
1, and n. A second option is to

113

(a)

(b)

Figure 4.17: (a)Example illustrating the computation of travel cost from the current

node nc to node n in an environment with two quadtrees M1
Q and M2

Q.(b) Graph

of time v/s distance shows the progression of the computed path with traversal time

for each segment denoted by ts and wait time by tw

.
114

wait for the duration of the first M1
Q and second M2

Q quadtree to expire and then

directly head to the next node n. The option that reduces the travel time depends

upon the time duration of the quadtree i.e. t1, t2, t3 and the travel time required

by the USV i.e., the maximum speed of the USV.

In our implementation, we have decided to compute the time required by the

USV to travel to the next node n by including the wait time (see Figure 4.17 (b)).

The direct line from nc to n collides with, first with the obstacle in M1
Q and then

with the obstacle in M2
Q. These collisions help us to break down the segment

connecting nc and n into 3 segments labeled as s1, s2, and s3. Figure 4.17 (b) shows

that the USV traverses the segment s1 at the maximum velocity vmax up to the

point immediately prior to collision with obstacles in M1
Q and waits for duration

tw1
before it starts traveling along segment s2. However, in the execution phase the

USV can prefer to go at lower speeds to avoid waiting. The path planner decides

to wait at the point just before the collision takes place rather than waiting at the

current node nc. This eliminates the possibility of a new obstacle appearing between

the current node and the point of collision when the duration of the quadtree expires

(at which collision occurred).

We have performed simulated experiments to evaluate the performance our

path planner in the presence of time-varying obstacles. In contrast to the path

planning algorithm that is used to computes paths in the static environment this

algorithm optimizes time required by the USV to travel from initial node to the goal

node including the wait time.

Figure 4.18, shows the layout of two quadtrees M1
Q and M2

Q. Quadtree M1
Q

115

is valid from time t = 0 to t = t1 and M2
Q is valid from time t = t1 to t = tmission,

where tmission is the upper bound on time for the USV to reach the goal state. The

scenarios are designed such that there is a small channel which appears at time

t = t1 that USV can exploit to reach the goal. By varying the time t1 we can see

different types of plans computed by the developed path planner in Figure 4.19. In

the Figure 4.19(a), the planner produces long serpentine path from start to goal

state because the time t1 is larger than the traversal time required by the USV to

follow the long path at 10 m/s. If we reduce the value of t1 (see Figure 4.19(b) and

(c)), then the planner produces a path which involves waiting for duration tw at the

point immediately prior to collision before traversing to the goal.

Similar to the previous scenario, Figure 4.20 shows the layout of the 3 quadtrees

where the second quadtree opening the channel from north. The first and third

quadtree are same as Figure 4.18 but with different time limits. Quadtree M1
Q is

valid from time t = 0 to t = t1 M2
Q is valid from time t = t1 to t = t2, and M2

Q is

valid from time t = t1 to t = tmission. Figure 4.21 shows the paths computed by the

planner at different values of t1 and t2.

4.8 Results and Discussion

We compare the performance of the developed algorithm with the any-angle path

planning algorithm Theta* [131]. The implementation of Theta* used for all the

simulation experiments is taken from [162]. The scenario shown in Figure 4.23

(quadtree representation) is used to demonstrate the scaling of the developed tangent

116

(a)

(b)

Figure 4.18: Experimental scene with two quadtrees, start and goal nodes. (a)

Quadtree M1
Q. (b) Quadtree M2

Q

117

(a)

(b)

Figure 4.19: Path computed by the planner at different values of time t1.

118

(c)

Figure 4.19: Path computed by the planner at different values of time t1.

graph approach with improved heuristics against Theta*. Table 4.1 compares the

computation time of Theta* and our approach. We can see that the computation

time of Theta* drastically increases with the increase in pixels (or minimum grid

size) used to represent the scene. On the other hand, the computation time of

our approach TG+HEU, marginally increases primarily because of the Bresenham’s

collision test algorithm [161]. In other words, the developed tangent graph approach

is resolution independent and does not depend on the grid size of the scene.

The simulation setup consisted of a randomly generated quadtree for the area

of size 100 x 100 km (see Figure 4.22). The maximum depth of the quadtree was

kept at dmax = 13 i.e. the finest resolution will be 100000/213 = 12.21 meters.

The start and the goal nodes were kept constant at nI = [2000, 2000]T and nG =

119

(a)

(b)

Figure 4.20: Experimental scene with two quadtrees, start and goal nodes. (a)

Quadtree M1
Q. (b) Quadtree M2

Q. (c) Quadtree M3
Q.

120

(c)

Figure 4.20: Experimental scene with two quadtrees, start and goal nodes. (a)

Quadtree M1
Q. (b) Quadtree M2

Q. (c) Quadtree M3
Q.

Table 4.1: Computational results for Theta* and tangent graph with the developed

new heuristic (see Section 4.4) (TG+HEU) in the same scenario with different grid

sizes.

121

(a)

(b)

Figure 4.21: Path computed by the planner at different values of time t1 and t2.

122

(c)

Figure 4.21: Path computed by the planner at different values of time t1 and t2.

123

Figure 4.22: Experimental setup and sample any-angle path from the start node

nI to the goal node nG.

124

Figure 4.23: Example scenario to compare the scaling between Theta* and our

approach.

125

Figure 4.24: Computed path on a real world scenario.

[98000, 98000]T (in meters) respectively. The algorithm is written in Python 2.7

and computed on a Intel(R) Core(IM) i7-2600 CPU @ 3.4 GHz machine with 8GB

RAM.

The results presented in Table 4.2 shows the computational performance of

the developed approaches in randomly generated quadtree maps. The size of the

quadtree map is varied from 5000 to 100000 leaf nodes by varying the depth of

the quadtree dmax = 10 to 13 and the occupancy of the map. The tangent graph

approach combined with the improved heuristics (TG+HEU) enhances the compu-

tational performance and reduces the number of expanded states as compared to

126

Table 4.2: Comparison between different variants of developed visibility graphs-

based algorithms on scenarios with a varying number of quadtree nodes. VG+ECU:

Visibility graph with Euclidean distance as heuristic, TG+HEU: Tangent graph with

the developed new heuristic (see Section 4.4), and FS+HEU: Focused search in tan-

gent graph with the developed heuristic.

127

the visibility graph using the Euclidean distance as heuristics (VG+ECU). This is

primarily due to a low branching factor of (TG) as it just examines the tangents

of the islands while adding visible edges to the graph. The branching factor is fur-

ther reduced by focusing the A* search on a tangent graph (FS) which restricts the

search for the possible visible edges in the local vicinity and in the line-of-sight to

the goal. In our experiments, the local vicinity of FS is determined by a circle of

constant radius rfoc = 10 km. However, the improved computational performance of

FS comes at the cost of loss of optimality and increased path length by a maximum

of 0.33%.

The computation time and path lengths for Theta* on randomly generated

scenarios with nodes fewer than 10000 quadtree nodes are comparable to that of

FS+HEU. However, Theta* is unable to compute paths in several scenarios having

more than 10000 quadtree leaf nodes (i.e. quadtrees of depth dmax ≥ 12 which give

maps that are 4096 x 4096 pixels in size) because the planner becomes memory

intensive and the computer which we used to perform our simulation experiments

cannot handle it. In the scenario above 10000 nodes where the Theta* is able to

generate paths, we see a significant increase in computation time and path length.

The quadtree of the real marine environment (see Figure 4.24) is computed

using the nautical chart data available from NOAA. Nautical chart data of a 100 x

100 km region is exported into shapefile (.shp) format. We have created a framework

where we can read shapefiles of a region and generate the corresponding quadtree

of a desired maximum depth (dmax). Using this framework we processed the land-

regions from the shapefiles to extract the data represented in the form of polygons.

128

The quadtree of depth dmax = 13 is computed from the extracted polygons and

outputted to a text file.

The extracted polygons are then processed to compute the quadtree of depth

dmax = 13 and output it to a text file.

Figure 4.24 shows the computed path (in red) from the start node nI to the

goal node nG in a real marine environment shown in Figure 4.1 . The size of the

map is 100 x 100 km and the number of quadtree nodes is 66425. The total number

of candidate nodes in the tangent graph is 2732. The number of nodes expanded

by the path planner FS+HEU is 711 and the computation time is 12.19 seconds.

The computation time for Theta* is 96.32 sec and the computed path is the same

as that computed by FS+HEU.

4.9 Summary

This chapter presents an approach for computing paths on large marine domains.

The approach presented in this chapter demonstrates that it is feasible to compute

optimal paths using an A* search on visibility graphs defined over quadtrees. Exper-

imental results indicate that optimal paths can be computed in a reasonable amount

of time over a 100 km by 100 km area with a 10 m feature resolution. This was

made feasible by developing methods to efficiently compute tangent edges in visibil-

ity graphs using quadtree data structure. There can be cases where the branching

factor is large during the search over the visibility graph due to the large size of the

region. To deal with these cases, we introduced the idea of focusing the search by

129

limiting the child nodes to be in certain regions of the workspace. Our results show

that this idea speeds up the computation time significantly without compromising

the quality of the path in a significant way. We also developed a method to estimate

bounds on how far the computed path can be from the optimal path when methods

for focusing the search are utilized for speeding up the computation.

The computational time of the developed algorithm will degrade with increas-

ing obstacle density. With a high density of obstacles, most of the attempts to find

long distance visibility nodes will result in collision. In complex and highly dense

scenario (obstacle occupancy 70 - 80%), the developed planner may consume more

computational time to compute optimal paths as compared to grid-based search

algorithms. In the future, the computation time can be reduced by employing par-

allelization techniques and using computers (or cloud networks) with high processing

power.

130

Chapter 5

Path Planning for Unmanned Vehicles Operating in Time-Varying

Flow Fields

In this chapter3, we present a A* based path planning algorithm with newly de-

veloped admissible heuristics for unmanned vehicles operating in time-varying flow

fields.

5.1 Introduction

Many unmanned vehicles (also called robotic vehicles) interact with the underlying

fluid medium in which they operate (see Figure 5.1). The medium may exhibit a

significant fluid flow. For example, an aerial vehicle may encounter significant winds

and an underwater vehicle may encounter strong water currents. The performance

of the vehicle such as its maximum velocity and also the energy consumption per

unit distance traveled is affected by the medium flow.

Usually, a global path planner is used for finding the shortest collision-free

path to a specified goal location. The waypoints generated by the global planner are

often followed using a feedback controller in order to compensate for environmental

disturbances. The rejection of the disturbances via feedback controlled actuators

may consume significant energy if the vehicle travels against a strong medium flow.

3 The work in this chapter is derived from the published work in [163]

131

From the operational efficiency point of view, the vehicle should exploit the fluid

flow instead of attempting to overcome it.

Weather forecast reports provide an estimate of the medium flow as a function

of time. This information can be exploited to generate low-cost paths that utilize

the flow to aid the motion of the vehicle. Such paths can save energy and hence

be much lower in cost. Conserving energy has also an indirect benefit of extending

the range of operation. This is especially important in missions where long term

operation is desired. In many cases, the vehicle has a window of opportunity for

completing a given mission and thus the mission manager can select the mission

start time such that the vehicle experiences the most favorable medium flow during

the operation.

Let us consider the following scenarios to understand the implications of the

fluid flow on the path:

� Scenario 1: The vehicle takes a straight line path to the goal and does not

account for the influence of the medium flow. It encounters a strong medium

flow during the travel that impedes its motion. The vehicle then needs to use

a significant energy to traverse the path against the flow, which increases the

cost of the path.

� Scenario 2: The vehicle waits for the flow to become more favorable. Once

the flow is in a favorable direction, the vehicle utilizes it to advance itself

and thus uses less energy as it does not need to generate thrust to propel

forward. The vehicle only dissipates energy when performing minor corrective

132

Figure 5.1: Surface currents in the Atlantic ocean.

actions to mitigate spatial disturbances. The path of the vehicle exploiting

the medium flow may be curved and longer than a straight line path. The

flow velocity is small compared to the velocity of the vehicle that uses its

thrusters to propel forward, so the vehicle takes much longer time to reach

the goal compared to the first scenario. Despite the longer path length and

travel time, the vehicle consumes significantly less energy as compared to the

first scenario. Therefore, the cost of travel is much lower. The decrease in

the energy consumption means that the vehicle can do several more missions

without the need for refueling.

This chapter deals with the global path planning under the influence of medium

flows. The main contribution of this chapter is the incorporation of the influence of

the flow field into the search for an optimal path.

133

Path planning for vehicles operating in the presence of flow fields has been

previously studied in [164, 165]. Computing energy-efficient paths for a vehicle

operating in a large environment with flow fields present several challenges such as:

� Utilizing a model of a time-varying flow field during path planning to predict

the impact of the flow on the motion of the vehicle and hence compute paths

that are energy-efficient as well as compliant with the vehicle’s dynamics.

� Integrating the uncertainty in the prediction model of the flow field and the

vehicles’ spatio-temporal uncertainty arising due to its interaction with obsta-

cles.

� Navigating around complex obstacles in the environment during the compu-

tation of an optimal collision-free path.

A majority of previous approaches attempted to address the aforementioned

challenges separately. For example, graph search-based algorithms are efficient at

computing paths in complex obstacle fields. Model predictive control-based tech-

niques [166] are good at computing paths in the presence of flow fields. Stochastic

mathematical programming-based techniques [167, 168, 169] are good at computing

paths in the presence of uncertainty.

We believe that an integrated approach that can address all the aforementioned

challenges consists of two steps. First, a discrete graph search technique is needed to

compute a global path that not only avoids obstacles but also exploits the medium

flow. Second, a stochastic mathematical programming-based techniques [149] or

134

model predictive control-based techniques [170] are needed to compute trajectories

between intermediate goals lying on the computed global path.

In this chapter, we present a heuristic-based search technique for computing

an energy-efficient global path for a vehicle moving in a flow field. The technique

is relatively easy to implement, can incorporate intention models (if available) of

dynamic obstacles, and enforce safety constraints [1, 38, 159]. The proposed al-

gorithm can also determine the cost optimal start time of a given mission based

on the model of the fluid flow. The computed path can be further locally altered

by the mathematical programming or MPC-based techniques to account for spatial

uncertainties.

Traditional distance and time-based admissible heuristics, used for estimating

cost-to-go by discrete graph search algorithms, are not suitable for this domain

because curved paths are needed to exploit available flows. Moreover, using the

medium flow to propel the vehicle forward often requires a longer time to reach the

goal. Hence, we have developed new admissible heuristics for estimating cost-to-go

while taking into account the medium fluid flow.

5.2 Problem Formulation

5.2.1 Terminology

The continuous state space X = Xη×Xν×T consists of states x = [ηT , νT , t]T ∈ X ,

where η = [x, y, ψ]T ∈ Xη ⊂ R
2 × S

1 is the vehicle’s pose, ν = [u, v, r]T ∈ Xν ⊂ R
3

is the vehicle’s velocity consisting of the surge speed u, sway speed v, and angular

135

speed r about the z axis, and t is the time. The approximated lower dimensional,

discrete 4D version of the continuous state space X is represented by S, where each

state s = [x, y, u, t]T contains position, surge speed, and time variables.

The continuous, state-dependent motion primitive space of the vehicle is de-

fined as U = {Ua,uf} ⊂ R
2×S

1. Here, Ua is the set of the vehicle’s thrust-producing

actions in which each action ua = [ud, ψd, δt]
T consists of the desired surge speed

ud, the desired heading ψd, and the execution time δt. The velocity vector of the

vehicle at state x is given by vr
x = [ud, ψd]

T . A special free-flow action is defined

as uf = [um, ψm, δt] allows the vehicle to travel freely with the flowing medium

along the current flow vector vm
x for the time interval δt (see Section 5.2.2). The

discrete set of vehicle’s thrust-producing actions is given by Ua,d. Each discrete

thrust-producing action of the vehicle is given by ua,d.

5.2.2 Medium Flow Model

In a real world scenario, it is difficult to have a continuous forecast of natural phe-

nomena (e.g., wind, ocean currents, etc.). The available forecast is usually discrete

and it is assumed to hold for a specific interval of time. On similar lines, we have

modeled the medium flow in the environment to be discrete and is assumed to vary

temporally but not spatially. In other words, the flowing medium for any discrete

time t is constant for the time interval δt (see Figure 5.2). The simulation time

interval of motion primitives Ud is kept to be the same as the discrete time interval

δt of the medium flow model.

136

Figure 5.2: Model of the flowing medium.

The time-varying model mf of the flowing medium outputs a velocity vector

vm
s = [um, ψm]

T at every state s ∈ S. Here, um is the magnitude and ψm is the

direction of the flowing medium.

5.2.3 Motion Model

The motion of the vehicle in an environment with a flowing medium is dependent

upon the direction and the magnitude of the flow. The transition of the vehicle

137

from the current state s to the next state s′ is determined by the vehicle’s thrust-

producing action ua,d ∈ Ua,d and the velocity vector vm
s of the flowing medium at

the current state s. We assume that the low level controller of the vehicle is capable

of maintaining its heading along the direction ψd of the thrust-producing action ua,d.

Depending upon the medium flow, the forward velocity of the vehicle may

be boosted or hindered. The magnitude of the forward velocity |vfs | is determined

by the vector sum of vms and vrs, with an assumption of the vehicle being a point

mass (see Figure 5.3). The velocity of the vehicle vrs can be resolved into two

components: the magnitude of the component in the direction orthogonal to the

desired direction |vr,Os | = |vms |sin(ψe) and the magnitude of the component along

the desired direction |vr,Ds | =
√

|vrs|
2 − |vr,Os |2, where ψe = ψd − ψm, and ψm is

the orientation of the flowing medium. Thus, the resultant forward velocity of the

agent along the direction of the thrust-producing action ua,d is given by |vfs | =

|vr,Ds | + |vms |cos(ψe). The position of the next state s′ generated by the thrust-

producing action ua,d is determined by [x′, y′]T = [x, y]T+|vfs |·δt·[cos(ψd), sin(ψd)]
T .

Similarly, the position of the next state s′ generated by the free-flow uf,d action is

determined by [x′, y′]T = [x, y]T + |vms | · δt · [cos(ψm), sin(ψm)]
T .

5.2.4 Cost Model

Let the cost of executing a vehicle’s thrust-producing action per unit time be given

by Ct
a and the cost of the special free-flow action per unit time be given by Ct

m,

where Ct
m < Ct

a. The values of Ct
m and Ct

a are constant and provided by the user.

138

Figure 5.3: Computation of vehicle’s forward velocity under medium flow.

Let c(s, s′) denote the traversal cost from the state s to state s′. The traversal cost

c(s, s′) equals Ct
aδt if the vehicle arrives at state s′ by using the thrust-producing

action ua,d ∈ Ua,d. Similarly, the traversal cost c(s, s′) equals Ct
mδt if the vehicle

arrives at state s′ by using the free-flowing action uf,d. Finally, let the optimal cost

of the computed path τ from the initial state sI to the goal state sG at start time

tstart be denoted by c∗start(sI, sG) (see Section 5.3.3). Here tstart is the time when the

vehicle starts the mission, i.e., leaves from the initial state sI and proceed towards

the goal state sG.

5.2.5 Problem Statement

We are interested in designing an energy-efficient path planning algorithm for com-

putation of collision-free paths between the initial and the goal states of a vehicle

139

operating in an environment with a flowing medium. The developed planner searches

for a path that minimizes the energy cost by exploiting the medium flow.

Given,

� the discrete state space S of the vehicle,

� the initial sI and the goal sG states of the vehicle,

� the discrete model of the medium flow mf ,

� the cost Ct
a of the vehicle’s thrust-producing action per unit time and the cost

Ct
m of the free-flowing action per unit time,

� the map of the environment with the geometric regions occupied by static

obstacles Os =
⋃K

k=1 os,k ⊂ R
2, and

� the maximum time duration tmission in which the vehicle should complete the

current mission and reach the goal sG.

Compute:

� The start time of the mission tstart < tmission that minimizes the cost incurred

by the vehicle to travel from sI to sG.

� A collision-free, dynamically feasible trajectory τ : [tstart, tfinish] → S such

that τ(tstart) = sI, τ(tfinish) = sG and its travel cost is minimized. The value

of tfinish should not exceed tmission and s(t) /∈ Os

Each state s(t) along τ belongs to the free state space.

140

In this chapter, we assume that the actuators of the vehicle are able to over-

come the medium flow and the velocity of the agent vr
s is greater than the medium

velocity vm
s.

5.3 Approach

5.3.1 Overview

The deliberative path planner described in Section 5.3.2 searches in a discrete 4D

state space for a collision free, lattice-based path τ : [0, tfinish] → S from a given

initial state sI to a goal state sG. The path is optimized not only with respect to its

travel cost but also with respect to the vehicle’s start time tstart (see Section 5.3.3).

The medium flow forecast may have uncertainty associated with it. The A*

algorithm does not handle this uncertainty. This uncertainty can be handled by

refining the path by using forward value iteration-based stochastic dynamic pro-

gramming in the vicinity of the computed path [42]. This post-processing can refine

the paths to reduce the probability of collision with obstacles due to the uncertainty

in the medium flow by optimizing the expected costs of paths. This step is outside

the scope of this chapter and will not be discussed further.

5.3.2 Path Planning

The global path planner is designed based on the lattice-based A* heuristic search

[33]. The search for a path τ with the minimum cost is performed by expanding

states in the least-cost fashion according to the cost function f(s) = g(s) + h(s),

141

where g(s) is the cost-to-come at state s from the initial state sI, and h(s) is the

cost-to-go from the state s to the goal state sG. The cost-to-come g(s) is computed

by summing a traversal cost of each action (see Section 5.2.4) executed to reach

the current state s from the initial state sI. In Section 5.4, we compute three

different types of the cost-to-go (h-cost) to be used in the cost function described

above. During the search, the neighboring state s is determined by the motion

model described in Section 5.2.3. We have defined a desired goal state region SG in

close proximity around the goal state sG. The search is terminated when any of the

expanded states s lies in SG.

5.3.3 Start Time Optimization

The optimal cost c∗start(sI, sG) of the path τ : [tstart, tfinish] → S computed by the

path planner is highly dependent on the medium flow encountered by the vehicle

and the start time tstart. In some situations, it is beneficial for the vehicle to wait

at the initial location sI and start its journey only when the medium flow becomes

favorable. The maximum time tmission the vehicle is allowed to wait and complete

its mission is predefined by the user.

We find the resolution-optimal start time tstart of the path between sI to sG

by adaptively sampling the time interval {0, tmission}. We iteratively call the delib-

erative path planner to compute the cost c∗start(sI, sG) of a path for different values

of tstart. The bounding constraints for tstart are given by 0 < tfinish ≤ tmission, where

tfinish = tstart + texecution and texecution is time taken by the vehicle to execute the

142

path. The sampling method begins with large interval steps and adaptively reduces

the time step in the promising regions.

5.4 Design of Heuristics

5.4.1 Heuristic #1

Let s be the current state. We are interested in estimating the cost to reach the

goal state sG from the current state s. Let c∗(s, sG) be the optimal cost of reaching

sG from s. We will refer to this cost as optimal cost-to-go. Let heuristic h(s) be

a function that provides an estimate of c∗(s, sG). h(s) will be called admissible

heuristic if, c∗(s, sG) ≥ h(s).

A simple way to compute h(s) would be to assume that the flow will be most

favorable during the the vehicle operation. This will enable us to achieve the smallest

possible cost per unit distance traveled. Hence estimate of cost-to-go h(s) cannot

exceed the actual optimal cost to goal state sG.

Let dist(s, sG) be the Euclidean distance between states s and sG. If the flow

is assumed to be at maximum velocity vm
max and directly flowing towards the goal,

then the total cost of travel using free flow is given by Equation 5.1.

C1 =
dist(s, sG) · C

t
m

|vm|max
(5.1)

If the vehicle uses its actuators and travels at maximum vehicle velocity vr
max in

addition to taking the advantage of the flow, then the total cost of travel is given

143

by Equation 5.2.

C2 =
dist(s, sG) · C

t
a

|vm|max + |vr|max
(5.2)

Minimum of the two estimates C1 and C2 can be determined to calculate h(s).

h(s) = min(C1, C2) (5.3)

5.4.2 Heuristic #2

Although admissible, the heuristic presented in Section 5.4.1 significantly underesti-

mates the cost, so we have designed a better heuristic that utilizes the medium flow

information. In order to utilize the flow information, we need to first determine the

relevant time window. We do this by first estimating the upper bound tbound on the

time associated with the optimal path. Any medium flow available at time greater

than tbound will not be available during the execution of the path.

We compute the cost Cstraight incurred by the vehicle to travel in a straight

path to the goal state sG using its thrust-producing action in the presence of medium

flow. Cstraight is the upper bound on the optimal cost. Let C ′ be the cost of any

arbitrary path to the goal state sG, and can be represented by C ′ = tf ·C
t
m+ ta ·C

t
a,

where tf is the total time consumed by the free flow action and ta is the total time

consumed by the vehicle’s thrust-producing action. We are only interested in paths

Cstraight ≥ tf · C
t
m + ta · C

t
a. We can compute tbound by maximizing the objective

function tf + ta, where tf = (Cstraight − ta · C
t
a)/C

t
m. We assume that Ct

m < Ct
a.

Hence, we can maximize total time by selecting ta = 0 and tf = Cstraight/C
t
m. Thus,

144

the upper bound on time is given by tbound = Cstraight/C
t
m. The value of Cstraight

will change with the scenarios having different medium flows.

As mentioned in Section 5.2.2, the estimated flow conditions are available as

an ordered sequence. Each flow condition holds for a time interval of δt. In each

time interval δt, we have the direction and the magnitude of the flowing medium in

terms of velocity vector vm
s.

We can view each flow condition as a performance altering condition that lasts

for a duration of δt. We are interested in exploiting these conditions that lower the

cost of travel. For each flow condition that we plan to utilize, we need to make a

decision to either execute the free-flow action or use the thrust-producing action. In

computation of the heuristic cost h(s), we select the action that has the lower cost

incurred per unit distance advancement towards the goal.

The cost incurred per unit projected distance traveled using the free-flowing

action uf,d is calculated using Equation 5.4.

C l
f =

Ct
m

|vm
s · |cos(ψe)

(5.4)

The cost incurred per unit projected distance traveled using the vehicle’s thrust-

producing action ua,d ∈ Ua,d is calculated using Equation 5.5.

C l
a =

Ct
a

|vr
s|+ |vm

s| · cos(ψe)
(5.5)

In Equations 5.4 and 5.5, the angle ψe is the angle between the desired direction

ψg to the goal state sG from the current state s and the direction of the flowing

medium ψm (see Figure 5.4). We can choose the appropriate action for each discrete

145

Figure 5.4: Calculation of heuristic #2.

time interval δt starting from the current time t to tbound. The selected actions for

each discrete time interval δt ∈ {t, tbound} are sorted and stored into the priority

queue EO according to the cost incurred per unit distance advancement towards the

goal with the least cost action on the top. The actions are sequentially popped out

of the priority queue EO and are integrated for time interval δt, until the summation

of the projected distance traveled by all actions is equal to the projected distance

to the goal sG from the state s.

This heuristic uses actions that have the lowest per unit length cost towards

the goal from the available time window. It selects actions without requiring them

to be contiguous in time. The optimal path will have either the same action as used

by the heuristic or will be forced to use actions that have higher per unit length

cost towards the goal. Therefore, it is not possible for the optimal path to exceed

146

the cost estimated by this heuristic. Therefore, this heuristic is admissible.

5.4.3 Heuristic #3

In Heuristic #2 described above, each selected action is assigned a cost-to-go based

on the cost incurred per unit projected distance traveled towards the goal. This is

a tight lower bound on cost for thrust producing actions. However, when the free

flow action is used, unless ψe = 0, the vehicle does not go directly towards the goal

(see Figure 5.5). If free flow conditions do not exist within the time bound that

can provide ψe of opposite sign, a thrust-producing action is needed to bring the

vehicle towards the goal. If using the thrust-producing action becomes necessary in

conjunction with the free flow action, then the lower bound computed on the cost

in heuristic #2 significantly underestimates the cost and can lead to expansion of

a large number of states. We have devised an improvement over heuristic #2, by

increasing the per unit length cost associated with free flow actions to account for

use of the thrust producing actions. Let us consider a free flow action shown in

Figure 5.5. Without the loss of generality, let us assume that ψe is positive and

no free flow action is available with negative value of ψe until time tbound. We will,

therefore, have to use a thrust-producing action to bring the vehicle towards the

goal.

In the Figure 5.5, the free flowing action uf,d(s
′) along the flowing medium

with velocity vm makes an angle ψe with the desired direction of motion . Now,

the corrective distance the vehicle has to travel to get back to the desired path is

147

Algorithm 3 ComputeHeuristic2(s, t, ψg, tbound, mf)
Input: The current node s, current time of arrival t, the desired direction ψg from the current state s to the goal

state sG, the maximum bound on travel time tbound, and the model of medium flow mf .

Output: An estimated cost-to-go h(s) from current state s to goal state sG.

1: Let ti = t be the forward simulation time and δt be the simulation time step.

2: Let vi be the velocity vector along the desired direction achieved by executing action ui at time ti ∈ {t, tbound}

.

3: Let EO be a priority queue containing selected actions ui at each discrete time ti ∈ {t, tbound}

4: while ti ≤ tbound do

5: Let the current velocity vector of the medium flow at state si be denoted by vm
si

6: Cost incurred by per unit length advanced towards the goal while executing free-flow action uf,d and thrust-

producing action ua,d are given by Equation 5.4 and 5.5 and denoted as Cl
f
and Cl

a respectively.

7: if Cl
f
< Cl

a then

8: vi = |v
m

si
|cos(ψe) and Cl

i = Cl
f

9: else

10: vi = |v
r
si
|+ |vm

si
|cos(ψe) and Cl

i = Cl
a

11: end if

12: Insert vector [vi, C
l
i]
T into/in EO

13: ti = ti + δt

14: end while

15: Let dG = dist(s, sG) be the distance of the state s from the goal state sG.

16: dtravel = 0 and Cincur = 0

17: while EO not empty do

18: [vi, C
l
i]← EO.F irst()

19: dtravel = dtravel + |vi| · δt

20: Cincur = Cincur + Cl
i · dtravel

21: if dtravel ≥ dG · cos(ψg) then

22: h(s)← Cincur

23: return h(s)

24: end if

25: end while

26: return h(s) =∞ (not enough time to reach the goal state, thus the node s′ does not lie on optimal path τ∗.

148

Figure 5.5: Calculation of additional compensation cost-to-go for free-flowing ac-

tion uf,d(s).

149

given by dc =
√

d2 + (|vm| · sin(ψe) · δt)2, where d is the projected distance traveled

along the desired direction towards the goal.

To compute the lower bound on the cost, we want to use the fastest possible

velocity for the vehicle. Let us assume that there will be flow available that will

provide the maximum possible assistance to the vehicle. We will only apply this

correction if there is no flow available with negative ψe. The best that we can hope

for is that the flow is going along ψg as shown in Figure 5.5. Let us assume that

the magnitude of the flow velocity is the maximum possible |vm|max within the

available time window. Under these conditions the vehicle’s forward velocity while

performing the corrective action can be calculated as:

|vf
c| = |vr|+ |vm|max · cos(α),

where α = tan−1[(|vm|max · sin(ψe) · δt)/d]

(5.6)

The time taken to perform the corrective action can be calculated as tc = dc/|v
f
c|.

Thus, the cost incurred per unit distance advanced towards the goal by using a

combination of free-flow and thrust-producing action can be given by:

C l
a =

tc · C
t
a + Ct

m · δt

d+ |vm| · cos(ψe) · δt
. (5.7)

In order to compute the lower bound on the cost given in Equation 5.7, we need

to select d so that the C l is minimized. Solving the above function analytically is

not possible and requires application of numerical techniques. Please note that this

function depends on |vm|, |vm|max, and ψe. We have optimized the above function

for different combinations of these values using off-line computation. A meta-model

(e.g., lookup table) has been developed that allows us to quickly access the lower

150

bound on the value of C l for free flow actions. Please note that these optimized

values of C l are usually higher compared to the values provided by Equation 5.4.

If there is no free flow available within the available time window with the

opposite sign of ψe that will take the vehicle back towards the goal, then we use the

modified value of C l in line 6 of Alg. 3. The use of this value is expected to produce

a much better estimate of the cost-to-go and hence improve the computational

performance.

5.5 Results and Discussion

5.5.1 Simulation Setup

We chose an action set comprising of seventeen actions, out of which 16 actions are

thrust-producing ua,d = [ud, ψd, δt] having desired direction ψd equally spaced from

0 to 360 degrees and constant surge speed of 10 m/s with respect to the medium. We

assume that the maximum magnitude of the medium flow is 6 m/s. We assigned the

cost of executing each thrust-producing action to be Ct
a = 6 per minute while the

cost of executing a free-flow action to be Ct
m = 1.2 per minute. We discretized the

time with 10 min intervals, i.e., δt = 10 min, which means that a motion primitive is

executed for δt duration before another motion primitive can be commanded. This

is mainly because the weather predictions available in practice are seldom more

frequent than δt = 10 min. The medium flow model as described in Section 5.2.2

has a discrete magnitude and direction profile. The designed scenarios used for

performance evaluation of the developed heuristics (see Section 5.4) have medium

151

profiles that either vary in magnitude, direction or both.

The first set of scenarios uses medium with a constant magnitude profile. The

magnitude of the medium flow is held constant at 6 m/s. Specific test cases are:

� Constant flow directions along 30o and 90o.

� Rotating medium flow at the rate of 0.1o per minute with initial direction of

330o and rotating medium flow of 0.2o per minute with initial direction of 310o.

The second set of scenarios uses medium with a randomly generated magnitude

profile. The magnitudes are randomly generated in a range of 0 to 6 m/s with the

rate of change of 0.5 m/s between two consecutive discrete time steps. Specific test

cases are:

� Constant flow direction of 30o and 90o

� Randomly generated direction profile changes by 5o in each discrete time step.

We use two scenarios having initial medium flow directions of 5o and 45o

� Rotating medium flow at the rate of 0.1o per minute with initial direction of

330o and rotating medium flow of 0.2o per minute with initial direction of 310o

5.5.2 Comparison of Heuristics

The results presented in Table 5.1(a) compares the performance of all the three

heuristics in test scenarios having medium flow of constant magnitude. The reduc-

tion in number of states by heuristic #2 with respect to heuristic #1 is lower for

152

Table 5.1: Comparison of the number of states expanded by the path planner using

the heuristic #2 and #3 with respect to the heuristic #1 in scenario having medium

flows with (a) constant magnitude and (b) random magnitude.

(a)

(b)

153

scenarios with constant and rotating medium flow with lower values of ψe (i.e., fa-

vorable medium flows) because it does not account for the cost of thrust-producing

action to reach the goal after executing the free-flow action. Heuristics #3 corrects

for this problem.

The results presented in Table 5.1(b) shows the performance of all the three

heuristics in test scenarios having medium flows of random magnitude. The per-

formance of heuristic #3 is lower in the scenario having random direction, because

in this case it uses best case correction for the deviations caused by the free flow

actions.

Table 5.2 shows the ratio of the cost C1 to C2, where C1 is the cost incurred by

the vehicle while using the shortest distance path, and C2 is the cost incurred by the

vehicle while using the developed path planner and the vehicle starts its mission at

time tstart = 0. Higher the ratio of C1/C2, the vehicle saves more energy by using the

developed planner as compared to the shortest distance-based path planner. The

results in Table 5.2 are computed by randomly generating 100 scenarios for each

occupancy value ranging from 10-40%. The results show that with the increase in

occupancy of the scenario, the performance of the developed path planner degrades.

The primary reason for this decline is the lack of free space for executing long free-

flowing actions. Secondly, the vehicle has to execute its thrust-producing action to

overcome large number of obstacles in the environment.

154

Table 5.2: Performance of the developed energy-efficient planner in randomly gen-

erated scenarios with varying occupancy. Cost C1 is the cost incurred while using

the shortest distance path planner and cost C2 is the cost incurred while using the

developed path planner at time tstart = 0.

5.5.3 Results on Example Scenarios

The results presented in Figure 5.6 show the paths generated by the deliberative

path planner in the scenario A at different start times of the mission. The scenario

presented in the figure has a medium flow of constant magnitude, rotating clockwise

at the rate of 0.2o/min. The initial direction of the medium flow at tstart = 0

is pointing towards the west (i.e., 270o). The blue actions are the free-flowing

actions and the black actions are the thrust-producing action. Also, the green circle

represents the initial location and the red circle indicates the goal location of the

vehicle.

Now, if the vehicle decides to start the mission early at tstart = 20 min (see

Figure 5.6(a.1)), the planner generates the path by initially using the free-flow action

155

(a)

(b)

Figure 5.6: Comparison of paths for the scenario A with different start times. The

green circle represents the initial location and the red circle represents the goal loca-

tion of the vehicle. Each blue segment is a free-flow action and each black segment

is a thrust-producing action.

156

(c)

Figure 5.6: Comparison of paths for the scenario A with different start times. The

green circle represents the initial location and the red circle represents the goal loca-

tion of the vehicle. Each blue segment is a free-flow action and each black segment

is a thrust-producing action.

157

along the medium direction and moves the vehicle far west. In the latter half of the

path, the vehicle has to use its thrust-producing action to avoid the obstacle and

to reach the goal. On the other hand, if the vehicle prefers to start the mission late

(see Figure 5.6(b)), then it can just use the free-flow action in the middle portion

of the path. Finally, Figure 5.6(c) shows the lowest-cost path produced by the path

planner when the vehicle decides to start the mission at the optimal start time.

The paths shown for scenarios B, C and D in Figure 5.7, are computed at

the optimal start time produced by the optimizer. Scenario B has medium flows

similar to scenario A, but rotating at the rate 0.4o/min. Scenario C and D have the

same medium flow with constant magnitude of 6 m/s, rotating counterclockwise at

the rate of 0.6o per minute. The initial direction of the medium flow at start time

tstart = 0 is pointing east (i.e., 90o).

Similar to the results shown in Table 5.2, Table 5.3 shows the comparison

between cost ratio C1/C2 and C1/C3 in example scenarios (A-D). Here, the costs

C1, C2 are the same as described in Section 5.5.2, cost C3 is the cost incurred by the

vehicle while using the developed energy-efficient path planner and the vehicle starts

its mission at optimal time time tstart = toptimal. The table compares the energy

efficiency of the developed algorithm with and without start time optimization.

5.6 Summary

This chapter presents a new approach for generating paths for unmanned vehicles

in time-varying flow fields. Generated paths show significant improvement in terms

158

(a)

(b)

Figure 5.7: Optimal path produced by the path planner for scenarios B, C, and D

at optimal start times produced by the optimizer.

159

(c)

Figure 5.7: Optimal path produced by the path planner for scenarios B, C, and D

at optimal start times produced by the optimizer.

Table 5.3: Comparison between the energy-efficiency provided by the developed

path planner without start time optimization (i.e., ratio C1/C2) and with start time

optimization (i.e., ratio C1/C3). Cost C1 is the cost incurred while using the shortest

distance path planner, cost C2 is the cost incurred while using the developed path

planner at time tstart = 0, and cost C3 is the cost incurred while using the developed

path planner at time tstart = toptimal.

160

of energy cost compared to the shortest distance paths. This has been accomplished

by selecting an optimal start time to exploit the flow conditions and using free flow

actions that propel the vehicle forward instead of using thrust produced by the

actuators. We have developed new admissible heuristics to estimate the cost-to-go

in the A* algorithm. These heuristics work effectively to reduce the number of

expanded states in a wide variety of flow conditions.

The computational time of the developed algorithm and the quality of the com-

puted path is highly dependent upon the resolution of the state space discretization,

thus making the planner difficult to scale with map size. The developed algorithm

assumes that the flow-fields do not vary spatially and are independent of the obsta-

cles present in the region. However, this assumption is violated in the real-world

scenarios. Incorporating the spatially varying flow-field in the current version of

the developed planner will degrade the performance of the heuristic, resulting in

significant computation time. In the future, it will be beneficial to extend the cur-

rent algorithm and heuristic to incorporate the spatially varying flow fields and its

interaction with the obstacles present in the region.

161

Chapter 6

Conclusions

This chapter presents the expected intellectual contributions and anticipated bene-

fits from the work proposed in this dissertation.

6.1 Intellectual Contributions

The tasks listed in Chapter 1 broadly aims towards the development of planning

algorithms for autonomous operation of USVs. The following are some of the key

contributions:

6.1.1 Risk-Aware Trajectory Planning in Congested Civilian Traffic

This dissertation introduces a novel lattice-based, 5D trajectory planner for an un-

manned surface vehicle (USV) operating in an environment with civilian traffic in

Chapter 3. The planner: 1) estimates the trajectory’s collision risk and reasons

about the availability of contingency maneuvers to counteract unpredictable behav-

iors of civilian vessels; 2) incorporates the avoidance behaviors of civilian vessels

into the search to minimize collision risk; 3) considers the USV’s dynamics; and 4)

dynamically scales control action primitives based on the congestion of state space

regions to maximize search performance. This dissertation also introduces a novel

congestion metric that ranks the complexity of different marine scenarios by taking

162

into account the topography of the scene, maneuverability and the relative distances

of all the vehicles in the scenario.

6.1.2 Path Planning over Long Distances

The topography of the marine environment significantly varies in terms of free and

traversable spaces. Also, traversable space changes over time as a result of tides, en-

vironmental restrictions, and weather. Standard grid-based methods with constant

grid size are inefficient and computationally inefficient. Sampling-based methods

produce non-optimal paths, with the computation time dependent on map specific

parameter like dmin (in RRT* [76]). This dissertation introduces a resolution inde-

pendent path planning algorithm that computes optimal paths using a A* search on

visibility graphs defined over quadtrees in Chapter 4. This dissertation also provides

an admissible heuristic that accounts for large islands while estimating the cost-to-

go and provides lower bound superior to a Euclidean distance-based heuristics. We

have created a framework where we can read nautical chart data (i.e. shapefiles)

and generates the corresponding quadtree of desired maximum depth.

6.1.3 Trajectory Planning in Time-Varying Flow Fields

The maximum velocity and energy consumption of the USVs are significantly influ-

enced by the the medium flows (i.e. ocean currents). This dissertation introduces an

A* based path planning algorithm that generates low-cost paths by incorporating

the weather forecast models and exploiting the medium flow to aid vehicle’s motion

163

and conserve energy. Traditional admissible heuristics that are based on shortest

distance or time are not suitable for this approach as the exploitation of the medium

flow often requires longer time or distance to reach the goal. This research work also

presents novel admissible heuristics for estimating cost-to-go by taking into account

flow considerations.

6.2 Anticipated Benefits

This dissertation introduces a trajectory and path planning algorithm that enables

the autonomous operation of USVs in large maritime environment and the execution

of missions with long time horizon. A team of autonomous USVs can enhance the

safety and operations of the port by patrol and guiding the marine vessels in the busy

ports and congested marine environment. Furthermore, the use of USVs allows the

Coast Guard to perform finer-scale search in an rescue operation using data obtained

solely from aerial vehicles. The USVs can also be used to reduce time, money and

risk to life during the offshore extraction of both fossil fuels, renewable energies,

and other resources that are often found in harsh environments. Finally, a team of

USVs can be used in exploration and sensing of the marine environment that are

unexplored and provide large risk to human life.

6.3 Future Directions

This dissertation provides a solid foundation for path and trajectory planners re-

quired for autonomous navigation of USVs. The approaches discussed here can

164

be extended in the following directions to more completely realize the autonomous

operation of the USVs in marine environment.

1. Integration of Perception and Planning for Long Term Operation of Unmanned

Surface Vehicles:

In all the developed approaches, our autonomous USVs had complete and

perfect knowledge about static obstacles and dynamic moving civilian vessels.

However, this assumption stands void in real world missions and requires more

detailed consideration of perception problem. Perception has always been

a challenging problem in robotics and automation, the performance of any

perception system varies significantly during missions performed by the USV

due to weather conditions, the motion of the vehicle itself, occlusions caused

by waves and splashing water on the sensors. This makes real-world planning

for autonomous operations of USVs a challenging problem. Performance of

the planning system is highly influenced by accuracy of data provided by

perception system.

Planning system for USVs need to plan trajectories to minimize the limitations

and maximize the utility of the perception system. Hence, planning has to be

done not only for specific mission but also to overcome the limitations of the

perception system, sensing and motion uncertainty. In the process of develop-

ing this approach (which combines planning and perception), characterizing

and modeling the behavior of actual physical sensors on the USV plays an

important role. Use of a sensor model in conjunction with filtering techniques

165

will allow the planning system to predict and minimize the measurement errors

and enhances the planning capabilities of the autonomous USV. For example:

a camera is blinded by directly facing the sun, which severely degrades its

performance. These limitations of the perception system can be addressed by

intelligent planning, leading to better performance for long-term autonomous

operations of USVs.

2. Modeling of Civilian Vessels in the Environment for Risk-aware Trajectory

Planning:

In Chapter 3, we model civilian vessels using a simplistic velocity obstacle

(VO) based model. Additionally, the uncertainty in the position of the civil-

ian vessels is approximated by normal distribution with variance increasing in

time (computed using Monte Carlo simulations). We did not considered the

physical parameters such as weight, actuation type, etc. while predicting the

motion of the civilian vessels. We have not accounted for COLREGs-based

avoidance strategies and behaviors exhibited by the sailors while avoiding on-

coming vessels (e.g. risk taking versus conservative nature). Finally, in the

real world scenarios USV will need to use a perception system to determine the

state of the civilian vessels. The uncertainty in the perception system must

be accounted during the computation of risk-aware trajectory in congested

environment.

3. Incorporation of uncertainty in the path planner for USVs operating in time

varying flow fields:

166

The lattice-based path planner developed in Chapter 5 presents a new ap-

proach to generate energy efficient paths, providing a significant improvement

in terms of energy cost as compared to shortest distance-based path planner.

However, the developed planner does not consider the temporal and spatial

uncertainty in USV’s state.

Spatial uncertainty in USV’s position arises due to its interaction with the

flow-fields (i.e. winds and/or currents). For example, if a USV is trying to

maintain its straight line course towards the goal,any significant flow field will

hinder USV’s motion, causing deviation from the planned straight-line path.

Considering spatial uncertainty in USV’s position during the computation of

the path helps the planner to more accurately determine the USV’s risk of

collision with the obstacles.

Secondly, temporal uncertainty arises due to delays caused during the execu-

tion of the USV’s motion primitive by its interaction with the flow-fields. For

example, a USV is predicted to reach at the intermediate waypoint at t sec

and it actually reaches at t+x sec, where x is uncertain. In this case, the plan

must account for the delay and consider the flow field model beginning from

t+x sec and not t sec all while starting from the intermediate waypoint. Con-

sidering the temporal uncertainty in planning will help the USV to effectively

exploit the flow fields.

167

Bibliography

[1] Petr Švec, Brual C Shah, Ivan R. Bertaska, Jose Alvarez, Armando J. Sin-

isterra, Karl von Ellenrieder, Manhar Dhanak, and Satyandra K Gupta.

Dynamics-aware target following for an autonomous surface vehicle operating

under COLREGs in civilian traffic. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS’13), 2013.

[2] S.J. Corfield and J.M. Young. Unmanned surface vehicles–game changing

technology for naval operations. Advances in unmanned marine vehicles, pages

311–328, 2006.

[3] Michael R Benjamin, Joseph A Curcio, John J Leonard, and Paul M Newman.

Navigation of unmanned marine vehicles in accordance with the rules of the

road. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference on, pages 3581–3587. IEEE, 2006.

[4] Justin E Manley. Unmanned surface vehicles, 15 years of development. In

OCEANS 2008, pages 1–4. IEEE, 2008.

[5] Hashem Ashrafiuon, Kenneth R Muske, Lucas C McNinch, and Reza A Soltan.

Sliding-mode tracking control of surface vessels. Industrial Electronics, IEEE

Transactions on, 55(11):4004–4012, 2008.

168

[6] Robin R Murphy, Eric Steimle, Chandler Griffin, Charlie Cullins, Mike Hall,

and Kevin Pratt. Cooperative use of unmanned sea surface and micro aerial

vehicles at hurricane wilma. Journal of Field Robotics, 25(3):164–180, 2008.

[7] John M Dolan, Gregg W Podnar, Alberto Elfes, Stephen Stancliff, Ellie Lin,

John Higinbotham, Jeffrey C Hosler, John Moisan, and Tiffany A Moisan.

Smart ocean sensing using the telesupervised adaptive ocean sensor fleet. 2008.

[8] Gabriel Hugh Elkaim. System identification-based control of an unmanned

autonomous wind- propelled catamaran. Control Engineering Practice,

17(1):158–169, 2009.

[9] Brian S Bingham, Eric F Prechtl, and Richard A Wilson. Design require-

ments for autonomous multivehicle surface-underwater operations. Marine

Technology Society Journal, 43(2):61–72, 2009.

[10] Patrick F Rynne and Karl D von Ellenrieder. Unmanned autonomous sail-

ing: Current status and future role in sustained ocean observations. Marine

Technology Society Journal, 43(1):21–30, 2009.

[11] Les Elkins, Drew Sellers, and W Reynolds Monach. The autonomous maritime

navigation (amn) project: Field tests, autonomous and cooperative behaviors,

data fusion, sensors, and vehicles. Journal of Field Robotics, 27(6):790–818,

2010.

169

[12] Thomas Pastore and Vladimir Djapic. Improving autonomy and control of

autonomous surface vehicles in port protection and mine countermeasure sce-

narios. Journal of Field Robotics, 27(6):903–914, 2010.

[13] Reza A Soltan, Hashem Ashrafiuon, and Kenneth R Muske. Ode-based obsta-

cle avoidance and trajectory planning for unmanned surface vessels. Robotica,

29(05):691–703, 2011.

[14] Terry Huntsberger, Hrand Aghazarian, Andrew Howard, and David C Trotz.

Stereo vision–based navigation for autonomous surface vessels. Journal of

Field Robotics, 28(1):3–18, 2011.

[15] Vincent Howard, Jonathon Mefford, Lee Arnold, Brian Bingham, and

R Camilli. The unmanned port security vessel: an autonomous platform for

monitoring ports and harbors. In OCEANS 2011, pages 1–8. IEEE, 2011.

[16] Justin Manley, Graham Hine, et al. Persistent unmanned surface vehicles

for subsea support. In Offshore Technology Conference. Offshore Technology

Conference, 2011.

[17] Wolfgang Fink, Markus Tuller, Alexander Jacobs, Ramaprasad Kulkarni,

Mark A Tarbell, Roberto Furfaro, and Victor R Baker. Robotic lake lan-

der test bed for autonomous surface and subsurface exploration of titan lakes.

In Aerospace Conference, 2012 IEEE, pages 1–12. IEEE, 2012.

170

[18] Petr Švec and Satyandra K Gupta. Automated synthesis of action selec-

tion policies for unmanned vehicles operating in adverse environments. Au-

tonomous Robots, 32(2):149–164, 2012.

[19] Christopher Kitts, Paul Mahacek, Thomas Adamek, Ketan Rasal, Vincent

Howard, Steve Li, Alexi Badaoui, William Kirkwood, Geoffrey Wheat, and

Sam Hulme. Field operation of a robotic small waterplane area twin hull boat

for shallow-water bathymetric characterization. Journal of Field Robotics,

29(6):924–938, 2012.

[20] A Gadre, Shu Du, and D Stilwell. A topological map based approach to

long range operation of an unmanned surface vehicle. In American Control

Conference, June, pages 5401–5407, 2012.

[21] Aditya S Gadre, Christian Sonnenburg, Shu Du, Daniel J Stilwell, and Craig

Woolsey. Guidance and control of an unmanned surface vehicle exhibiting

sternward motion. In OCEANS, 2012, pages 1–9. IEEE, 2012.

[22] Christian R Sonnenburg and Craig A Woolsey. Modeling, identification, and

control of an unmanned surface vehicle. Journal of Field Robotics, 30(3):371–

398, 2013.

[23] JG Marquardt, J Alvarez, and KD von Ellenrieder. Characterization and

system identification of an unmanned amphibious tracked vehicle. 2013.

[24] Maurice F Fallon, Hordur Johannsson, Michael Kaess, John Folkesson, Hunter

McClelland, Brendan J Englot, Franz S Hover, and John J Leonard. Simul-

171

taneous localization and mapping in marine environments. In Marine Robot

Autonomy, pages 329–372. Springer, 2013.

[25] Y. Kuwata, M.T. Wolf, D. Zarzhitsky, and T.L. Huntsberger. Safe maritime

autonomous navigation with colregs, using velocity obstacles. Oceanic Engi-

neering, IEEE Journal of, 39(1):110–119, Jan 2014.

[26] Eric T Steimle and Michael L Hall. Unmanned surface vehicles as environ-

mental monitoring and assessment tools. In OCEANS 2006, pages 1–5. IEEE,

2006.

[27] 2012 marine accident study - uk ports, port skills and safety.

[28] UCG Commandant. International regulations for prevention of collisions at

sea, 1972 (72 COLREGs). US Department of Transportation, US Coast Guard,

COMMANDANT INSTRUCTION M, 16672, 1999.

[29] Thierry Fraichard and Hajime Asama. Inevitable collision states-a step to-

wards safer robots? Advanced Robotics, 18(10):1001–1024, 2004.

[30] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window

approach to collision avoidance. IEEE Robotics & Automation Magazine,

4(1):23–33, 1997.

[31] M. Greytak and F. Hover. Motion planning with an analytic risk cost for holo-

nomic vehicles. In IEEE Conference on Decision and Control (CDC/CCC’09),

pages 5655–5660. IEEE, 2009.

172

[32] P. Švec, M. Schwartz, A. Thakur, and S. K. Gupta. Trajectory planning

with look-ahead for unmanned sea surface vehicles to handle environmental

disturbances. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS’11), September 2011.

[33] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially con-

strained mobile robot motion planning in state lattices. Journal of Field

Robotics, 26(3):308–333, 2009.

[34] Sven Koenig and Maxim Likhachev. D* lite. In AAAI/IAAI, pages 476–483,

2002.

[35] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and

Sebastian Thrun. Anytime dynamic a*: An anytime, replanning algorithm.

In ICAPS, pages 262–271, 2005.

[36] Steven M LaValle and James J Kuffner Jr. Rapidly-exploring random trees:

Progress and prospects. 2000.

[37] Brual Shah and Satyandra K. Gupta. Speeding up A* search on visibility

graphs defined over quadtrees to enable long distance path planning for un-

manned surface vehicles. In Internation Conference on Automated Planning

and Scheduling (ICAPS’ 16), London, UK, June 12 - 17, 2016, 2016.

[38] Brual C Shah, Petr Švec, Ivan R. Bertaska, Wilhelm Klinger, Armando J.

Sinisterra, Karl von Ellenrieder, Manhar Dhanak, and Satyandra K Gupta.

Trajectory planning with adaptive control primitives for autonomous surface

173

vehicles operating in congested civilian traffic. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’14), 2014.

[39] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using

velocity obstacles. The International Journal of Robotics Research, 17(7):760–

772, 1998.

[40] Luis Martinez-Gomez and Thierry Fraichard. Collision avoidance in dynamic

environments: an ICS-based solution and its comparative evaluation. In

Robotics and Automation, 2009. ICRA’09. IEEE International Conference

on, pages 100–105. IEEE, 2009.

[41] Petr Švec, Brual C Shah, Ivan R. Bertaska, Wilhelm Klinger, Armando J. Sin-

isterra, Karl von Ellenrieder, Manhar Dhanak, and Satyandra K Gupta. Adap-

tive sampling based COLREGS-compliant obstacle avoidance for autonomous

surface vehicles. In Workshop on Persistent Autonomy for Marine Robotics

(PAMR ’14) held at International Conference on Robotics and Automation

(ICRA), Hong Kong, China, June 2014, 2016.

[42] S. M. LaValle. Planning algorithms. Cambridge University Press, Cambridge,

U.K., 2006. Available at http://planning.cs.uiuc.edu.

[43] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas Roy, and

Jonathan P How. Probabilistically safe motion planning to avoid dynamic

obstacles with uncertain motion patterns. Autonomous Robots, 35(1):51–76,

2013.

174

[44] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The International Journal of Robotics Research, 5(1):90–98, 1986.

[45] Bernard Faverjon and Pierre Tournassoud. A local based approach for path

planning of manipulators with a high number of degrees of freedom. In Robotics

and Automation. Proceedings. 1987 IEEE International Conference on, vol-

ume 4, pages 1152–1159. IEEE, 1987.

[46] Reid Simmons. The curvature-velocity method for local obstacle avoidance.

In Robotics and Automation, 1996. Proceedings., 1996 IEEE International

Conference on, volume 4, pages 3375–3382. IEEE, 1996.

[47] Johann Borenstein and Yoram Koren. The vector field histogram-fast obstacle

avoidance for mobile robots. Robotics and Automation, IEEE Transactions on,

7(3):278–288, 1991.

[48] Fumio Kanehiro, Florent Lamiraux, Oussama Kanoun, Eiichi Yoshida, and

Jean-Paul Laumond. A local collision avoidance method for non-strictly con-

vex polyhedra. Proceedings of robotics: science and systems IV, 2008.

[49] James Gil de Lamadrid. Avoidance of obstacles with unknown trajectories:

Locally optimal paths and periodic sensor readings. The International Journal

of Robotics Research, 13(6):496–507, 1994.

[50] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Ran-

domized kinodynamic motion planning with moving obstacles. The Interna-

tional Journal of Robotics Research, 21(3):233–255, 2002.

175

[51] Stephane Petti and Thierry Fraichard. Safe motion planning in dynamic

environments. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005

IEEE/RSJ International Conference on, pages 2210–2215. IEEE, 2005.

[52] Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier. Dynamic obstacle

avoidance in uncertain environment combining PVOs and occupancy grid.

In Robotics and Automation, 2007 IEEE International Conference on, pages

1610–1616. IEEE, 2007.

[53] Matthew Zucker, James Kuffner, and Michael Branicky. Multipartite rrts for

rapid replanning in dynamic environments. In Robotics and Automation, 2007

IEEE International Conference on, pages 1603–1609. IEEE, 2007.

[54] Antoine Bautin, Luis Martinez-Gomez, and Thierry Fraichard. Inevitable col-

lision states: a probabilistic perspective. In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 4022–4027. IEEE, 2010.

[55] Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier. Probabilistic mo-

tion planning among moving obstacles following typical motion patterns. In

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International

Conference on, pages 4027–4033. IEEE, 2009.

[56] Dizan Vasquez, Frédéric Large, Thierry Fraichard, and Christian Laugier.

High-speed autonomous navigation with motion prediction for unknown mov-

ing obstacles. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceed-

176

ings. 2004 IEEE/RSJ International Conference on, volume 1, pages 82–87.

IEEE, 2004.

[57] Amalia F Foka and Panos E Trahanias. Predictive autonomous robot nav-

igation. In Intelligent Robots and Systems, 2002. IEEE/RSJ International

Conference on, volume 1, pages 490–495. IEEE, 2002.

[58] Chiara Fulgenzi, Anne Spalanzani, Christian Laugier, Christopher Tay, et al.

Risk based motion planning and navigation in uncertain dynamic environment.

2010.

[59] Daniel Althoff, James J Kuffner, Dirk Wollherr, and Martin Buss. Safety

assessment of robot trajectories for navigation in uncertain and dynamic en-

vironments. Autonomous Robots, 32(3):285–302, 2012.

[60] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obsta-

cles for real-time multi-agent navigation. In Robotics and Automation, 2008.

ICRA 2008. IEEE International Conference on, pages 1928–1935. IEEE, 2008.

[61] Jamie Snape, Jur Van den Berg, Stephen J Guy, and Dinesh Manocha. The hy-

brid reciprocal velocity obstacle. Robotics, IEEE Transactions on, 27(4):696–

706, 2011.

[62] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal

n-body collision avoidance. In Robotics research, pages 3–19. Springer, 2011.

177

[63] Boris Kluge and Erwin Prassler. Reflective navigation: Individual behaviors

and group behaviors. In IEEE International Conference on Robotics and Au-

tomation, pages 4172–4177, 2004.

[64] Javier Alonso-Mora, Andreas Breitenmoser, Paul Beardsley, and Roland Sieg-

wart. Reciprocal collision avoidance for multiple car-like robots. In Robotics

and Automation (ICRA), 2012 IEEE International Conference on, pages 360–

366. IEEE, 2012.

[65] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and

Roland Siegwart. Optimal reciprocal collision avoidance for multiple non-

holonomic robots. Springer, 2013.

[66] Daman Bareiss and Jur Van den Berg. Reciprocal collision avoidance for

robots with linear dynamics using LQR-obstacles. In Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pages 3847–3853. IEEE,

2013.

[67] Jur van den Berg, David Wilkie, Stephen J Guy, Marc Niethammer, and Di-

nesh Manocha. Lqg-obstacles: Feedback control with collision avoidance for

mobile robots with motion and sensing uncertainty. In Robotics and Automa-

tion (ICRA), 2012 IEEE International Conference on, pages 346–353. IEEE,

2012.

[68] Martin Rufli, Javier Alonso-Mora, and Roland Siegwart. Reciprocal collision

avoidance with motion continuity constraints. Robotics, IEEE Transactions

178

on, 29(4):899–912, 2013.

[69] Bin Xu, Andrew Kurdila, and Daniel J Stilwell. A hybrid receding horizon

control method for path planning in uncertain environments. In Intelligent

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference

on, pages 4887–4892. IEEE, 2009.

[70] Jacoby Larson, Michael Bruch, and John Ebken. Autonomous navigation and

obstacle avoidance for unmanned surface vehicles. Technical report, DTIC

Document, 2006.

[71] Oivind Loe. Collision avoidance concepts for marine surface craft. Trondheim,

December, 19:111, 2007.

[72] Antonio Sgorbissa and Renato Zaccaria. Planning and obstacle avoidance in

mobile robotics. Robotics and Autonomous Systems, 60(4):628–638, 2012.

[73] Thomas M Howard, Colin J Green, Alonzo Kelly, and Dave Ferguson. State

space sampling of feasible motions for high-performance mobile robot navi-

gation in complex environments. Journal of Field Robotics, 25(6-7):325–345,

2008.

[74] Cyrill Stachniss and Wolfram Burgard. An integrated approach to goal-

directed obstacle avoidance under dynamic constraints for dynamic environ-

ments. In Intelligent Robots and Systems, 2002. IEEE/RSJ International

Conference on, volume 1, pages 508–513. IEEE, 2002.

179

[75] Marija Seder, Kristijan Macek, and Ivan Petrovic. An integrated approach

to real-time mobile robot control in partially known indoor environments. In

Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of

IEEE, pages 6–pp. IEEE, 2005.

[76] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algorithms

for optimal motion planning. arXiv preprint arXiv:1005.0416, 2010.

[77] Aleksandr Kushleyev and Maxim Likhachev. Time-bounded lattice for effi-

cient planning in dynamic environments. In Robotics and Automation, 2009.

ICRA’09. IEEE International Conference on, pages 1662–1668. IEEE, 2009.

[78] Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning for

dynamic environments. In Robotics and Automation (ICRA), 2011 IEEE In-

ternational Conference on, pages 5628–5635. IEEE, 2011.

[79] Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev. Anytime safe

interval path planning for dynamic environments. In Intelligent Robots and

Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 4708–

4715. IEEE, 2012.

[80] S Campbell, W Naeem, and GW Irwin. A review on improving the autonomy

of unmanned surface vehicles through intelligent collision avoidance manoeu-

vres. Annual Reviews in Control, 2012.

180

[81] Wasif Naeem and George W Irwin. An automatic collision avoidance strat-

egy for unmanned surface vehicles. In Life System Modeling and Intelligent

Computing, pages 184–191. Springer, 2010.

[82] A Tan, Wong Chee Wee, and TJ Tan. Criteria and rule based obstacle avoid-

ance for usvs. In Waterside Security Conference (WSS), 2010 International,

pages 1–6. IEEE, 2010.

[83] Jacoby Larson, Michael Bruch, Ryan Halterman, John Rogers, and Robert

Webster. Advances in autonomous obstacle avoidance for unmanned surface

vehicles. Technical report, DTIC Document, 2007.

[84] Wasif Naeem, George W Irwin, and Aolei Yang. COLREGs-based collision

avoidance strategies for unmanned surface vehicles. Mechatronics, 22(6):669–

678, 2012.

[85] Ken Teo, Kai Wei Ong, and Hoe Chee Lai. Obstacle detection, avoidance and

anti collision for meredith auv. In OCEANS 2009, MTS/IEEE Biloxi-Marine

Technology for Our Future: Global and Local Challenges, pages 1–10. IEEE,

2009.

[86] Y. Kuwata, M.T. Wolf, D. Zarzhitsky, and T.L. Huntsberger. Safe maritime

autonomous navigation with COLREGs, using velocity obstacles. Oceanic

Engineering, IEEE Journal of, 39(1):110–119, Jan 2014.

[87] Terry Huntsberger and Gail Woodward. Intelligent autonomy for unmanned

surface and underwater vehicles. In OCEANS 2011, pages 1–10. IEEE, 2011.

181

[88] Michael R Benjamin, John J Leonard, Joseph A Curcio, and Paul M Newman.

A method for protocol-based collision avoidance between autonomous marine

surface craft. Journal of Field Robotics, 23(5):333–346, 2006.

[89] Michael R Benjamin and Joseph A Curcio. COLREGs-based navigation of au-

tonomous marine vehicles. Proceedings of Autonomous Underwater Vehicles,

2004.

[90] Sang-Min Lee, Kyung-Yub Kwon, and Joongseon Joh. A fuzzy logic for au-

tonomous navigation of marine vehicles satisfying COLREG guidelines. In-

ternational Journal of Control Automation and Systems, 2:171–181, 2004.

[91] Y Xue, BS Lee, and D Han. Automatic collision avoidance of ships. Proceedings

of the Institution of Mechanical Engineers, Part M: Journal of Engineering

for the Maritime Environment, 223(1):33–46, 2009.

[92] LP Perera, JP Carvalho, and C Guedes Soares. Autonomous guidance and

navigation based on the colregs rules and regulations of collision avoidance.

In In Proceedings of the International Workshop Advanced Ship Design for

Pollution Prevention, pages 205–216, 2009.

[93] LP Perera, JP Carvalho, and C Guedes Soares. Fuzzy logic based decision

making system for collision avoidance of ocean navigation under critical colli-

sion conditions. Journal of marine science and technology, 16(1):84–99, 2011.

182

[94] LP Perera, JP Carvalho, and C Guedes Soares. Intelligent ocean navigation

and fuzzy-bayesian decision/action formulation. Oceanic Engineering, IEEE

Journal of, 37(2):204–219, 2012.

[95] James Colito. Autonomous mission planning and execution for unmanned

surface vehicles in compliance with the marine rules of the road. PhD thesis,

University of Washington, 2007.

[96] Wasif Naeem and George W Irwin. Evasive decision making in uninhabited

maritime vehicles. In Proceedings IFAC World Congress, Milan, Italy, August,

pages 12833–12838, 2011.

[97] CheeKuang Tam and Richard Bucknall. Path-planning algorithm for ships in

close-range encounters. Journal of marine science and technology, 15(4):395–

407, 2010.

[98] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.

Path planning for autonomous vehicles in unknown semi-structured environ-

ments. The International Journal of Robotics Research, 29(5):485–501, 2010.

[99] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible

maneuvers for autonomous vehicles. The International Journal of Robotics

Research, 28(8):933–945, 2009.

[100] Anthony Stentz, John Bares, Thomas Pilarski, and David Stager. The crusher

system for autonomous navigation. AUVSIs Unmanned Systems North Amer-

ica, 3, 2007.

183

[101] P Švec, A Thakur, E Raboin, B. C. Shah, and S. K. Gupta. Target following

with motion prediction for unmanned surface vehicle operating in cluttered

environments. Autonomous Robots, 36:383–405, 2014.

[102] Alonzo Kelly, Anthony Stentz, Omead Amidi, Mike Bode, David Bradley, An-

tonio Diaz-Calderon, Mike Happold, Herman Herman, Robert Mandelbaum,

Tom Pilarski, et al. Toward reliable off road autonomous vehicles operating

in challenging environments. The International Journal of Robotics Research,

25(5-6):449–483, 2006.

[103] Yanbo Li and Jing Xiao. On-line planning of nonholonomic trajectories in

crowded and geometrically unknown environments. In Robotics and Automa-

tion, 2009. ICRA’09. IEEE International Conference on, pages 3230–3236.

IEEE, 2009.

[104] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the

heuristic determination of minimum cost paths. Systems Science and Cyber-

netics, IEEE Transactions on, 4(2):100–107, 1968.

[105] David Šǐslák, Přemysl Volf, and Michal Pěchouček. Accelerated A* path plan-

ning. In Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems-Volume 2, pages 1133–1134. International

Foundation for Autonomous Agents and Multiagent Systems, 2009.

[106] David Šǐslák, Premysl Volf, and Michal Pechoucek. Accelerated A* trajec-

tory planning: Grid-based path planning comparison. In Proceedings of the

184

19th International Conference on Automated Planning & Scheduling (ICAPS),

pages 74–81. Citeseer, 2009.

[107] Peter Yap, Neil Burch, Robert C Holte, and Jonathan Schaeffer. Block

a*: Database-driven search with applications in any-angle path-planning. In

AAAI, 2011.

[108] Peter Kai Yue Yap, Neil Burch, Robert C Holte, and Jonathan Schaeffer.

Any-angle path planning for computer games. In AIIDE, 2011.

[109] Jérôme Barraquand and Jean-Claude Latombe. Nonholonomic multibody mo-

bile robots: Controllability and motion planning in the presence of obstacles.

Algorithmica, 10(2-4):121–155, 1993.

[110] Stephen R Lindemann and Steven M LaValle. Multiresolution approach for

motion planning under differential constraints. In Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages

139–144. IEEE, 2006.

[111] Benjamin J Cohen, Gokul Subramanian, Sachin Chitta, and Maxim

Likhachev. Planning for manipulation with adaptive motion primitives. In

Robotics and Automation (ICRA), 2011 IEEE International Conference on,

pages 5478–5485. IEEE, 2011.

[112] Kalin Gochev, Benjamin Cohen, Jonathan Butzke, Alla Safonova, and Maxim

Likhachev. Path planning with adaptive dimensionality. In Fourth Annual

Symposium on Combinatorial Search, 2011.

185

[113] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive

dimensionality for mobile manipulation. In Robotics and Automation (ICRA),

2012 IEEE International Conference on, pages 2944–2951. IEEE, 2012.

[114] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Incremental planning

with adaptive dimensionality. In Twenty-Third International Conference on

Automated Planning and Scheduling, 2013.

[115] Michael Hoy, Alexey S Matveev, and Andrey V Savkin. Algorithms for

collision-free navigation of mobile robots in complex cluttered environments:

a survey. Robotica, 33(03):463–497, 2015.

[116] Anthony Stentz. Optimal and efficient path planning for partially-known en-

vironments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE In-

ternational Conference on, pages 3310–3317. IEEE, 1994.

[117] H Wang and SJ Julier. Path planning in partially known environments. 2011.

[118] Ryan Luna, Morteza Lahijanian, Mark Moll, and Lydia E Kavraki. Optimal

and efficient stochastic motion planning in partially-known environments. In

AAAI Conf. on Artificial Intelligence, 2014.

[119] Navid Dadkhah and Bérénice Mettler. Survey of motion planning literature

in the presence of uncertainty: considerations for uav guidance. Journal of

Intelligent & Robotic Systems, 65(1-4):233–246, 2012.

[120] Volkan Sezer and Metin Gokasan. A novel obstacle avoidance algorithm:follow

the gap method. Robotics and Autonomous Systems, 60(9):1123–1134, 2012.

186

[121] Zhenyu Wu and Lin Feng. Obstacle prediction-based dynamic path planning

for a mobile robot. International Journal of Advancements in Computing

Technology, 4(3), 2012.

[122] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H Overmars.

Probabilistic roadmaps for path planning in high-dimensional configuration

spaces. Robotics and Automation, IEEE Transactions on, 12(4):566–580, 1996.

[123] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduc-

tion to autonomous mobile robots. MIT press, 2011.

[124] Franz Aurenhammer. Voronoi diagramsa survey of a fundamental geometric

data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[125] Priyadarshi Bhattacharya and Marina L Gavrilova. Roadmap-based path

planning-using the voronoi diagram for a clearance-based shortest path.

Robotics & Automation Magazine, IEEE, 15(2):58–66, 2008.

[126] Peter Yap. Grid-based path-finding. In Advances in Artificial Intelligence,

pages 44–55. Springer, 2002.

[127] Der-Tsai Lee. Proximity and reachability in the plane. Technical report, DTIC

Document, 1978.

[128] Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning

collision-free paths among polyhedral obstacles. Communications of the ACM,

22(10):560–570, 1979.

187

[129] Abdulmuttalib Turky Rashid, Abduladhem Abdulkareem Ali, Mattia Frasca,

and Luigi Fortuna. Path planning with obstacle avoidance based on visibility

binary tree algorithm. Robotics and Autonomous Systems, 61(12):1440–1449,

2013.

[130] Alex Nash, Sven Koenig, and Maxim Likhachev. Incremental phi*: Incremen-

tal any-angle path planning on grids. 2009.

[131] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-angle

path planning on grids. Journal of Artificial Intelligence Research, pages 533–

579, 2010.

[132] Alex Nash, Sven Koenig, and Craig Tovey. Lazy theta*: Any-angle path

planning and path length analysis in 3d. In Third Annual Symposium on

Combinatorial Search, 2010.

[133] Tansel Uras and Sven Koenig. Speeding-up any-angle pathplanning on grids.

In Proceedings of the International Conference on Automated Planning and

Scheduling, 2015.

[134] James Bailey Craig Tovey, Tansel Uras Sven Koenig, and Alex Nash. Path

planning on grids: The effect of vertex placement on path length. 2015.

[135] Dave Ferguson and Anthony Stentz. Using interpolation to improve path

planning: The field d* algorithm. Journal of Field Robotics, 23(2):79–101,

2006.

188

[136] Alex Yahja, Anthony Stentz, Sanjiv Singh, and Barry L Brumitt. Framed-

quadtree path planning for mobile robots operating in sparse environments. In

Robotics and Automation, 1998. Proceedings. 1998 IEEE International Con-

ference on, volume 1, pages 650–655. IEEE, 1998.

[137] Clement Petres, Yan Pailhas, Pedro Patron, Yvan Petillot, Jonathan Evans,

and David Lane. Path planning for autonomous underwater vehicles. IEEE

Transactions on Robotics, 23(2):331–341, 2007.

[138] Qi Zhang, Jiachen Ma, and Qiang Liu. Path planning based quadtree repre-

sentation for mobile robot using hybrid-simulated annealing and ant colony

optimization algorithm. In Intelligent Control and Automation (WCICA),

2012 10th World Congress on, pages 2537–2542. IEEE, 2012.

[139] Dov Kruger, Rustam Stolkin, Aaron Blum, and Joseph Briganti. Optimal

AUV path planning for extended missions in complex, fast-flowing estuarine

environments. In IEEE International Conference on Robotics and Automation

(ICRA’07), pages 4265–4270, 2007.

[140] Jonas Witt and Matthew Dunbabin. Go with the flow: Optimal AUV path

planning in coastal environments. In Australian Conference on Robotics and

Automation, 2008.

[141] David R Thompson, Steve Chien, Yi Chao, Peggy Li, Bronwyn Cahill, Julia

Levin, Oscar Schofield, Arjuna Balasuriya, Stephanie Petillo, Matt Arrott,

et al. Spatio-temporal path planning in strong, dynamic, uncertain currents.

189

In IEEE International Conference on Robotics and Automation (ICRA’10),

pages 4778–4783. IEEE, 2010.

[142] T Lolla, MP Ueckermann, K Yigit, PJ Haley Jr, and Pierre FJ Lermusiaux.

Path planning in time dependent flow fields using level set methods. In IEEE

International Conference on Robotics and Automation (ICRA’12), pages 166–

173, 2012.

[143] Michael Soulignac. Feasible and optimal path planning in strong current fields.

IEEE Transactions on Robotics, 27(1):89–98, 2011.

[144] Bartolome Garau, Alberto Alvarez, and Gabriel Oliver. Path planning of

autonomous underwater vehicles in current fields with complex spatial vari-

ability: an A* approach. In IEEE International Conference on Robotics and

Automation, pages 194–198. IEEE, 2005.

[145] José Isern-González, Daniel Hernández-Sosa, Enrique Fernández-Perdomo,

Jorge Cabrera-Gámez, Antonio Carlos Domı́nguez-Brito, and V́ıctor Prieto-

Marañón. Obstacle avoidance in underwater glider path planning. Journal of

Physical Agents, 6(1):11–20, 2012.

[146] Wesam H Al-Sabban, Luis F Gonzalez, Ryan N Smith, and Gordon F Wyeth.

Wind-energy based path planning for unmanned aerial vehicles using markov

decision processes. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS’13), pages 784–789, 2013.

190

[147] Wesam H Al-Sabban, Luis F Gonzalez, and Ryan N Smith. Extending persis-

tent monitoring by combining ocean models and markov decision processes.

In Oceans, pages 1–10. IEEE, 2012.

[148] Dushyant Rao and Stefan B Williams. Large-scale path planning for under-

water gliders in ocean currents. In Australasian Conference on Robotics and

Automation (ACRA), 2009.

[149] Nanaz Fathpour, Lars Blackmore, Yoshiaki Kuwata, Christopher Assad,

Michael T Wolf, Claire Newman, Alberto Elfes, and Kim Reh. Feasibility

studies on guidance and global path planning for wind-assisted montgolfière

in titan. IEEE Systems Journal, 8(4):1112–1125, 2014.

[150] Yoshiaki Kuwata, Lars Blackmore, Michael Wolf, Nanaz Fathpour, Claire

Newman, and Alberto Elfes. Decomposition algorithm for global reachabil-

ity analysis on a time-varying graph with an application to planetary ex-

ploration. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS’09), pages 3955–3960, 2009.

[151] Brual C Shah, Petr Švec, Ivan R. Bertaska, Wilhelm Klinger, Armando J.

Sinisterra, Karl von Ellenrieder, Manhar Dhanak, and Satyandra K Gupta.

Resolution-adaptive risk-aware trajectory planning for surface vehicles oper-

ating in congested civilian traffic. Autonomous Robots, 2015.

[152] Thierry Fraichard. A short paper about motion safety. In Robotics and Au-

tomation, 2007 IEEE International Conference on, pages 1140–1145. IEEE,

191

2007.

[153] T.I. Fossen. Handbook of marine craft hydrodynamics and motion control.

Wiley, 2011.

[154] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.

MIT press, 2005.

[155] Ivan R Bertaska, Brual Shah, Karl von Ellenrieder, Petr Švec, Wilhelm

Klinger, Armando J Sinisterra, Manhar Dhanak, and Satyandra K Gupta.

Experimental evaluation of automatically-generated behaviors for usv opera-

tions. Ocean Engineering, 106:496–514, 2015.

[156] Nicholas Chan, James Kuffner, and Matthew Zucker. Improved motion plan-

ning speed and safety using regions of inevitable collision. In 17th CISM-

IFToMM symposium on robot design, dynamics, and control, pages 103–114,

2008.

[157] Yun-Hui Liu and Suguru Arimoto. Path planning using a tangent graph for

mobile robots among polygonal and curved obstacles communication. The

International Journal of Robotics Research, 11(4):376–382, 1992.

[158] Howie M Choset. Principles of robot motion: theory, algorithms, and imple-

mentation. MIT press, 2005.

[159] Petr Švec, Atul Thakur, Eric Raboin, Brual C. Shah, and Satyandra K. Gupta.

Target following with motion prediction for unmanned surface vehicle operat-

ing in cluttered environments. Autonomous Robots, 36(4):383–405, 2014.

192

[160] I.R. Bertaska, J. Alvarez, S. Armando, K. D. von Ellenrieder, M. Dhanak,

B. Shah, P. Švec, and S. K. Gupta. Experimental evaluation of approach

behavior for autonomous surface vehicles. In ASME Dynamic Systems and

Control Conference (DSCC’13), Stanford University, Palo Alto, CA, October

21-23 2013.

[161] Sunglok Choi, Jae-Yeong Lee, andWonpil Yu. Fast any-angle path planning on

grid maps with non-collision pruning. In Robotics and Biomimetics (ROBIO),

2010 IEEE International Conference on, pages 1051–1056. IEEE, 2010.

[162] T. Uras and S. Koenig. An empirical comparison of any-angle path-planning

algorithms. In Proceedings of the 8th Annual Symposium on Combinatorial

Search, 2015. Code available at: http://idm-lab.org/anyangle.

[163] Brual Shah, Atul Thakur, Petr Švec, and Satyandra K. Gupta. Path Planning

for Unmanned Vehicles Operating in Time-Varying Flow Fields. In Workshop

on Planning and Robotics (PlanRob), held at Internation Conference on Au-

tomated Planning and Scheduling (ICAPS’ 16), London, UK, June 12 - 17,

2016, 2016.

[164] John H Reif and Zheng Sun. Movement planning in the presence of flows.

Algorithmica, 39(2):127–153, 2004.

[165] Nicola Ceccarelli, John J Enright, Emilio Frazzoli, Steven J Rasmussen, and

Corey J Schumacher. Micro UAV path planning for reconnaissance in wind.

In American Control Conference (ACC ’07), pages 5310–5315. IEEE, 2007.

193

[166] Ryan N Smith and Van T Huynh. Controlling buoyancy-driven profiling floats

for applications in ocean observation. IEEE Journal of Oceanic Engineering,

39(3):571–586, 2014.

[167] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern approach.

Pearson, 1995.

[168] Maxim Likhachev, Sebastian Thrun, and Geoffrey J Gordon. Planning for

Markov decision processes with sparse stochasticity. In Advances in neural

information processing systems, pages 785–792, 2004.

[169] Scott Sanner, Robby Goetschalckx, Kurt Driessens, Guy Shani, et al. Bayesian

real-time dynamic programming. In International Joint Conference on Arti-

ficial Intelligence (IJCAI ’09), pages 1784–1789, 2009.

[170] Van T Huynh, Matthew Dunbabin, and Ryan N Smith. Predictive motion

planning for AUVs subject to strong time-varying currents and forecasting

uncertainties. In IEEE International Conference on Robotics and Automation

(ICRA ’15), pages 1144–1151, 2015.

194

	List of Tables
	List of Figures
	Introduction
	Motivation
	Goal and Scope
	Overview

	Literature Review
	Dynamic Obstacle Avoidance
	Motion planning algorithms for dynamic environments
	COLREGs compliant motion planning algorithms
	Adaptive-search based motion planning algorithms

	Path Planning
	Path planning in geometric spaces
	Path planning in time-varying flow fields

	Resolution-Adaptive Risk-Aware Trajectory Planning for Surface Vehicles Operating in Congested Civilian Traffic
	Introduction
	Problem Formulation
	Definitions
	State action space representation
	Problem statement

	Risk and Contingency-Aware Trajectory Planning
	Modeling risk consideration in cost function
	Calculation of collision probabilities
	Evaluation of USV's state for COLREGs compliance
	Intention motion model of civilian vessels
	Search

	Adaptive Risk and Contingency-Aware Planning
	Estimation of spatio-temporal workspace complexity
	Adaptive sampling

	Computational Experiments
	Simulation setup
	Modeling scenario congestion
	Design of evaluation scenarios
	Results

	Tuning Planner Performance
	Planning parameter tuning
	Selection of re-planning frequency

	Summary

	Speeding up A* Search on Visibility Graphs Defined Over Quadtrees to Enable Long Distance Path Planning for Unmanned Surface Vehicles
	Introduction
	Approach
	Computation of Edges on Tangent Graph
	A New Heuristic
	Focusing A* Search
	Assessing Effectiveness of Focused Search
	Handling Time Varying Free Space
	Results and Discussion
	Summary

	Path Planning for Unmanned Vehicles Operating in Time-Varying Flow Fields
	Introduction
	Problem Formulation
	Terminology
	Medium Flow Model
	Motion Model
	Cost Model
	Problem Statement

	Approach
	Overview
	Path Planning
	Start Time Optimization

	Design of Heuristics
	Heuristic #1
	Heuristic #2
	Heuristic #3

	Results and Discussion
	Simulation Setup
	Comparison of Heuristics
	Results on Example Scenarios

	Summary

	Conclusions
	Intellectual Contributions
	Risk-Aware Trajectory Planning in Congested Civilian Traffic
	Path Planning over Long Distances
	Trajectory Planning in Time-Varying Flow Fields

	Anticipated Benefits
	Future Directions

	Bibliography

