
Sampling-Based Exploration

Strategies for Mobile Robot

Autonomy

Von der Fakultät für Mathematik und Informatik

der Technischen Universität Bergakademie Freiberg

genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doktor-Ingenieur

(Dr.-Ing.)

vorgelegt von M.Sc. Marco Steinbrink

geboren am 16. Januar 1993 in Wuppertal

Gutachter: Prof. Dr.-Ing. Bernhard Jung

Prof. Dr. rer. nat. Stefan May

Tag der Verleihung: Freiberg, den 26. Juli 2023

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich
gemacht.
Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Ma-

nuskripts habe ich Unterstützungsleistungen von folgenden Personen erhalten:
Bernhard Jung und Stefan May, die diese Dissertation betreut haben, gaben Hinweise
zur Überarbeitung der Arbeit. Philipp Koch, der im UNDROMEDA Projekt beteiligt
war, gab Anmerkungen zum Inhalt, die in das Manuskript einge�ossen sind. Weitere
Personen waren an der Abfassung der vorliegenden Arbeit nicht beteiligt.
Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genommen. Weitere

Personen haben von mir keine geldwerten Leistungen für Arbeiten erhalten, die nicht als
solche kenntlich gemacht worden sind. Die Arbeit wurde bisher weder im Inland noch
im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

26. Juli 2023 M.Sc. Marco Steinbrink

i

Acknowledgement

I would like to thank my advisers Bernhard Jung and Stefan May for their support and
advice throughout this work. They provided extraordinary insights and experiences to
guide my research as well as re�ne it and helped me to not lose my focus throughout
the years.
Furthermore, I am grateful for the opportunity to join the AutonOHM team in

various robotic competitions. The team members, especially Philipp Koch, shared
valuable experience in robotics with me which helped me in this work.
I am thankful for my partner Dakota who supported me through this work and kept

me motivated to go on. My parents and grandmother also were there for me, for which
I am grateful. Last but not least, I want to thank my friends who always encouraged
me.

ii

Contents

Previous Publications iv

Nomenclature v

List of Abbreviations vi

List of Figures ix

List of Tables x

List of Algorithms xi

1. Introduction 1

1.1. Motivation . 2
1.2. Methodology . 5
1.3. Contributions . 6
1.4. Outline . 7

2. Related Work 8

2.1. Robotics Frameworks . 8
2.2. State Machines for Mobile Robots . 11
2.3. Sampling-Based Path Planning . 13
2.4. Autonomous Exploration and Inspection Planning 16
2.5. Next-Best View Calculation . 29
2.6. Conclusion . 30

3. Mathematical Foundations 32

3.1. Sampling-Based Algorithms . 32
3.2. SLAM . 40
3.3. Exploration of Unknown Environments 44
3.4. Shortest Possible Route through a Graph 47
3.5. Conclusion . 49

4. Robot Statemachine 50

4.1. Design . 50
4.2. Applications . 55
4.3. Conclusion . 56

5. RNE 1 - RRT-Based Exploration 57

5.1. Design . 57
5.2. Sparse Ray Casting and Sparse Ray Polling 76
5.3. Coupled and Decoupled Gain Calculation 81

Contents iii

5.4. Conclusion . 82

6. RNE 2 - RRG-Based Exploration 84

6.1. Graph-Based Design . 84
6.2. Comparison to Tree-Based Exploration 86
6.3. Comparison to State-of-the-Art Approaches 88
6.4. Conclusion . 90

7. RNE 3 - Topology-Based Exploration 92

7.1. Node Area In�ation . 92
7.2. Topology-Based Node Area In�ation 97
7.3. Topology-Based Node Area In�ation Conclusion 104
7.4. Revised Reward Function . 104
7.5. Cost-Based Path Planning . 109
7.6. Re-Updating Nodes . 109
7.7. Comparison to RRG-Based Exploration 110
7.8. Conclusion . 117

8. RNE 4 - Local and Global Exploration 118

8.1. Local Exploration . 118
8.2. Global Exploration . 121
8.3. Implementation . 129
8.4. Comparison to Local-Only Exploration 133
8.5. Comparison to State-of-the-Art Approaches 136
8.6. Experiment . 138
8.7. Conclusion . 140

9. Conclusion 141

9.1. Contributions . 141
9.2. Future Research . 143
9.3. Closing Remarks . 144

Bibliography 145

A. Appendix 160

iv

Previous Publications

[1] Marco Steinbrink, Philipp Koch, Stefan May, Bernhard Jung, and Michael
Schmidpeter. �State Machine for Arbitrary Robots for Exploration and Inspec-
tion Tasks�. In: Proceedings of the 2020 4th International Conference on Vision,
Image and Signal Processing. New York, NY, USA: ACM, Dec. 2020, pp. 1�6.
doi: 10.1145/3448823.3448857.

[2] Marco Steinbrink, Philipp Koch, Bernhard Jung, and Stefan May. �Rapidly-
Exploring Random Graph Next-Best View Exploration for Ground Vehicles�.
In: 2021 European Conference on Mobile Robots (ECMR). IEEE, Aug. 2021,
pp. 1�7. doi: 10.1109/ECMR50962.2021.9568785.

[3] Philipp Koch, Marco Steinbrink, Stefan May, and Andreas Nuechter. �Traversabil-
ity Analysis for Wheeled Robots using Point-Region-Quad-Tree based Elevation
Maps�. In: 2022 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC). IEEE, Apr. 2022, pp. 192�197. doi: 10.1109/
icarsc55462.2022.9784803.

This work focuses on the development of an autonomous exploration approach for
Unmanned Ground Vehicles which utilizes the robot autonomy state machine pro-
posed in the author's �rst article [1] that is described in Chapter 4. The proposed
exploration is published in article [2] which is detailed in Chapters 5 and 6. In Chapter
8, the traversability analysis from [3] is used in combination with this work's proposed
exploration approach.

https://doi.org/10.1145/3448823.3448857
https://doi.org/10.1109/ECMR50962.2021.9568785
https://doi.org/10.1109/icarsc55462.2022.9784803
https://doi.org/10.1109/icarsc55462.2022.9784803

v

Nomenclature

Symbol Description
state State of an object
ClassName Class introduced in this work
procedureName Function introduced in this work
c Scalar
S Set
T Tuple
F (x) Function
p Point (xp, yp, zp)

T ∈ R3

pm Grid map point
(
xmp , y

m
p

)T ∈ N2
0

X Matrix in R3

bcc Round down a scalar c ∈ R to the nearest value
z ∈ Z, z ≤ c

dce Round up a scalar c ∈ R to the nearest value z ∈
Z, z ≥ c

bce Round a scalar c ∈ R to the nearest value z ∈ Z
ϕ Discrete orientation in degrees with 0 ≤ ϕ <

360, ϕ ∈ N0, 0 is aligned with the x-axis and it
is measured counter-clockwise

For calculations in degrees, absolute di�erences are de�ned as stated in Equation
(0.1) which always returns the shorter di�erence between ϕ1 and ϕ2 around the circle.
Furthermore, the opposite orientation ϕ of an orientation ϕ is de�ned in Equation
(0.2).

|ϕ1 − ϕ2| = 180− ||ϕ1 − ϕ2| − 180| (0.1)

ϕ =

{
ϕ− 180, ϕ ≥ 180

ϕ+ 180, ϕ < 180
(0.2)

vi

List of Abbreviations

AEDE Autonomous Exploration Development Environment

AEP Autonomous Exploration Planner

DARPA Defense Advanced Research Projects Agency

DoF Degrees of Freedom

DSVP Dual-Stage Viewpoint Planner

DWA Dynamic Window Approach

EIT European Institute of Technology

EKF Extended Kalman Filter

ESDF Euclidean Signed Distance Fields

FE Frontier Exploration

FoV Field of View

GBPlanner Graph-Based exploration path Planner

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertial Measurement Unit

NAI Node Area In�ation

NBV Next-Best View

NN Neural Network

PRM Probabilistic Roadmaps

RGB-D Red Green Blue - Depth

RH-NBVP Receding Horizon Next-Best-View Planner

RNE Random-Sampling-Based Next-Best View Exploration

ROS Robot Operating System

RRG Rapidly-exploring Random Graph

Previous Publications vii

RRL Rescue Robot League

RRT Rapidly-exploring Random Tree

RSM Robot Statemachine

SD Standard Deviation

SLAM Simultaneous Localization and Mapping

sPRM simpli�ed Probabilistic Roadmaps

SRC Sparse Ray Casting

SRP Sparse Ray Polling

SubT Subterranean

TARE Technologies for Autonomous Robot Exploration

TSDF Truncated Signed Distance Fields

TSP Travelling Salesman Problem

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UML Uni�ed Modeling Language

UNDROMEDA Underground Robotic System for Monitoring, Evaluation and Detec-
tion Applications

URDF Uni�ed Robot Description Format

viii

List of Figures

1.1. UNDROMEDA robot in an underground mine 1
1.2. Robot Schrödi at the RoboCup 2019 in Sydney, Australia 3

2.1. ROS topic communication . 10
2.2. ROS coordinate convention . 10
2.3. Exploration strategies . 16

3.1. Voronoi decomposition . 33
3.2. RRT input function . 34
3.3. RRT growth . 35
3.4. Dijkstra's algorithm . 39
3.5. k-d tree partition . 40
3.6. Online SLAM . 41
3.7. Particle �lter SLAM . 42
3.8. Graph-based SLAM . 44
3.9. Octree representation . 45
3.10. TSDF and ESDF grid maps . 47
3.11. TSP 2-opt swap . 48

4.1. RSM class diagram . 51
4.2. RSM state diagram . 52
4.3. RSM user interface . 54
4.4. Waypoint setting and manipulation . 55
4.5. RSM showcase . 56

5.1. RNE high-level overview . 59
5.2. RNE node state diagram . 60
5.3. OccupancyGrid data order . 63
5.4. Pre-calculate grid map circle o�sets . 64
5.5. Traversability analysis for steer function 70
5.6. Traversability check visualization in RViz 72
5.7. Sparse Ray Polling . 73
5.8. Simulation environment and robot con�gurations 78
5.9. SRC and SRP wall penetration . 80

6.1. E�ect of local sampling . 86
6.2. Gazebo simulation environments . 87
6.3. Results of state-of-the-art comparison 90

7.1. Observable space based on node placement 93
7.2. New node placement with NAI . 94
7.3. In�ated circle area o�sets . 96

List of Figures ix

7.4. NAI with moving nodes . 98
7.5. Collision detection and evasion . 100
7.6. Move new node away from collisions and nearest neighbor 101
7.7. E�ect of NAI and movable nodes . 105
7.8. Simulation robot con�gurations . 111
7.9. RNE enhancement comparison . 116

8.1. Removing nodes from the graph . 119
8.2. Prune global targets and connections 122
8.3. Creation of missing global target connections 123
8.4. Cluster global targets . 125
8.5. Global and local exploration . 128
8.6. RNE class diagram . 129
8.7. Hybrid RNE and local-only exploration comparison 135
8.8. State-of-the-art approaches comparison 137
8.9. Robot Georg in the rock-cut cellars . 138
8.10. Layout of the rock-cut cellars . 139
8.11. Explored map of the rock-cut cellars 140

A.1. Basic RNE varying distance factor . 164
A.2. Basic RNE varying heading factor . 165
A.3. Basic RNE varying traversability factor 167
A.4. NAI RNE varying distance factor . 170
A.5. NAI RNE varying heading factor . 171
A.6. NAI RNE varying traversability factor 173
A.7. NAI RNE varying radius factor . 174
A.8. Topology-based NAI RNE varying distance factor 178
A.9. Topology-based NAI RNE varying heading factor 179
A.10.Topology-based NAI RNE varying traversability factor 181
A.11.Topology-based NAI RNE varying radius factor 182

x

List of Tables

5.1. SRC and SRP experiment results . 80
5.2. Coupled and decoupled gain calculation 82

6.1. Comparison of RRT and RRG with local sampling 88
6.2. RNE comparison to RH-NBVP and AEP 89

7.1. RNE enhancement comparison . 115

8.1. Hybrid RNE and local-only exploration comparison 133
8.2. State-of-the-art approaches comparison 136

A.1. SRC and SRP experiment recordings 160
A.2. SRC and SRP experiment comparison 162
A.3. Basic RNE varying distance factor . 167
A.4. Basic RNE varying heading factor . 168
A.5. Basic RNE varying traversability factor 168
A.6. NAI RNE varying distance factor . 175
A.7. NAI RNE varying heading factor . 175
A.8. NAI RNE varying traversability factor 176
A.9. NAI RNE varying radius factor . 176
A.10.Topology-based NAI RNE varying distance factor 183
A.11.Topology-based NAI RNE varying heading factor 183
A.12.Topology-based NAI RNE varying traversability factor 184
A.13.Topology-based NAI RNE varying radius factor 184

xi

List of Algorithms

3.1. RRT - Construction of a Rapidly-exploring Random Tree 34
3.2. RRG - Construction of a Rapidly-exploring Random Graph 36
3.3. sPRM - Construction of simpli�ed Probabilistic Roadmaps 37
3.4. Construction of a shortest-path tree using Dijkstra's algorithm 38
3.5. Extended Kalman Filter Simultaneous Localization and Mapping . . . 41

5.1. Rapidly-exploring Random Tree construction for exploration 58
5.2. Pre-calculation of circle o�sets for traversability assessment 65
5.3. Check traversability of a circular area 66
5.4. Check traversability of a line of grid map cells 66
5.5. Check traversability of an aligned rectangular area 67
5.6. Check traversability of a rotated rectangular area 68
5.7. Calculate the positions of the corners of a rotated rectangle 69

6.1. Rapidly-exploring Random Graph construction for exploration 85

7.1. Calculation of increasing circle o�sets for traversability assessment . . . 95
7.2. Check traversability of a ring . 96
7.3. In�ate node area and move it away from obstacles 99
7.4. Merge two directions of node movement 102
7.5. Assess node movement regarding the nearest neighbor 103
7.6. Move node away from obstacles . 104

1

1. Introduction

Fig. 1.1.: The robotic platform developed in the UNDROMEDA project operating in an underground
mine using its sensor payload to create a detailed map of the hazardous and Global Positioning
System (GPS)-deprived surroundings.

Autonomous robotics are employed in ever more diverse �elds and became everyday
consumer appliances like e.g., lawnmower and vacuum robots. Industrial robots are uti-
lized in production facilities and warehouses and take over repetitive and monotonous
tasks. But in the �elds of disaster response and the exploration of unknown environ-
ments, robots are still controlled by human operators. The formerly mentioned appli-
cations take place in mostly similar, human-constructed environments which allow for
comparably simple approaches. For example, the navigation of lawnmower, vacuum
and warehouse robots is solely based around two dimensions on predominantly �at
surfaces. In comparison, the latter applications feature rough, hazardous, multi-level
environments which cannot be navigated using a simple 2D approach.
More recently, Unmanned Aerial Vehicles (UAVs) gained popularity in disaster re-

sponse, exploration and inspection research because they are not restricted by rough
�oors and stairways like Unmanned Ground Vehicles (UGVs). But in comparison, they
have a very limited run time and are not able to hold the payloads a UGV can carry.
At least there is a major trade-o� between run time and payload which is not as drastic
for UGVs.
Therefore, this work focuses on the research of an exploration approach for UGVs in

GPS-deprived environments such as disaster sites and underground mines. It should
enable a UGV to autonomously explore a previously unknown environment while iden-
tifying where it is able to move to and where it is not. The exploration's goal is to
produce a 3D map of the observed environment that can be utilized by the operators
to assess further actions without putting human lives in danger.
Even though the UGV is still bound to move on the ground which is simpli�ed to 2D

planning, it should observe the map volume in 3D and utilize it for its navigation and
exploration planning. Therefore, this work proposes a 3D exploration approach that is
more complex but also more versatile compared to simple 2D mapping and exploration
which can solely be applied on predominantly �at surfaces.

1. Introduction 2

Autonomous exploration's largest issue is the balance between speed and thorough-
ness. Because time can be critical in disaster scenarios or because the run time of the
robot is a restriction regarding the size of the area to be explored, it is not e�cient to
rigorously explore every part of the area up close. A su�cient strategy must be found
that explores large volumes of space fast enough but also allows a detailed mapping to
make out the objects of interest.
Autonomy is required as communication is mostly limited to line-of-sight in under-

ground environments because thick walls block all radio waves. Therefore, manual
operation of a robot is only possible using a connecting cable or an external communi-
cation infrastructure which is not available in most environments.
The �rst section discusses the motivation for this work, followed by the utilized

methodology and a listing of the scienti�c contributions of this work.

1.1. Motivation

This work is motivated by a research project called UNDROMEDA whose goal is the
autonomous inspection and exploration of underground mines using a self-developed
robotic platform and sensor payload.
Because the current state-of-the-art solutions in the �eld of 3D exploration research

focus on using UAVs or are tailored for a speci�c robotic platform used in the particular
research, a �exible approach has to be developed. It should be usable with a variety of
di�erent robots to explore large underground environments based on 3D map coverage.
Due to the project's robot being under development with an unknown size and sensor

payload, an approach for exploration that is not bound to a speci�c robot, is required.
Furthermore, the approach should not be bound to a speci�c robotic platform or

sensor setup to remain �exible and usable in versatile scenarios.
In Figure 1.2, the robot Schrödi can be seen on which the proposed exploration

should also be deployed. It is a tracked robot constructed by the Nuremberg Institute
of Technology and is used by its AutonOHM team in the RoboCup Rescue Robot
League (RRL) Competition.
The possibility to release this approach as an open-source repository and make it

available for the scienti�c and robotics community is also a motivation to keep it
�exible.
In the following, details about the UNDROMEDA project and RoboCup RRL are

described which are the major motivation for this work. Furthermore, the decision to
focus on a sampling-based exploration is explained and the in�uence of the DARPA
Subterranean (SubT) Challenge is shown.

1.1.1. UNDROMEDA

This work was �nanced by the European Institute of Technology (EIT) RawMateri-
als' Underground Robotic System for Monitoring, Evaluation and Detection Applica-
tions (UNDROMEDA) project. The project's goal was to develop a robotic platform
that can execute exploration and inspection tasks in an underground environment. A
cooperation of companies, universities and mine operators from the EU wanted to com-
bine existing products and research to technology readiness level 7 as de�ned by the

1. Introduction 3

Fig. 1.2.: Robot Schrödi from the AutonOHM team during the RoboCup 2019 in Sydney, Australia.
It is using the proposed state machine for autonomous navigation in the left image and can be seen
in an exploration challenge in the middle as well as manipulating pipes for a dexterity challenge on
the right.

EU [4]. A ground-based vehicle was chosen for its longer range and run time compared
to UAVs.
To enable a variety of di�erent applications, a sensor platform was developed that is

able to mount di�erent sensors and can be attached to di�erent robotic ground vehicles.
This sensor platform is attached to a UGV and is deployed in underground mines to
autonomously inspect appliances or explore and map certain areas of the mine. It can
be seen in Figure 1.1. For this, a high-level control of the autonomous operation is
required and a framework to e�ciently explore free space is needed.

1.1.2. RoboCup Rescue Robot League

The RoboCup RRL's goal is to advance robotics research for disaster scenarios by
holding annual international events where di�erent teams compete in the following
four categories:

� Mobility

� Dexterity

� Exploration

� Autonomy

The mobility category is about the robot's ability to traverse obstacle courses re-
peatedly and as fast as possible including balancing on bars, driving over curbs and
climbing up stairs with added debris.
In dexterity, challenges feature the manipulation of small and hard-to-reach objects

mimicking valves or opening doors. This requires a mobile manipulator with an ex-
tended range which limits the space for additional sensors on the robot.
The exploration category focuses on exploring courses while identifying as many arti-

facts as possible. Artifact locations must be correctly marked in a map of the explored
environment. They feature e.g., visual markers, hazard signs and �re extinguishers.
Autonomy does not include challenges on its own but is judged throughout all other

categories. Competitors gain bonus points for executing autonomous runs and a par-
tial bonus for semi-autonomous behaviors like an inverse kinematic for a manipulator
arm. Certain exploration tasks can only be participated in by using fully autonomous
operation of the robot.

1. Introduction 4

Each event is concluded with a �nal in which all categories are combined by a search
and identi�cation of speci�c artifacts in a large arena including the previous challenges'
course areas [5].

1.1.3. Sampling-Based Exploration

A thorough analysis of existing exploration approaches which can be seen in Section
2.4, reveals three major research directions. These are frontier, sampling-based and
information-theoretic exploration.
Frontier exploration's e�ort increases signi�cantly the larger the map grows compared

to sampling-based approaches. An information-theoretic exploration is generally even
more computationally complex than frontier exploration. Therefore, a sampling-based
approach is selected for the exploration in the UNDROMEDA project as the exploration
of large underground mines is one of its goals.
A fourth direction is learning-based exploration which emerged recently and utilizes

Neural Networks (NNs) to decide on the next exploration goal. But the proposed
approaches are trained on speci�c environments and are therefore not suitable for
arbitrary environments.
Recent work focuses heavily on exploration using UAVs [6, 7, 8, 9, 10] which moti-

vated the development of a novel sampling-based exploration approach designed speci�-
cally for UGVs. It has an emphasis on the ability of the robot to traverse certain terrain
for exploration. This ability is referenced as traversability.

1.1.4. DARPA Subterranean Challenge

The DARPA SubT Challenge was introduced in 2017 by the Defense Advanced Re-
search Projects Agency (DARPA) to alleviate research regarding autonomous under-
ground exploration with the goal to create robotic capabilities for disaster sites [11].
A virtual and a physical contest with 20 international teams were held which �nished
in October 2021 with a total prize money of 5 million dollars distributed between the
top �ve teams in both categories.
Three preliminary rounds were held, completed by a grand �nale in which each team

had to �nd and correctly spatially reference as many artifacts in the environment in
a limited amount of time, e.g., manikins, �re extinguishers and backpacks. A set of
heterogeneous robots could be used for the exploration but the communication was
restricted due to the topology of the underground environments.
A lot of research from the teams consisting of universities and industry partners was

published during and after the SubT Challenge focusing on autonomous exploration,
localization and communication [12, 13, 14, 15]. This research also served as an inspi-
ration and comparison for the later iterations of the proposed exploration algorithm.
All exploration approaches used in the SubT Challenge split exploration into a local
and a global algorithm which motivates the introduction of this work's hybrid approach
in Chapter 8.

1. Introduction 5

1.2. Methodology

The methodology of the following work is an iterative process to develop and optimize
a novel exploration approach called Random-Sampling-Based Next-Best View Explo-
ration (RNE). The goal of creating a versatile exploration for UGVs is based on existing
research. The development follows an agile approach by evaluating every iteration and
comparing it with previous iterations and other state-of-the-art exploration algorithms
to deduce content for the next iteration from the particular comparison.
Before starting to work on the exploration approach, a state machine called Robot

Statemachine (RSM) has been developed that supervises the robot's autonomy and
focuses on inspection and exploration. It introduces an interface for exploration algo-
rithms that alleviates the use of and enhances a widely-used robot navigation imple-
mentation [16].
The inspiration for the approach presented in this work is the Receding Horizon Next-

Best-View Planner (RH-NBVP) proposed by Bircher et al. in 2016 [6]. It introduced
the use of a Rapidly-exploring Random Tree (RRT) to generate sample points in free
space which are evaluated as potential goals for a UAV. RH-NBVP discards the tree
of samples after choosing a goal based on distance and observable unknown space.
Furthermore, the UAV waits until a new goal is calculated until it moves again.
Another inspiration is the Autonomous Exploration Planner (AEP) introduced by

Selin et al. in 2019 [7] which itself is based on RH-NBVP and features an improved
method to more e�ciently determine the node gain. It persists previous sampling
points to reuse them later which helps the algorithm to escape local maxima.
The rebuilding of the RRT and waiting for the calculation of a su�cient amount of

sample points to �nish before continuing the exploration shows potential for improve-
ments.
Therefore, the �rst step is the development of an RRT-based exploration approach

with a consistent tree and the calculation of node rewards in a separate thread. Fur-
thermore, a traversability assessment for UGVs and a navigation planner following the
tree's edges are introduced as well as further optimization of the node gain calculation.
Simulation experiments and evaluations show that the consistent structure, multi-

thread calculation and improved node gain calculation lead to vastly decreased explo-
ration duration and traveled path length while observing the same amount of space.
But due to the tree structure that is followed by the navigation planner, detours can
be introduced when following it to another branch.
To improve the navigation planning, the second iteration focuses on replacing the

RRT with a Rapidly-exploring Random Graph (RRG). It was shown to lead to an
asymptotically optimal path between two con�gurations when approaching in�nite
samples by Karaman and Frazzoli [17]. Also, based on the work of Xu et al. [8], new
samples for the RRG are not only generated globally but additionally in the direct
vicinity of the robot.
When comparing the second iteration to the �rst and its inspirational approaches in

simulations, it shows a signi�cant increase in e�ciency. But for larger environments,
the steadily growing graph leads to an increasing overhead in computation. Also, RNE
sometimes steers the robot too close to obstacles which results in collisions and failed
runs.
Therefore, the third iteration of RNE introduces the in�ation of sample areas which

1. Introduction 6

must be without obstacles to build a topology-based graph. Incorporating further
measures, e.g., heading changes and traversability, into the node reward function to
adapt the exploration to di�erent circumstances is added as an enhancement.
These changes further decrease the duration of the exploration and the required

processing time compared to previous iterations. But the rising number of nodes in
the graph for large explorations remains an issue.
Inspired by multiple novel approaches [7, 9, 12, 14, 18, 19, 20], the fourth and last

iteration separates the exploration into a local and a global part. The former is based
on the third iteration of RNE that is only run in a restricted, moving area around the
robot. Unexplored nodes that fall out of this area, are stored in the global planner.
They are connected using a shortest route heuristic and visited later in the exploration.
This is intended to reduce memory usage and computation time as the local graph is
strictly limited in size.
Simulated comparisons show that the �nal iteration is able to compete with state-of-

the-art exploration approaches and introduces a method applicable to a wide variety
of UGVs and sensor setups. An experiment with a real robot further con�rms the
capability of the proposed algorithm.

1.3. Contributions

This work introduces the following scienti�c contributions to the state of the art in
autonomous exploration development and research. These contributions are separated
into methodical and application-oriented contributions.

Methodical Contributions

� An open-source state machine for exploration and inspection with an enhanced in-
terface to a robot navigation implementation that allows to supervise and control
the robot's autonomy1.

� A sampling-based exploration algorithm designed for UGVs that incorporates a
traversability measure and is openly available2.

� The introduction of a sparse, decoupled node gain calculation to determine ex-
ploration goals asynchronously.

� A graph construction that follows the environment's topology based on in�ated
node areas and movement to increase the distance to obstacles.

� An extension to a hybrid exploration planning approach that combines a local
graph with a global exploration in a novel way. It merges and stores unexplored
nodes to be explored later. The shortest route to explore all of these nodes is
calculated using a heuristic.

1https://github.com/MarcoStb1993/robot_statemachine
2https://github.com/MarcoStb1993/rnexploration

https://github.com/MarcoStb1993/robot_statemachine
https://github.com/MarcoStb1993/rnexploration

1. Introduction 7

Application-oriented Contributions

� Evaluation of multiple additions to the exploration approach in simulations and
their impact on the performance using di�erent autonomous UGVs.

� Validation of the exploration approach in numerous simulations and experiments.

1.4. Outline

This work is structured into the following chapters which are brie�y described:

Chapter 2 introduces related work that is relevant to the proposed approach. This
includes state machines for mobile robots and robotics frameworks, sampling-
based path planning, autonomous exploration and inspection as well as Next-Best
View calculation.

Chapter 3 elaborates mathematical foundations and concepts required for the ap-
proach proposed in this work. Sampling-based algorithms are explained together
with auxiliary methods, followed by Simultaneous Localization and Mapping.
Furthermore, exploration and mapping backgrounds are described as well as the
calculation of shortest routes.

Chapter 4 describes the design of a state machine to supervise and control the au-
tonomous exploration implemented in the following chapters and also to enable
inspection. Its interfaces and applications are detailed.

Chapter 5 proposes the foundation for this work's autonomous exploration approach
based on a Rapidly-exploring Random Tree and describes implementation details
including the computation e�cient gain calculation, traversability assessment and
navigation planner.

Chapter 6 shows the next iteration of the exploration approach which replaces the
Rapidly-exploring Random Tree with a Rapidly-exploring Random Graph and
introduces additional local sampling. A comparison to the previous iteration and
earlier state-of-the-art approaches is conducted as well.

Chapter 7 introduces a topology-based graph construction for the exploration and a
revised reward function that incorporates di�erent metrics. These enhancements
are evaluated in comprehensive simulations.

Chapter 8 presents the last iteration of the exploration approach which separates it
into local and global exploration. The local exploration is based on the previous
iteration while the global part stores unexplored nodes and proposes an e�cient
path to visit them using a shortest route heuristic. A comparison to the previous
iteration and state-of-the-art algorithms is added.

Chapter 9 concludes this work and recapitulates its contributions. Furthermore, areas
for future research are outlined based on this work's �ndings.

8

2. Related Work

This chapter presents related research to the introduced work. First, existing frame-
works for robotics are listed and compared brie�y before one of them is selected for
the proposed approach and described in detail.
Based on this framework, state machines for mobile robotic exploration and inspec-

tion are evaluated. They are put into context with the state machine proposed in
Chapter 4.
Then, sampling-based exploration strategies are introduced together with their man-

ifold adaptions and enhancements. These are the foundation and inspiration for the
strategies utilized in this work which are described in Chapters 5, 6 and 7.
Furthermore, di�erent existing robotic exploration and inspection approaches for

mobile robots are examined and assessed. Also, methods to estimate the Next-Best
View (NBV) for exploration or inspection are discussed. This work's contribution is
inspired by and compared to some of these exploration approaches in Chapters 6 and
8.

2.1. Robotics Frameworks

This work focuses on research and implementations using the open-source Robot Op-
erating System (ROS) [21] as it has a vibrant and steadily growing community in
research and industry [22]. Additionally, it already supports most of the hardware
used in UNDROMEDA which is introduced in Section 1.1.1. ROS is a package-based
framework and encourages community-developed packages which implement interfaces
to many robots and sensors as well as algorithms for common robotics problems. Its
processes are run in nodes that can be deployed on di�erent machines in a network
and can communicate with each other using messages and services. It features pow-
erful tools for visualization and can be easily integrated with the Gazebo simulation
environment [23].
Another robot framework is Yet Another Robot Platform which is more specialized

in the communication between di�erent robot hardware [24]. Furthermore, there is
the Mobile Robot Programming Toolkit which bundles several algorithms commonly
deployed in mobile robotics like Simultaneous Localization and Mapping (SLAM) and
navigation planning [25]. However, both lack the extensive interfaces and algorithms
as well as the active community of ROS.
Macenski et al. [26] introduced ROS2 which includes Micro-ROS for embedded sys-

tems, o�ers real-time enforcement and has functional safety ISO 26262 required for
autonomous vehicles and heavy machinery. It features non-blocking services and in-
troduces native actions for communication compared to ROS. ROS2 uses the Data
Distribution Service for communication that utilizes UDP and di�erent settings for the
reliability and durability of messages. It also provides authentication, access control
and encryption.

2. Related Work 9

Even though ROS2 is the successor of ROS, during this work the number of available
packages and community support was sub-par to its predecessor. Therefore, ROS2 is
not used for the implementation. But the yearly metric reports suggest, that the
support is going to increase for ROS2 in the near future [22, 27]. A non-trivial transfer
of the proposed approach to ROS2 is expected to be useful.

2.1.1. ROS

As ROS is the robotics framework used throughout this work, further details about its
�le system, communication and community-developed packages are listed below.
ROS is organized in distributions which are supported for a speci�c Ubuntu distri-

bution. In this work, development started with distribution Kinetic but switched to
Melodic as Kinetic's end of life was reached in 2021. The newest and last release for
ROS in 2020 was Noetic on which the developed state machine and exploration can be
run as well.

File System

ROS resources are organized in packages which contain processes called nodes, libraries,
message types, con�guration �les and other relevant data. Packages are the smallest
build item in ROS.
They can be built using the ROS build tool catkin and can include dependencies for

other packages and libraries. These dependencies and further metadata are de�ned in
a package's manifest.
A metapackage bundles multiple packages to facilitate using and building them.

They also serve as semantic groups.
Nodes and libraries can be written in Python or C++ and process data. This data

is retrieved from sensors or can be obtained through messages. The messages are also
de�ned in packages.

Communication

To exchange information, nodes can use two di�erent forms of communication in ROS
which are described in the following. Both forms require a central ROS master that
is aware of all available communication channels and also stores parameters for the
utilized nodes.
Topics which are the �rst form, can be used to asynchronously communicate between

multiple nodes. A node can publish a topic of an existing message type using a unique
topic name which is registered with the ROS master. If another node wants to subscribe
to this topic, it accesses the publisher information from the ROS master and then
requests the message from the publisher. This is shown in Figure 2.1.
The second form is a synchronous service. A service must be registered at the ROS

master by the providing node and it is based on a prede�ned message type for the
request and reply. If another node wants to use this service, it becomes the client by
receiving the information from the master and sending a request to the provider. The
provider processes the request and sends a response. The client's process is blocked
until it receives a reply.

2. Related Work 10

Fig. 2.1.: Communication in ROS using a topic between a publishing node and a subscribing node.
The ROS master holds the information about all available topics in the system.

Nodes can be run on multiple connected machines using a central ROS master. ROS
commonly uses the TCP/IP stack for communication.

Coordinate Convention

A standard coordinate convention is declared for ROS which states that all coordinate
systems are right-handed. Figure 2.2 shows the ROS axis orientation in relation to a
body.
ROS introduces three coordinate frames which are explained below:

base link This frame is rigidly attached to an arbitrary position and orientation on a
robot.

odom The odom frame is a world-�xed frame that is continuous which means the pose
of a robot does not jump in relation to it. But it is prone to drift over time as it
should be derived from the robot's odometry.

X

Y

Z

Fig. 2.2.: Right-handed ROS coordinate convention with the x-axis pointing forward from an object,
y-axis pointing left and z-axis up.

2. Related Work 11

map The map frame is a world-�xed frame that serves as a long-term reference for the
robot's pose. Because it should be computed from a SLAM algorithm which is
introduced in Section 3.2, it can show discrete jumps.

Community Packages

ROS is driven by a large community which creates and publishes packages that can
be openly accessed and utilized for commercial and research purposes. These packages
include e.g., sensor interfaces, localization, mapping and navigation algorithms. A
selection of these packages used throughout the presented work is brie�y described in
the following:

tf2 The successor of the tf package is used for coordinate frame conversions and to
�nd the relationship between di�erent frames, e.g., a robot's main frame and a
sensor's frame [28].

gmapping This package is utilized for SLAM which is explained in Section 3.2.2. It
localizes the robot and builds a 2D map based on 2D lidar scans [29, 30].

navigation The ROS navigation stack includes several packages used for path planning
and following for robots. Multiple global and local planners are available which
use a cost map with in�ated obstacles to calculate a safe path [16]. This work im-
plements its own global planner but uses the Dynamic Window Approach (DWA)
local planner [31].

octomap The OctoMap package is a mapping tool to create memory-e�cient maps
which utilize probabilities when integrating new measurements. It is described in
detail in Section 3.3.3 and the gain calculation introduced in this work's explo-
ration approach uses it [32].

rviz RViz is a Graphical User Interface (GUI) for ROS that allows to visualize the
robot, sensor measurements, constructed maps and much more. It allows to
include plugins that show additional information. A plugin for RViz to utilize the
proposed state machine is developed in Section 4.1.3.

rqt This package is a GUI framework that can show arbitrary plugins based on the
application framework Qt1. Multiple plugins can be added to a single window
which enables creating a custom interface for the desired application. An rqt
plugin for the introduced state machine is detailed in Section 4.1.3.

2.2. State Machines for Mobile Robots

A state machine is one of the 23 Uni�ed Modeling Language (UML) creational patterns
introduced by Gamma [33] and is based on statecharts [34]. The UML state machine
is a directed graph in which nodes are states and edges symbolize state transitions.
Its concept is to model an entity's state and specify under which circumstances the
state changes. There are two kinds of state machines de�ned in [35], behavior and
protocol state machines. In this work, the term state machine only refers to behavioral
1https://www.qt.io/

https://www.qt.io/

2. Related Work 12

state machines. They are used to model a system's behavior while in a certain state
or during a speci�c state transition.
To operate a robot using ROS, a multitude of ROS packages which o�er di�erent

functionalities, must be initialized using speci�cally designed �les or commands in most
cases. Therefore, a change of robot behavior requires a skilled operator who often has
to know the programming as well. There currently is a selection of state machines
available in ROS which is presented in the following.
One of them is SMACH which was developed by Boren and Cousins [36] and o�ers

a �nite state machine which can be realized with Python code and supervised through
a provided GUI. It is designated for executing complex high-level tasks and allows
nested or concurrent states as well as state preemption. Data can be attached to states
and is available to their children.
Several additions to SMACH were published which enable pre-con�gured, repeatable

behaviors [37], decouple design from programming by providing a description language
for the respective states [38] or introduce core templates and automatic code block
generation [39]. SMACH and its additions allow to implement complicated behaviors
whereas the state machine introduced in Chapter 4 is more focused on usability instead
of complexity. Therefore, it is not as adaptable as SMACH but can be deployed with
less e�ort for mobile robots.
FlexBE is also based on SMACH and provides �exibility by enabling changes on

the �y by the operator. It introduces behaviors for pre-speci�ed tasks which are also
adjustable [40]. In addition, FlexBE furthermore integrates its own plugins for navi-
gation, enabling more interaction with the underlying classes of the ROS navigation
stack [41]. But FlexBE still requires an operator with programming experience.
The package ros_control o�ers a framework to control all robot joints and the robot's

movement [42], therefore it is targeted at a lower level.
A more recently introduced package is SMACC which was inspired by SMACH and

implemented in C++. It features readily available plugins to e.g., ROS navigation,
combined with many of SMACH's advantages [43]. Unfortunately, the state machine
developed in this work was �nished before SMACC was published. Otherwise, it could
have been used for the same tasks without the expensive implementation of a self-
developed solution.
Cao et al. [44] proposed a mid-level implementation for facilitating mobile robotics

research called Autonomous Exploration Development Environment (AEDE). Its inte-
grated simulation provides interfaces to high-level planners by o�ering a local planner
and terrain traversability analysis. This allows setting navigation goals for the robot.
It is less of a state machine but a tool to develop and test exploration algorithms with.
Two approaches presented in Section 2.4.2 utilize it and the �nal tests of the explo-
ration algorithm proposed in this work partially make use of it which can be seen in
Section 8.5.
Closely related to state machines are behavior trees which became popular due to

the computer game industry utilizing them for controlling game reactions to the player.
In [45], the authors develop and utilize a behavior tree for ROS to enable tool grasping

and usage with a robotic arm and gripper. They state that their behavior tree is
advantageous compared to state machines as behaviors can be easily reused without
the need to speci�cally de�ne transitions to each particular state. They implemented
sequential execution of behaviors as well as parallel execution.

2. Related Work 13

Colledanchise and Ögren analyzed behavior trees and introduced a functional de-
scription to provide measures of their robustness and safety. They also describe the
superior modularity of behavior trees compared to state machines and show several
examples of their usage [46, 47]. Behavior trees are a better choice for dynamic en-
vironments and a wide array of behaviors to cope with di�erent situations. But the
overhead they introduce is not required for the intended application which favors uti-
lizing a state machine.
Even though the above-mentioned state machines and behavior trees provide adapt-

able and extensive frameworks, the state machine proposed in this work is intended to
provide a less complex solution. It is speci�cally tailored for repetitive inspection and
autonomous exploration with mobile robots while focusing on the usability for opera-
tors. With this work's research on sampling-based exploration and UNDROMEDA's
use cases in mind, a more appropriate state machine to enable the previously mentioned
tasks is designed and implemented.

2.3. Sampling-Based Path Planning

The works presenting the sampling-based path planning methods PRM, RRT and RRG
are described in the following.

PRM

RRT and RRG, which are described below, are inspired by Probabilistic Roadmaps
(PRM) [48]. PRM consists of two phases to �nd a path between a start and a goal
con�guration, the learning phase and the query phase. The learning phase constructs a
forest, which is a set of trees, by randomly sampling points in the con�guration space. It
tries to connect them to a node from neighboring trees in the forest in a certain distance
using a fast local planner. The parameters set for the learning phase determine the
density and coverage of the constructed tree which in�uence the path created by the
query phase. Furthermore, a heuristic is employed to increase the sampling density
near obstacle regions.
Kavraki et al. [49] later introduced simpli�ed Probabilistic Roadmaps (sPRM) which

remove the heuristic and build a graph instead of a tree by allowing connections to
all neighboring nodes in a prede�ned distance metric. Both methods are detailed in
Section 3.1.4.

RRT

This work's exploration uses two sampling-based path planning methods, adapts and
compares them. The �rst sampling-based method is RRT which was proposed by
LaValle [50]. RRTs are generated by randomly sampling new points in an any-dimen-
sional state space for agents with various Degrees of Freedom (DoF).
An input function is used to determine a new node, that can be connected to the

nearest node of the existing tree, based on the randomly sampled point and the agent's
kinodynamic constraints. This input function simulates the agent's movement for a
de�ned time delta towards the sampled point which results in the position of the new
node.

2. Related Work 14

The regions nearest to a particular node that is a center point in Euclidean space, are
called Voronoi regions which are described in Section 3.1.1. Nodes closer to unexplored
space have larger Voronoi regions which show that the random sampling is biased
towards unexplored space. If a node is close to the goal state, the expansion �nishes
and the RRT's edges connecting the nodes from start to goal state serve as a path.
Ku�ner and LaValle later introduced RRT-connect which uses a greedy extend func-

tion that wraps the steer function. For each random sample, the steer function is
executed and new nodes are added to the tree multiple times until the random sample
is reached or an obstacle blocks the expansion [51].
They also presented a bidirectional RRT planner which constructs two trees, one

initialized at the start and the other at the goal state. If two of the trees' particular
nodes are close to each other, they are connected and induce the path from start to
goal. They furthermore demonstrate their proposed planner for agents with up to 12
DoF [52].
Further details about RRT are explained in Section 3.1.2.

RRG

The Rapidly-exploring Random Graph (RRG) was introduced by Karaman and Fraz-
zoli [17]. RRG combines the construction of a graph from PRM's learning phase with
RRT. Instead of a query phase to create a path, it is provided as soon as start and
goal are connected through the graph. Additional construction time can then lead to
an improved solution.
A thorough explanation of the RRG algorithm is presented in Section 3.1.3.

Improvements to RRT and RRG

These sampling-based methods are still actively researched resulting in a multitude of
adaptions and improvements. The research presented in the following is a selection
that is relevant to this work because it inspires several additions to it.
In [17], Karaman and Frazzoli proved that RRT's probability to obtain an optimal

solution is zero and proposed RRT* which guarantees asymptotic optimality. For this,
it checks for all nodes in a radius around the sample if they can be connected to the
new node instead of just attempting to connect it to the nearest node. If a connection
is possible, it is checked if the new connection can reduce the cost of the already present
node. In this case, the tree is rewired.
Karaman et al. [53] proposed anytime RRT* in which the agent starts to move after

a user-de�ned period of time even if no path has been found so far. While the robot
moves, the algorithm continues and tries to �nd or optimize the path. At every node
the agent reaches, the currently best path is selected. This is similar to the decoupled
gain calculation proposed in Chapter 5.
For a high-dimensional con�guration space, Brock and Kavraki [54] proposed to de-

compose the problem by representing paths as volumes in a low-dimensional space.
They deploy wave-front expansion in a 3D workspace to construct a tunnel between
start and goal position. It is then utilized to �nd a real-time solution in the con�gura-
tion space. In [55], the tunnel is the foundation for a con�guration space tree that is
very similar to an RRT.

2. Related Work 15

Shkolnik and Tedrake [56] proposed to in�ate spheres around each node up to the
closest obstacle in the con�guration space. Therefore, the distance to the closest ob-
stacle can be calculated or is determined lazily from failed attempts to connect a new
sample to the particular node. Random samples inside one of those spheres are rejected
which makes the tree sparse and increases samples in di�cult regions, leading to an
overall increase in e�ciency.
Path planning for UAVs using RRG on a point cloud stored in a k-d tree was intro-

duced by Gao and Shen [57]. When a new sample is generated, a line is drawn from it
to its nearest neighbor and the intersection with the neighbor sphere's surface serves as
the position for a new node. For each new node in the RRG, a sphere is in�ated around
it up to the closest obstacle which is determined using the k-d tree. If the sphere is
not su�cient for the UAV to pass through, it is discarded. Otherwise, the new node is
connected to all neighboring nodes with whose spheres it has an intersection area big
enough for the UAV to move through. RRG exploration is stopped after a prede�ned
amount of iterations and A* is used to �nd the shortest path from start to goal position
in the graph. The positions and radii of all nodes on this path are then put into a
quadratic optimization to �nd an optimized trajectory.
Gao et al. [58] reworked their initial approach and replaced the RRG with a combi-

nation of informed RRT* [59] and anytime RRT* [53]. Furthermore, when discovering
new obstacles during trajectory execution, the current path is not discarded completely
and a new optimization function is utilized.
The previous approaches from Brock and Kavraki [54], Rickert et al. [55], Shkolnik

and Tedrake [56], and Gao and Shen [57, 58] are the inspiration for Node Area In�ation
(NAI) introduced in the third iteration of RNE shown in Chapter 7.
Wang et al. [60] showed two improvements to RRT which are designated for cluttered

environments. The �rst improvement is to dynamically adjust the sampling area that
is restricted to a sphere around the node nearest to the goal. The sphere's radius is the
node's distance to the goal. When encountering an obstacle, the radius is increased.
The second improvement is a control value which determines the node around which
the sampling occurs. If expanding a node fails too often, the focus shifts to another
node to escape local traps.
In [61], dynamic region-biased RRT was proposed in which the workspace is analyzed

�rst to produce a skeleton in obstacle-free areas. It guides the tree growth by restricting
the sampling too far from the skeleton. This improves the time to �nd a path in
obstructed environments but also requires detailed knowledge about its topology.
Informed RRT* suggests an ellipsoid with start and goal con�guration as focal points

and the cost of the current and theoretically best solution for diameters as a restricted
sampling space after an initial path was found. This reduces overall exploration but
increases the rate of �nding a (near) optimal solution [59].
A similar sampling bias like in the previously introduced work is employed in the

second iteration of RNE in Chapter 6 to prioritize the placement of new nodes near
the robot.
A novel combination of bidirectional RRT and RRT* was employed by Krüsi et al.

[62] to plan trajectories on 2.5D maps derived from a point cloud traversability analysis
for a UGV. Bidirectional RRT is used to quickly �nd a traversable path. When it has
been found, RRT* improves the path by sampling close to the initial solution. This is
similar to the usage of the traversability assessment proposed in [3] which is utilized in

2. Related Work 16

an experiment to evaluate this work's exploration approach in Section 8.6.

2.4. Autonomous Exploration and Inspection

Planning

Recent research on autonomous exploration and inspection planning can be sepa-
rated into four main categories which are frontier-based, sampling-based, information-
theoretic and learning-based strategies as shown in Figure 2.3. Published work on
those categories is described in the following sub-sections.

2.4.1. Frontier-Based Exploration

Yamauchi [63] introduced the Frontier Exploration (FE) in 1997 which identi�es fron-
tiers in a 2D grid map by �nding unknown map tiles next to empty or occupied tiles.
These frontier cells are clustered. The clusters can now be compared by size or by
distance to the robot and selected as the next navigation goal for the robot. But the
complexity increases the larger the map grows as all map tiles are checked in each
iteration.
In [64], a wavefront FE was proposed in which previously detected frontiers serve as

starting points for searching new frontiers after performing one or more scans. Only
cells covered in those scans are checked for new frontiers. This reduces the number of
necessary checks compared to the naive approach that evaluates all cells in the grid
map at each iteration. But this approach was only demonstrated on 2D maps.
Quin et al. [65] focused on improving frontier extraction algorithms based on [63] to

accelerate frontier detection and exploration. They proposed to check only occupancy
map cells in the Field of View (FoV) of newly acquired sensor measurements to reduce
the computational load. Furthermore, only cells intersecting the border of the observed
FoV, which can be limited by obstacles, are checked to further reduce their number.
They test their algorithms in 2D environments but claim that they are applicable to
3D occupancy grids as well.
Holz et al. [66] segment the map into rooms and make the robot favor frontiers in

the same room. Also, the frontier that is the current navigation goal is re-checked to
�nd out if it has already been explored which leads to another frontier becoming the

Fig. 2.3.: A visualization of the di�erent categories of exploration strategies is shown in this �gure.
They are used in this section to categorize the multitude of approaches.

2. Related Work 17

goal. The exploration approach proposed in this work also uses a similar metric to
abort the current goal for a better one.
In [67], a thorough comparison of di�erent FE algorithms was undertaken. The

authors distinguish between integrated approaches where the map quality is regarded
in the target decision, cost-utility approaches, behavior-based approaches and multi-
robot approaches which can be separated into coordinated and market-based.
They concluded that integrated approaches increase map quality while algorithms

using cost and utility functions increase exploration time overall but explore large parts
of the environment early. Considered individually, cost-based approaches decrease ex-
ploration time while utility-based approaches explore larger volumes early in the pro-
cess. As expected, multi-robot approaches improve time and map quality. Especially
market-based goal assignment outperforms assigning goals in a prede�ned sequence.

Topology-Assisted Frontier Exploration

In [68], an occupancy map is skeletonized based on the Voronoi distance which is used
to build a Voronoi graph. Based on this graph, junctions are identi�ed that segment
the map. For each segment, frontiers are determined and assigned to multiple robots.
The assignment is based on each robot's distance to the particular segment and favors
robots close to or already inside it.
[69] introduced the ability for an operator to provide a topographical node map of

the environment to guide a global exploration. A Travelling Salesman Problem (TSP)
solver, which is explained in Section 3.4, is used while FE is running locally. Each
frontier detected by FE is assigned to a node to which it has the shortest path. The
frontiers are explored in the order of the nodes which they are attached to and which
is de�ned by the TSP solver's solution. The global route can be re-planned if obstacles
block the connection between nodes.
Gomez et al. [70] proposed a similar approach by extending FE with a topological

graph of the visited frontiers. Each frontier is categorized as a free area in the same
room or a transit area to another room which is found using gap detection on walls
in the map. The selection of the next goal from the available frontiers is based on the
size, distance and category of the particular frontier where free area frontiers in the
same room are preferred over transit area frontiers. Loop closures in the topological
graph are detected and added.
The previously shown approaches utilize topological information to guide the ex-

ploration which is also the idea of the topology-based graph proposed in Section 7.2.
But compared to [69], it does not need the topology information previously nor does
it assess the complete grid map to retrieve it like in [68] and [70].

Frontier Clustering

In [71], k-means clustering is utilized to group frontiers into a number of clusters equal
to the number of robots running the exploration task. Each robot chooses the next
cluster based on a cost function that penalizes distance and existing assignment of the
cluster to another robot.
By applying a TSP solver on representative nodes of frontier cells clustered by k-

means, Kulich et al. [72] decrease the duration and path length of the exploration
compared to the greedy strategy of choosing the nearest frontier. In a later study

2. Related Work 18

[73], they compare di�erent FE strategies for determining frontier goal candidates and
assigning them to multiple robots. The results of various simulations show that putting
more e�ort into �nding better goal candidates is advantageous over utilizing complex
goal-assigning strategies like a TSP solver.
In 2019, Kulich et al. [74] introduced an algorithm that outperforms their previous

approach by sampling viewpoints for each frontier found by FE in the free space near
the respective frontier. This is intended to maximize the number of observable frontier
cells. A constrained variant of a TSP solver is then utilized to �nd the shortest path
through the viewpoints. The �rst viewpoint is chosen as the next goal for the robot.
They also regarded [75], in which the authors found out that a frequency-based goal

selection is superior to a decision-based goal selection. A frequency-based goal selection
calculates the best goal in set time intervals while a decision-based selection chooses
a new goal only after the previous goal was reached. They also state that higher
frequencies further increase the bene�t up to a limit at which the computational load
is too great and reduces the overall performance.
Clustering multiple goals and connecting them using a TSP solver is implemented

for this work's exploration in Section 8.2.3. Furthermore, the frequency-based goal
selection is implemented in the proposed exploration approach in Chapter 5 as one of
its main advantages compared to state-of-the-art sampling-based approaches.

3D Frontier Exploration

Joho et al. [76] detect frontiers on multi-level surface maps and calculate viewpoints
by ray tracing from the frontier cell to �nd suitable positions for the robot. For each
viewpoint, 3D ray casting determines the estimated information gain in map cells
from the viewpoint. The viewpoint with the best utility considering information gain,
distance and traversability score is selected as a goal.
Butzkey et al. [77] use an OctoMap described in Section 3.3.3 to �nd frontier cells

in 3D space. For every frontier cell, possible viewpoints consisting of a position and
a heading are generated. Each viewpoint is assigned a gain which is the number of
frontier cells that can be observed from it and a cost which is the distance to a robot's
current position and heading. An arbitrary number of robots can be used and each
of them can be assigned to a viewpoint as soon as it becomes available. A high-level
planner decides if a viewpoint can only be reached by a UAV and prioritizes their
exploration before sending a UGV to other viewpoints.
An OctoMap is also utilized by Zhu et al. [78]. They only search for new frontiers in

and remove explored frontiers from the space in the OctoMap that changed since the
previous iteration of the frontier detection. Frontier cells are clustered by proximity
and each cluster's geometric center is regarded as a candidate for exploration. The
candidate with the best cost function is the next goal for a UAV. The cost function
is derived from the proportion of unknown cells to all cells in a sphere around the
candidate minus its distance to the robot.
Charrow et al. [79] proposed an approach in which global paths to frontiers are

detected in a 3D voxel map while motion primitives are used to sample local paths.
For both paths, ray tracing in a 3D voxel grid is utilized to �nd the path with the best
reward. This path is optimized based on its mutual information.
Senarathne and Wang [80] use an OctoMap for exploration and an algorithm iden-

tifying surface frontiers rather than free space frontiers which favours the mapping of

2. Related Work 19

obstacles instead of free space. Therefore occupied voxels are found and �ltered to
extract a single line of surface frontier voxels for each plane that results in vectors that
show the probable expansion direction of the surface. Viewpoints are selected from
samples based on these vectors and a gain is calculated to extract the best viewpoint
to which the robot moves next.
Faria et al. [81] use FE in an OctoMap to �nd exploration goals for their UAV

equipped with a 2D laser scanner mounted at a 50 degrees angle. Fly-by maneuvers
are performed around the found frontier goal to map unknown space. Frontiers are
derived from the OctoMap structures as described in their previous paper [82].
Vutetakis and Xiao [83] proposed to cluster frontiers that are found at the border

between occupied and unknown space in an OctoMap and to sample a user-de�ned
number of viewpoints. Each viewpoint is evaluated regarding a distance threshold to
the nearest neighboring frontier and an information gain derived from ray tracing. The
viewpoints with the best information gain for each frontier are connected using a TSP
solver. The path to the �rst waypoint is calculated using RRT and the process is
repeated for each new goal. The exploration is limited to the UAV's current altitude
which is only changed when no frontiers remain at it.
In [84], frontiers are also extracted from an OctoMap. Viewpoints are generated in

proximity to the frontier points and the robot. These viewpoints are clustered using
k-means and evaluated using ray tracing to calculate the number of frontier points
visible from the cluster center. The cluster with the highest amount is selected as the
next goal for a UAV to explore.
A frontier exploration based on an octree structure called supereight [85] was intro-

duced by Dai et al. [86]. They extract frontier blocks at each sensor measurement that
is added to the mapping structure. A prede�ned number of candidates is obtained
uniformly from large enough blocks and a representative for each candidate is chosen
at random from the block. For every candidate, a ratio of gain, which is calculated
using sparse ray casting presented in [87], and estimated travel time to the candidate
is computed. The candidate with the best ratio is chosen as the next goal for a UAV
using informed RRT* for path planning. According to the authors, this approach
outperforms RH-NBVP which is introduced in the next section.
All previously described approaches su�er from the increasing complexity of search-

ing for frontiers in a 3D grid map when exploring large environments.
An approach to more e�ciently utilize FE with UAVs was introduced in [88]. The

authors extract frontiers from an OctoMap but target frontiers in the current FoV
�rst. A cost function tries to maintain a user-de�ned maximum velocity and punishes
exploring frontiers that result in velocity reduction. If there are no frontiers present in
the current FoV, recently skipped frontiers are visited using a classic FE approach.
In [13], frontiers are extracted in a user-de�ned zone around the robot. A convex

polyhedron is constructed around the robot's location spanning towards all edges found
by ray tracing around the robot. When the robot leaves this polyhedron, the procedure
is repeated. The previous robot positions build a global graph whose neighboring
nodes are connected. Frontiers are detected and clustered using the Euclidean distance
outside of the polyhedron and inside the user-de�ned zone. The volume, distance
and orientation changes to these clusters are then evaluated for the frontier clusters
neighboring the robot's current position. The best frontier cluster is selected as the
next goal. If no local clusters are found, previous frontier clusters are evaluated using

2. Related Work 20

the cluster's volume and the robot's distance to the cluster.
The approaches presented in [13] and [88] limit the computational complexity by

signi�cantly restricting the space to deploy frontier exploration. This removes the
growth of computation time with increasing map size.

2.4.2. Sampling-Based Exploration

The following related works of sampling-based exploration approaches are divided into
exploration limited to 2D maps, receding horizon sampling, hybrid approaches, explo-
ration area decomposition and further research.

2D Approaches

One of the �rst proposals to use randomized samples for robotic exploration was intro-
duced by Oriolo et al. [89]. They build a structure called Sensor-based Random Tree
which is inspired by PRM and RRT. At each iteration, a random sample in the free
space perceived by the robot's sensors is checked. If it has a minimum distance to the
robot's position and previously visited nodes of the tree, it is added to the tree and
the robot starts moving towards it. If there are no valid samples at the current robot
position, it backtracks to the previous node in the tree. If the robot reaches the start
node while backtracking, the exploration is �nished.
In [90], the authors proposed to detect frontiers in a 2D occupancy grid map by

building a local and a global RRT. For each node that was sampled in an unknown
cell of the map, a frontier is placed at the boundary between free and unknown space
that the edge to this node crosses. Nearby frontiers are clustered and their center is
evaluated as a possible goal. The number of unexplored cells in a user-de�ned radius
around the center is the gain and the Euclidean distance between it and the robot
is the cost. The frontier center with the largest di�erence between gain and cost is
selected as the next goal. The local RRT is cleared and rebuilt after each goal the
robot reaches. If no nodes remain with a gain above a user-de�ned threshold, the
exploration terminates.
The previously introduced algorithm combines sampling- and frontier-based explo-

ration but does not regard the potential of exploring nodes in the RRT that are not
directly next to frontiers. This potentially increases the exploration e�ciency, as many
unexplored areas can be observed from further away.
In [91], frontiers in a 2D occupancy grid map are found by building an RRT and

selecting nodes with an edge to a new node in an unknown cell, similar to [90]. But
tree edges are removed after placing the nodes to save memory. Furthermore, the
environment is separated into quadratic regions which are removed from the sampling
area if they have more than a user-de�ned threshold of nodes inside.
If four surrounding regions to a center region contain more nodes than the threshold

and no unknown space, the center region becomes invalid which means all nodes inside
it are deleted and it is removed from the sampling area. This reduces computation and
speeds up the outwards expansion of the RRT.
Fang et al. [92] proposed an approach similar to [90] where they build an RRT and

frontiers are extracted when a new node is sampled in unknown terrain. The RRT
is rebuilt after �nding a frontier and frontiers must be placed at a certain distance
from existing frontiers. Each frontier is evaluated by its information gain, which is

2. Related Work 21

derived from the number of free cells in a radius around the point, and its cost, which
is calculated from the Euclidean distance between the point and the robot. The con�-
dence in its localization, that is deduced from the number of occupied cells in a radius
around the robot, also in�uences the evaluation. The best frontier point is chosen as
a navigation goal for the robot and re-evaluated after the robot has moved a speci�c
distance.
In [93], a local and a global RRT are built to �nd boundaries between free and

unknown space in a 2D occupancy map similar to [90]. Additionally, seeded growing
near wall line segments and an adaptive step size for the RRT's edges, that decreases
over time to increase granularity, are proposed.
The above approaches only regard sample positions close to frontiers and do not

use samples further away which probably leads to a faster exploration. Furthermore,
they create and utilize a 2D representation of the environment while the algorithm
introduced in this work is intended for mapping space in 3D.
The authors of [94] create a grid map where each cell holds its probability to be

a boundary between known and unknown space called boundariness map. A fuzzy-
logic �lter calculates the distance of an observable tile from the sensor based on its
range and the robot heading. This can be accumulated over a path and is combined
with the boundariness values of observable tiles to create an information gain for the
path. Samples across the entire map are evaluated and the one with the best score is
selected as the next goal. The score is based on observable tiles along the path which
is initialized using RRT and then optimized.
This approach only uses a 2D evaluation and has the complexity of frontier-based

exploration due to the creation of the boundariness map.
In [95], a semantic road map was proposed which is built similarly to an RRT. Each

node is classi�ed into being inside a corridor or a room using semantic mapping and
its information gain is evaluated using ray tracing in a 2D occupancy map. The next
goal is selected based on the semantic information, information gain and the distance
to the node which is calculated using the A* algorithm.
The authors' follow-up paper [96] replaces the tree structure with a graph whose

nodes are only sampled in the free space of current sensor measurements. The approach
from Wang et al. adds nodes to the graph without collision-checking the edges. Each
node's traversability is only checked if it is picked as an exploration goal.
But the authors evaluate gain in a 2D map and the semantic mapping is designed

speci�cally for o�ce environments.

Receding Horizon Sampling

Bircher et al. [6] introduced the Receding Horizon Next-Best-View Planner (RH-NBVP)
which deploys RRT for randomly sampling the position and orientation of new nodes.
They use ray casting in an OctoMap at each node to �nd the NBV explained in Sec-
tion 3.3.2. RH-NBVP follows the RRT's branch with the most potential gain. The
gain is computed by adding up the predicted visible voxels at each node in the branch
multiplied with a penalizing factor based on the distance to the particular node. After
reaching the �rst node in the branch, the tree is rebuilt. Only the previously best
branch is kept. It is designed for autonomous exploration with UAVs
This work builds upon the idea introduced by Bircher et al. but adds a persistent

tree and a more e�cient gain calculation to speed up the exploration. Furthermore,

2. Related Work 22

RH-NBVP is only designed for UAVs and cannot be used with UGVs. A comparison
between an adapted version of RH-NBVP and this work is shown in Section 6.3.
In [97], belief certainty which is computed from landmarks registered by the sensors,

is added to RH-NBVP and the path towards tree nodes that minimize the uncertainty,
is optimized. Later, Bircher et al. [98] adapted RH-NBVP to inspect surfaces by
replacing the gain function from counting unknown voxels to measuring the visible
uninspected surface area. Finally, the RH-NBVP algorithm was presented in [99] in
detail with all extensions for exploration and inspection path planning.
The authors of [100] utilize RH-NBVP in combination with pose-graph SLAM and

local OctoMaps to better cope with drift and to allow loop closures to correct the
OctoMaps. The gain evaluation of RH-NBVP polls voxels in di�erent sub-maps based
on their position in the pose-graph.
Dang et al. [101] combine RH-NBVP with an additional object recognition using

a NN to identify a set of prede�ned objects. These objects are projected into the
OctoMap. The authors deploy a special weight function for the information gain of
nodes that are near one of the objects which motivates a detailed exploration and
mapping of the whole identi�ed object.
Witting et al. [102] adapt RH-NBVP and instead of sampling each node's yaw,

they add all-around yaw evaluation and selection. Furthermore, the robot's position
is periodically stored in a history graph. This graph is maintained by continuously
checking the potential of each node using a frontier search in a mapping structure called
Voxblox. It utilizes Euclidean Signed Distance Fields (ESDF) that are explained in
Section 3.3.4. Nodes are re�ned by moving them away from obstacles using the ESDF's
distance to obstacles. If multiple nodes are moved close to each other, they collapse
into the same position where their information gain is combined.
The graph's nodes are used for seeding a new RRT when no nodes with su�cient

information gain are found in the local RRT. The new local RRT's seed is the closest
node to the robot's position in the history graph which has su�cient potential.
The topology-based graph using an ESDF map is an inspiration for NAI and moving

of nodes proposed in Chapter 7 of this work.
The authors of [7] proposed the Autonomous Exploration Planner (AEP) which uses

RH-NBVP as a local planner while simultaneously caching the node positions and gains
from it. If there is no path in the RRT with an information gain above a user-de�ned
threshold, the best cached node is selected as a goal. The cached nodes also contribute
to a Gaussian process to calculate a mean information gain for each grid cell in a 2D
map. If a new node is sampled in an area of the Gaussian process with a variance
that is low enough, the mean value is used instead of calculating the information gain.
If a measurement is added to the OctoMap, each cached node's gain inside twice the
sensor's maximum range is recalculated. The information gain is calculated by Sparse
Ray Casting (SRC) using volume elements of a spherical coordinate system all around
the node. The yaw is not sampled but sliding-window summation is used to extract
the yaw angle with the best information gain for each node.
This work's Sparse Ray Polling (SRP) is based on the research in [7, 87, 102] to

reduce the computation for gain calculation even further while retaining a similar
performance. A comparison of AEP to the proposed exploration approach can be seen
in Section 6.3.
Schmid et al. [103] improve RH-NBVP by building a continuous RRT* whose root

2. Related Work 23

is reset to the robot's new position after executing a trajectory. Nodes are constantly
rewired to maximize their utility. The sampling area is restricted to a user-de�ned
radius around the robot until a minimum amount of nodes is present. Voxblox instead
of an OctoMap is utilized for calculating the information gain. An approximation
similar to [87] is used to decrease the computation time.
The rewiring used by Schmid et al. is computationally less e�cient compared to

building an RRG like in the second iteration of RNE shown in Chapter 6.
A 3D exploration based on RH-NBVP and AEP is presented in [104] which adds

a weighted gain factor for previously mapped areas of interest. Furthermore, the ap-
proach is intended for UGVs with a manipulator arm holding the sensor for mapping.
This arm is preferred to move towards nearby goals instead of moving the whole UGV.
Moving just the manipulator arm results in more e�cient exploration and inspection

but is only applicable for robots with a manipulator arm.

Global and Local Exploration

Dang et al. [19] introduced an exploration algorithm which utilizes RRT* to construct
paths similar to RH-NBVP. They employ a cost function for every node in the tree
based on the expected observable voxels in an OctoMap in a volume around the node,
the distance from the robot and the heading change. After selecting the best branch
with the highest overall cost function, the robot's distance from obstacles is used to
select the safest path from the best and all similar branches. The similarity is calculated
using the dynamic time-warping method.
Nodes from the selected best path and nodes from other paths with a signi�cantly

high cost function are connected to nearby nodes and establish a global graph. The
leaves from these paths are stored as frontiers in the global graph. When the local
RRT*-based method �nds no paths above a cost function threshold, the frontier with
the most expected information gain is selected as the next goal. The algorithm also
tracks the starting position and enables returning to it when the exploration is �nished
and in case the battery runs low. For calculating the shortest paths in the graph,
Dijkstra's algorithm is used which is described in Section 3.1.5. The robot's battery is
considered when selecting a new goal by returning to the start if the estimated travel
time is higher than the remaining battery.
In another work that was published nearly simultaneously, the previously described

approach is extended and named Graph-Based exploration path Planner (GBPlanner)
[10]. The local planner's RRT* is replaced with RRG to sample a limited number of
nodes and edges in a restricted area around the robot. The shortest paths to each
node are calculated using Dijkstra's algorithm. Analog to [19], the best path and other
worthy paths are propagated to the global graph. When a local dead-end is reached by
the robot, the space restriction for sampling new nodes is lifted and they are connected
to the global graph to �nd suitable areas for exploration.
The GBPlanner's distinction between global and local exploration is also introduced

in this work's fourth iteration in Chapter 8. But instead of choosing the best global
goal when no local goal is available, a TSP solver is used to determine the best order
of visiting all global goals.
The Motion primitives-Based exploration path Planner [105] uses samples derived

from motion primitives for a UAV in high-speed �ight of 2 m/s in a Voxblox map.
The motion primitives are based on the UAV's current velocity and various braking

2. Related Work 24

and turning maneuvers. For each sampled motion primitive, collisions are checked and
for the resulting velocity and pose, the possibility of a collision-free follow-up motion
primitive is checked. Each branch in the tree of motion-primitive paths is assigned a
gain derived from ray tracing at the �nal state and the time to traverse the path. In
addition, deviation from a straight path is penalized. For the best branch, nearby safer
paths are identi�ed. The safest path is �nally selected from them for navigation.
In [20], the authors add a global planner similar to the GBPlanner's global planner

which stores valuable unvisited and visited branches for later exploration and returning
to the starting position.
Lee et al. [106] employ a peacock local planner which considers kinodynamic con-

straints of a UAV and selects the best trajectory regarding motion e�ciency and the
size of detectable frontier clusters in an OctoMap. The robot's poses are stored in a
global graph. If the local planner �nds no feasible trajectory, a node from the global
graph is selected based on the distance to it and nearby frontier cluster sizes. If a
global node is detected in one of the local planner's trajectories, an active loop closing
is executed where the robot moves along several previously visited nodes to improve
the map accuracy.
In [20] and [106], motion primitives are employed instead of RRT or RRG which

allows to maintain higher speeds with UAVs but requires more computation to place
a new sample due to the number of possibilities to check.
In [14], GBPlanner is improved to GBPlanner2 which allows its use with legged

robots by checking edges between nodes for traversability. Ray casting in Voxblox
from the robot to the ground is undertaken to verify whether a ground exists and if
the inclination is traversable. GBPlanner2 also o�ers the option to calculate gain only
on leaf nodes and cluster them in a user-de�ned radius to reduce computation.
For multi-robot exploration, local sub-maps are propagated to a central computer

that positions them in a Voxgraph [107] which connects multiple Voxblox maps in
a pose-graph. Frontiers are searched and clustered in the particular sub-maps and
points are sampled to build a graph in the free space of the sub-map. Nodes nearest
to a frontier are linked to it. If a new sub-map arrives from a robot, already observed
frontiers are removed. Robots periodically request a goal from the central computer and
navigate towards it in the global graph. When they reach it, GBPlanner2 takes over
for a user-de�ned period of time. Afterwards, robots request a new goal or return to
the last known location where a connection to the central computer allowed requesting
a new goal.
GBPlanner2 was used by the team winning the DARPA SubT Challenge and is

compared to the proposed RNE in Section 8.5 regarding exploration duration, traveled
path length, mapped volume and computation e�ciency. The DARPA SubT challenge
is detailed in Section 1.1.4.
Schmid et al. [9] proposed an exploration for large environments called GLocal which

divides the sensed map into sub-maps that can be aligned to each other to enable con-
sistent path planning and collision avoidance under severe odometry drift. A Voxgraph
is used to manage several Voxblox sub-maps which can be aligned using pose restric-
tions. New measurements are integrated into a sliding window Voxblox map. When
the pose uncertainty exceeds a threshold, older measurements are stored in a sub-map
and removed from the sliding window. The local exploration uses a local area which
combines all sub-maps in the proximity. An RRT* is built to explore locally using the

2. Related Work 25

distance in the graph and unobserved voxels for cost and gain like in the authors' previ-
ous work [103]. If no local goals are detected, global frontiers are searched by checking
the surfaces of sub-maps for frontiers while discarding frontiers that are removed by
other neighboring sub-maps. The local graphs remain as sub-map skeletons which are
used with A* to plan paths to global frontiers.
In [108], an exploration approach that can switch between di�erent behaviors based

on a hyper-game formulation was proposed. A UGV with a camera and a lidar can
decide between exploration and visual coverage whereas the latter is further divided
into sparse and dense coverage. The decision is based on the surrounding topology, the
percentage of observable surface in a Voxblox map by the camera and the performance
of previous iterations.
The topology is assessed using the point cloud's eigenvalues split into eight octants

around the robot. Rooms have a similar distribution in all octants while tunnels do not.
The previous iteration's performance is measured in the mapped volume and surface
during its execution. For deciding between dense and sparse coverage, the illumination
is considered which is derived from the camera's intensity measurements.
The exploration planner utilizes the authors' previous work which is the GBPlanner

while the coverage planner samples viewpoints and calculates their visual gain. These
viewpoints are then sub-sampled to build sets. The set with the highest gain is selected
and a path is calculated using a TSP solver. Sparse and dense coverage modes use
slightly di�erent gain calculations regarding the calculated sensor range.
The approach in [108] is designed speci�cally for certain underground scenarios and

therefore is not applicable to explore di�erent environments.

Exploration Area Decomposition

Song and Jo [109] introduced an inspection planner for the exploration and inspection of
spatially bounded, unknown areas using a depth camera. They decompose the map into
sections for better online planning. A local inspection in each segment is undertaken
by sampling viewpoints using RRT*. The respective gain is evaluated with ray tracing
in an OctoMap for observable voxels and a Truncated Signed Distance Fields (TSDF)
map for surface coverage. TSDF is explained in Section 3.3.4. A coverage analysis of
the sampled viewpoints in each particular segment is executed to �nd a set of samples
that cover most of the segment's surfaces. They are connected using a TSP solver and
the constructed path is then executed by the robot. Later, Song et al. [110] add a new
method to decompose the area to be mapped using seeded local growing in free space
clusters. The segments are connected using a TSP solver to form a global path.
Zhu et al. [18] introduced the Dual-Stage Viewpoint Planner (DSVP) which follows

a dual approach of sampling-based RRT expansion and frontier exploration where both
are deployed on a local and global level. In an area around the robot, frontiers in an
OctoMap are extracted which must be observable by ray tracing from the robot or a
node in the local RRT. Frontiers close to each other can be clustered to reduce the total
number of frontiers. RRT is sampled globally and around local frontiers based on a
probability which favors the local frontiers. Every node in the local RRT is a viewpoint
whose gain is calculated using ray tracing. The branch with the highest gain, reduced
by travel distance and a similarity metric, which compares it to the previous best
branch, is picked and executed. Viewpoints with a gain greater than zero are added to
the global graph which connects them to the closest existing viewpoints. Edges that

2. Related Work 26

are in a collision or too close to existing viewpoints are discarded.
If there are no local viewpoints with su�cient gain, the global graph is consulted

to select a viewpoint that can observe the newest global frontier. This means it is
probably closest to the robot. If multiple viewpoints can see this frontier, the one that
is closest to it is selected as the goal. If no more global frontiers are available, the
exploration �nishes.
In [12, 111], the authors proposed a framework for exploration called Technologies

for Autonomous Robot Exploration (TARE) that divides the global space into many
sub-spaces. A detailed local plan is computed only in the local sub-space while the
global plan connects all sub-spaces which reduces the computation time and increases
the e�ciency immensely. A global road map in traversable space is built which is
used in the global plan that must go through all unexplored sub-space centers. The
distances in the road map are calculated using A* and are used to build a distance
matrix between the centers. A TSP solver is deployed to �nd the shortest path through
them.
The intersecting points between the global path and the sub-spaces' borders are used

for the local plan. A set of viewpoints for the local plan is randomly sampled from
a lattice pattern in the sub-space until adding new viewpoints yields only a marginal
reward in additional sub-space coverage. The sampled viewpoints are then connected
to the intersection points via a TSP solver and the path is smoothed.
TARE was used for exploration in the DARPA SubT Challenge but is, like DSVP,

designed for a speci�c sensor head and SLAM approach which was developed by the
same authors. DSVP and TARE are compared to RNE in Section 8.5.
Kim et al. [15] introduced a large-scale exploration by constructing a global and a

local information road map. The local roadmap consists of uniformly sampled nodes
in a sliding window around the robot. At each node, the traversability information
and the traversability to neighboring nodes are stored. Globally, the robot's former
positions are stored as breadcrumbs. Nodes which are locally sampled near the border
between free and unknown space, are denoted as frontiers. A two-level planner is
deployed. First, it tries to guide the robot globally which is cascaded down to the local
planner that optimizes a receding horizon path randomly sampled through the local
road map.
The approach was also utilized in the DARPA SubT Challenge but is designed for

legged robots and is not openly available at this time for a comparison to the exploration
proposed in this work.

Further Research

An approach to detect candidate viewpoints for exploration was presented in [112]
where point pairs are sampled uniformly. If one point from the pair is in the unknown
space of an OctoMap while the other is in free space, the latter is selected as a possible
viewpoint. For each viewpoint, the information gain is calculated using ray casting in
the OctoMap. Every traversed cell is marked and does not count towards the informa-
tion gain of future ray casts. Viewpoints with an information gain below a threshold
are pruned. A TSP solver is used to �nd the best path connecting all viewpoints where
the cost between them is derived from their Euclidean distance and their respective
information gain. This favors high information gain viewpoints at the start of the path.
All viewpoints' gains are updated and the path is re-calculated after a viewpoint has

2. Related Work 27

been reached by the UAV.
Qin et al. [113] utilize and expand this approach to explore environments with a

heterogeneous robot team of UGV and UAV. The UGV executes a coarser initial
mapping while the UAV is deployed afterwards to increase map details and �ll voids
left by the UGV.
The previously described approaches calculate the next goal for a robot only after

reaching the previous which increases the exploration duration while the robot stands
still during computation.
Pérez-Higueras et al. [114] employ RRT* directly on a voxel-�ltered point cloud

cropped to an area around the robot for path planning and exploration with a UGV.
A sphere is placed at every node and the points and derived surface normals in it
are checked for traversability. For the exploration, all leaf nodes are evaluated by
comparing their cost which is calculated using the number of points in a sphere around
them. Nodes too close to walls and next to already visited nodes are �ltered out from
the evaluation. If no su�cient node is found, the regarded area is increased up to a
user-de�ned threshold.
Pérez-Higueras et al. only calculate traversability and cost in a rather small area

around the robot which makes it prone to getting stuck in a local maximum.
Lindqvist et al. [115] proposed to use RRT* to plan paths for exploration. Multiple

goals are sampled in the FoV of the robot's sensor and RRT* is used to build trajectories
to them in a user-de�ned amount of iterations. Goals for which path planning failed,
are discarded. For feasible goals, a path cost considering the actuation model of the
utilized UAV is calculated. The gain which is derived from the number of unmapped
voxels observable over the interpolated positions in the previously optimized path, also
in�uences the path cost. The best goal is then executed and the process is repeated.
In [8], a consistent PRM is built and gain estimation is based on RH-NBVP. Addi-

tionally, the authors apply increased weights to unknown voxels near surfaces and free
space. Nodes are grouped into subsets by distance from the UAV and nodes with a
gain below a user-de�ned threshold are discarded from the PRM. Di�erent trajectories
are evaluated using the node gains and the predicted execution time while dynamic
obstacles can be avoided by choosing a di�erent, collision-free trajectory. ESDF-based
optimization in a Voxblox map is used to optimize the path with constraints regarding
the distance to obstacles and sensor range. It is also designed solely for UAVs.

2.4.3. Information-Theoretic Exploration

A di�erent approach to determine frontiers and the path from the robot to them was
proposed by Shade and Newman [116]. Their algorithm is based on a discrete equation
of gas �ow from well to drains in a 3D occupancy map. The well is the robot's position
while drains are unknown cells next to free cells in the occupancy map. By solving a
partial di�erential equation, a 3D vector �eld indicates the gas �ow. The maximum
gas �ow in the vector �eld is used to create a path from the robot to the particular
frontier.
In [117], regions to be explored next are discovered based on mutual information with

the assumption that the proposed functions are attracted to unknown space because
it maximizes the mutual information reward. The authors prove their assumption in
[118] and provide an algorithm to calculate the mutual information in a reasonable

2. Related Work 28

time.
Ma�ei et al. [119] introduced an exploration based on potential �elds that lead a robot

towards frontiers and away from obstacles. The �elds are guided by rails constructed
from a Voronoi skeleton of the map. The authors add potential to previously visited
areas which increases over time to encourage loop closures to reduce uncertainty.
In [120], map and path entropy are considered during exploration. The authors

proposed to follow the gradients of potential information �elds on a 2D occupancy grid
to identify the next goal. Pose-based SLAM is used to calculate the entropy for the
map. If the robot starts at uncertain con�gurations, it tries to achieve loop closure to
increase certainty and overall entropy.
Wang et al. [121] introduced exploration based on information potential �elds where

the border to unknown space attracts the robot and obstacles repel it. When the
robot stays too long in the same area, the repulsion for this area grows to eliminate
local minima. The next goal is selected based on proximity to the robot and expected
information gain.
In [122], the authors use an OctoMap for mapping and project its information to a

2D occupancy grid map to calculate the Shannon entropy which is used to guide the
exploration of a UAV.
Pimentel et al. [123] combine an information-theoretic approach with RRT by bi-

asing the RRT's sampling towards areas with higher expected information gain with
a roulette wheel selection. The higher an area's information gain, the more likely a
sample is placed towards it. But there is always a chance for random samples to escape
local minima. These areas are detected by propagating wall segments at frontiers in
an occupancy grid map and calculating the information gain of the propagation. The
�rst frontier to be reached by RRT is the next goal for the robot.
In [124], paths to explore frontiers in an occupancy grid map are evaluated regarding

the expected information gain and the localization and map uncertainty. If the uncer-
tainty is high, the expected information gain is reduced which favors paths through
explored regions to �nd loop closures.
All previous information-theoretic approaches su�er from the same disadvantage as

frontier-based methods. The complete map is evaluated to �nd regions with high
potential which increases the computation signi�cantly while the map grows.
Shen et al. [125, 126] proposed a stochastic di�erential equation to simulate the

expansion of particles in an area. The particles are released from the robot in certain
time intervals and have ideal interactions with obstacles. This results in an equal
distribution of particles over the map except for unexplored areas where no obstacles
stop the particles and they can spread out further. From these increased distances
between particles, exploration goals are calculated and used as navigation goals for the
robot, starting with the closest one. The number of particles is kept within bounds by
weighing and re-sampling them periodically.
This approach is very dependent on the user-de�ned number of particles and the

selection of the closest unexplored area is often inferior to a more sophisticated cost
function as stated in [67].

2. Related Work 29

2.4.4. Learning-Based Exploration

Bai et al. [127] proposed the construction of a learning-based local planner for 2D maps
that is trained with randomly created 2D dungeon maps and a mutual information
optimization algorithm. The planner decides where to go when presented with a locally
extracted occupancy grid map. The training and testing data sets are tested on multiple
award-winning deep NNs from image evaluation contests. Their local planner is still
outperformed by an exhaustive mutual information-based planner but requires far less
computing power. It is also prone to getting stuck in dead ends.
In [128], a Red Green Blue - Depth (RGB-D) camera is used to explore an environ-

ment based on deep reinforcement learning that uses the camera's input and short-term
as well as long-term memory to de�ne the next action.
Chen et al. [129] proposed to utilize NNs that make decisions based on a reward

information gain function. It is derived from the input of an RGB-D camera, a small
detailed extract from the occupancy grid map around the robot and a larger coarse
extract from the grid map. The NN is trained using a data set of human explorations
of houses and re�ned with the reward function afterwards.
A similar approach was introduced in [130] where a NN is trained and used with

the robot's position, an image of a condensed grid map and the positions of clustered
frontier locations. The NN's weight function is trained to obtain as much information
gain as possible early in the exploration.
The authors of [131] train a NN to predict obstacle and free areas on a 2D occupancy

grid map. The prediction is limited to frontier areas and a user-de�ned bounding box.
It is based on algorithms to complete images. Therefore, the occupancy grid area is
converted to an image. The prediction from the NN is used with regular exploration
approaches. Information gain for speci�c frontiers is based on a �ood �ll algorithm to
calculate the size of predicted areas in the map.
Ly and Tsai [132] train a NN to �nd the best goal based on maximizing the infor-

mation gain derived from visible boundaries between known and unknown space. The
NN is trained to �nd global viewpoints that cover as much space as possible without
regarding local path planning.
Reinhart et al. [133] proposed a NN-based exploration planner for underground

tunnels and junctions which decisions are based solely on lidar data as input. It is
trained with data and decisions from explorations using GBPlanner. Compared to the
GBPlanner, the computation is minimal and no global map is stored while the resulting
paths still resemble its model's performance.
Even though the previously presented research is computationally more e�cient com-

pared to the three other categories of exploration, it is very reliant on the training data.
Therefore, it must be speci�cally trained for most surroundings and cannot be utilized
in arbitrary environments. Furthermore, local dead-ends can stop the learning-based
exploration prematurely as it is mostly based on actual sensor data.

2.5. Next-Best View Calculation

Conolly [134] introduced the term Next-Best View (NBV) for sampling viewpoints and
selecting the best one to increase the observed volume of an object. Two algorithms
are presented where the �rst one uniformly samples viewpoints on a sphere around an

2. Related Work 30

object of interest and evaluates them via ray tracing in an octree. The second algorithm
places a viewpoint on a vector from the origin based on the number of unseen faces
for each particular axis. The second algorithm is several magnitudes faster but fails to
cope with self-occlusion.
Strand and Dillmann [135] proposed to build a 3D map for indoor o�ce environments

using a 2D map for exploration and �nding an NBV based on a decision diagram. The
environment is categorized into rooms and �oors where the former are explored in 2D.
If a new room is detected in the 2D grid map, a 3D scan is undertaken to map it.
In [136], the authors utilize ray casting in an OctoMap and the kinematically re-

stricted view space of the sensor to �nd an NBV for the exploration of frontiers and
cavities called voids.
The authors of [137] reconstruct an object with a mobile robot utilizing the di�erent

depths of an OctoMap by applying ray tracing on its coarsest level �rst and increasing
the ray density only for occupied voxels. This saves up to 90% computation time
compared to classical ray tracing. The unknown voxels detected by ray tracing, the
overlapping surface with previous observations and the distance to the current view
are evaluated to select the NBV.
In a subsequent publication [138], they add orthogonality of the view and possi-

ble occlusion to the evaluation. Furthermore, neighboring viewpoints' scores are also
evaluated and taken into consideration to account for positioning errors.
Vasquez-Gomez et al. [139] later adopt a RRT-like method to generate viewpoints

for object reconstruction while the information gain is calculated using ray tracing for
the utilized sensor's FoV. A gain is calculated for each view and the NBV is selected
regarding path length and entropy.
Maurovi¢ et al. [140] introduced a 3D indoor exploration by using 2D exploration

for a ground plan with edges to unexplored territory that are compared and used as
navigation goals. An algorithm detects single rooms which are then explored in 3D with
a tilting laser scanner. The NBV is evaluated similarly by using planes to unexplored
space. After mapping a room, the 2D exploration continues. The evaluation is based
on the observable unknown areas at candidate positions.
In [141], NBVs are computed with ray tracing using Markov chains to model state

transitions between free, occupied and unknown cells in the occupancy grid map.
Daudelin and Campbell [142] proposed to reconstruct objects with a mobile robot by

�nding an NBV without a limiting bounding box or prior knowledge of the object and
its size. The information gain of sampled viewpoints is calculated using ray tracing
in an OctoMap. Ray tracing is performed all around the viewpoint to evaluate the
information gain for all possible orientations of the robot.
The research on determining NBVs for object reconstruction and inspection is closely

related to the gain calculation deployed in most of the exploration approaches presented
in the previous sections.

2.6. Conclusion

This chapter introduces ROS as the robotics framework designated for the development
and research presented in this work. Related work about existing state machines and
behavior trees for ROS lead to the decision to design and develop a novel state machine.

2. Related Work 31

It is tailored for this work's research and the UNDROMEDA project. This state
machine is presented in Chapter 4.
Based on the research regarding path-planning and autonomous exploration pre-

sented in this chapter, a novel approach named RNE is developed in this work. Its
goal is to enable 3D exploration on a large scale. Therefore, a sampling-based ap-
proach is utilized because frontier- and information-based explorations' computational
load increases more signi�cantly with map size.
RNE utilizes the advantages of a persistent RRT compared to a costly rebuilding of

a sampling-based structure proposed by Bircher et al. [6]. A computation-e�cient gain
calculation is added, inspired by the works of Selin et al. [7] and Oleynikova et al. [87].
This is shown in Chapter 5.
The �ndings of Karaman and Frazzoli [17] inspire the switch from RRT to RRG

in Chapter 6. This is intended to improve the path planning for the robot. Also,
the works of Brock and Kavraki [54] and Rickert et al. [55] are the foundation for
the topology-based NAI proposed in Chapter 7. The movement of node centers further
away from obstacles reduces the risk for the robot and increases the observable volume.
Furthermore, the distinction between a global and a local exploration including a

TSP solver for the global part is introduced in Chapter 8. It is based on [7, 9, 12,
14, 18, 19, 20] and the success of some of these hybrid exploration approaches in the
DARPA SubT Challenge.
The proposed approach's goal is to be suitable for di�erent UGVs using a variety

of sensor con�gurations. All of the previously introduced exploration approaches are
either limited to UAVs or legged robots, require a speci�c sensor or SLAM solution or
are not openly available for replication and usage.

32

3. Mathematical Foundations

In this chapter, mathematical foundations and notations for the approach proposed in
this work are presented. First, the foundations for the sampling-based path planning
algorithms RRT, RRG and PRM are shown. These are utilized for the proposed
exploration approach which is presented in Chapters 5 and 6.
Furthermore, Dijkstra's algorithm and k-d trees are explained which are utilized

by RNE. Then, details about Simultaneous Localization and Mapping (SLAM) are
described as it is required to allow autonomous exploration.
The exploration of unknown environments, the term Next-Best View (NBV) and

three di�erent map representations are detailed afterwards. These are based on octrees
or signed distance functions. The former is utilized in this work and related work while
the latter is used by several state-of-the-art approaches.
Finally, a method to �nd the shortest path through all nodes in a graph is presented.

This is relevant for the hybrid exploration approach shown in RNE's fourth iteration
in Chapter 8.

3.1. Sampling-Based Algorithms

This section introduces several sampling-based algorithms that are relevant to the
proposed work or to related work that is compared to RNE. These sampling-based
algorithms were introduced for robotic path planning and became popular in robotic
exploration frameworks as well [6, 8, 9, 10, 18]. To understand the mode of operation of
RRT and RRG, the principle of Voronoi decomposition is especially relevant. Therefore,
it is described �rst, followed by RRT, RRG and PRM. Then, Dijkstra's algorithm
is explained which is used to �nd the shortest paths in graphs and can be applied
to RRG and PRM. Finally, k-d trees are described which can be used for e�ective
nearest-neighbor searches.

3.1.1. Voronoi Decomposition

The Voronoi decomposition or Voronoi diagram is named after the Russian mathemati-
cian Georgy Voronoy and describes the partition of space into Voronoi regions based on
the distribution of centers. For every point in space, the nearest center is determined.
This means, for all points in a region, the region center is the closest center in space.
In this work, the Euclidean distance D, which is shown in Equation (3.1) between the
points p and q in n dimensions, is utilized as a distance metric.
Figure 3.1 shows an exemplary Voronoi decomposition in two-dimensional space

using the Euclidean distance from Equation (3.2) to divide the areas into the di�erent
Voronoi regions. The diagram shows that centers near the edge of the depicted space
have regions that expand up to the edge and if the space would be expanded, even
further. This �nding is crucial for understanding RRTs that are introduced next.

3. Mathematical Foundations 33

Fig. 3.1.: Exemplary Voronoi decomposition with di�erently colored Euclidean distance Voronoi re-
gions where each center is represented as a black dot.

D (p,q) =

√√√√ n∑
i=1

(pi − qi)
2 (3.1)

D (p,q) =

√
(xp − xq)2 + (yp − yq)2 (3.2)

3.1.2. Rapidly-Exploring Random Tree

The Rapidly-exploring Random Tree (RRT) was introduced by Steven LaValle [50]
in 1998 and further researched together with James Ku�ner [52]. It is a simple, yet
e�ective tool to rapidly explore space which is mostly deployed for path planning.
LaValle and Ku�ner use it for planning paths in high-dimensional space for robots with
up to 12 DoFs while considering kinematic constraints and keeping a safe distance from
obstacles.
The path planning problem in the con�guration space C is generally described as

�nding a path from the starting position pinit to the goal region Cgoal ⊂ C which are
connected and lie entirely in the free space Cfree ⊂ C. C is the union of free and
obstacle space C = Cfree ∪ Cobs where the latter has to be avoided.
For higher-dimensional problems, RRT is deployed in the state space where each

node corresponds to a certain con�guration that can be translated to the metric space.
For this work, only the 2D and 3D metric spaces are relevant. Therefore, details about
solving higher-dimensional problems are omitted here for brevity and can be found in
[52].
Algorithm 3.1 shows the construction of an RRT with k iterations, starting at posi-

tion pinit ∈ Cfree . First, the tree T = (N,E) is initialized with pinit in the set of nodes
N and an empty set of edges E.

3. Mathematical Foundations 34

Algorithm 3.1: RRT - Construction of a Rapidly-exploring Random Tree
Input: pinit

1: N ← {pinit}
2: E ← ∅
3: for ki ← 1 to k do
4: prand ←randomSample()
5: pnear ← nearestNeighbor(prand , N)
6: pnew ←steer(pnear ,prand)
7: if collisionFree(pnew ,pnear) then
8: N ← N ∪ pnew

9: E ← E ∪ (pnew ,pnear)
10: end if

11: end for

12: return T ..= (N,E)

During each iteration, a random sample prand ∈ C is generated for which the nearest
neighbor in N is searched afterwards using a distance metric, e.g., the Euclidean dis-
tance D from Equation (3.2). Then, an input is derived from the set of possible actions
for the robot de�ned by its movement constraints and possible obstacles blocking the
path.
This input can be described as a function that takes pnear and moves towards prand for

a speci�c time. A simple function is moving in a straight path but functions resulting
in curved paths are also possible. With this function, a new node pnew is created at
the calculated position. This can be seen in Figure 3.2 and is executed by the steer
method.
In the remainder of this work, the input function always moves the robot in a straight

line. New nodes pnew resulting from the input function must have a minimum distance
to pnear of dmin and a maximum distance to pnear of dmax .
Afterwards, the collisionFree method is used to check if pnew and pnear can be

connected with a new edge or if an obstacle blocks the way. If there is no collision,
pnew and the new edge are added to the tree.

Fig. 3.2.: Three di�erent scenarios for the input function are shown above. It is also referenced as the
steer function and describes a simple straight path with a minimum and maximum distance. On the
left, prand is sampled and the nearest node pnear in the existing tree is used to determine the position
of pnew which is added to the tree. In the middle, prand is sampled close enough to pnear , so that
the input function can reach it. This results in placing pnew at prand . On the right, an obstacle is
between prand and pnear which results in a failed collisionFree method and a failure to add pnew

to the tree.

3. Mathematical Foundations 35

Fig. 3.3.: Three growing stages of RRT in 2D space with a simple steer input function that always
moves 1 m in a straight line. The number of iterations k is listed above each stage.

Due to connecting pnew to pnear in T , RRT is more likely to expand outwards instead
of increasing the number of nodes in central regions. This is caused by the Voronoi
regions shown in Section 3.1.1. The outermost nodes in T have the largest Voronoi
regions and are therefore more likely to be selected as pnear than other nodes. Because
of this, RRT expands more rapidly than other methods which randomly select existing
nodes and increment the tree from them [50]. Figure 3.3 demonstrates the growth of
RRT in 2D space where the steer input function moves in a straight line.
Karaman and Frazzoli [17] analyzed and compared multiple random-sampling algo-

rithms for �nding optimal solutions in path planning and proposed additions to existing
algorithms to increase their chance of achieving the optimal solution.
They state that RRT is probabilistically complete which means that if the iterations

k go to in�nity and a path exists between pinit and Cgoal , it is found. Equation (3.3)
shows the probability P that a solution is found approaches 1 exponentially because
one of the nodes in the tree Nk after k iterations lies inside the goal area Cgoal . a and
k0 are constants.

P ({Nk ∩ Cgoal 6= ∅}) > 1− e−ak, k > k0 ∈ N, a > 0 (3.3)

Karaman and Frazzoli also establish that RRT is not asymptotically optimal. This
means that even if the number of iterations k approaches in�nity, RRT does not �nd
the optimal solution.
Therefore, they proposed asymptotically optimal RRT* in which a new node is con-

nected to the neighboring node with the lowest cost path and not the nearest neigh-
boring node. This can cause further rewiring of the tree to optimize each node's path.
Various further extensions and improvements to the RRT-algorithm are introduced

in Section 2.3. Details about their implementation and mathematical background are
referred to the respective publications.

3.1.3. Rapidly-Exploring Random Graph

Based on RRT, Karaman and Frazzoli introduced the Rapidly-exploring Random
Graph (RRG) [17]. Instead of building a tree by connecting new nodes only to the
nearest existing node, a new node is connected to all existing nodes within a sphere
with a speci�ed radius around its position.

3. Mathematical Foundations 36

Algorithm 3.2: RRG - Construction of a Rapidly-exploring Random Graph
Input: pinit

1: N ← {pinit}
2: E ← ∅
3: for ki ← 1 to k do
4: prand ←randomSample()
5: pnear ← nearestNeighbor(prand , N)
6: pnew ←steer(pnear ,prand)
7: if collisionFree(pnew ,pnear) then
8: N ← N ∪ pnew

9: E ← E ∪ (pnew ,pnear)
10: Pradius ←nodesInRadius(pnew , N, r)
11: for each pradius ∈ Pradius do

12: if collisionFree(pnew ,pradius) then
13: E ← E ∪ (pnew ,pradius)
14: end if

15: end for

16: end if

17: end for

18: return G ..= (N,E)

Algorithm 3.2 shows the construction of RRG. Similar to RRT, the graph G = (N,E)
is initialized with a node at position pinit and an empty set of edges E.
In each of the k iterations, a random sample prand is placed and the nearest neighbor

node pnear is determined. If the space between pnear and the steer function's position
pnew is collision-free, the new node and edge are added to the graph. In addition, all
nodes within a radius r around pnew , which are connectable using the input function,
are stored in Pradius . For each of them, it is checked if an edge between them and pnew

is without collision. If it is, the particular edge is added to E as well.
This creates an undirected graph where the cost of a path is derived from the set of

edges E connecting pinit and Cgoal with the minimum cost. Such a path can be found
using Dijkstra's algorithm which is presented in Section 3.1.5. RRG is also asymp-
totically optimal like RRT* [17]. But it has the disadvantage of requiring additional
memory space to store all additional edges compared to an RRT.

3.1.4. Probabilistic Roadmaps

Probabilistic Roadmaps (PRM) were proposed by Kavraki et al. in 1996 [48] and consist
of a two-phase path planner. In the �rst phase, which is called the learning phase, the
space is explored and a forest is built which optimally grows into a tree. The second
phase, which is called the query phase, uses the tree to solve arbitrary start and goal
queries in the explored space.
In a second publication, Kavraki et al. [49] introduced sPRM which removes a heuris-

tic to increase sampling near obstacles and allows to connect a new node with all nodes
in a radius around it, therefore creating a random geometric graph instead of a forest
or tree.

3. Mathematical Foundations 37

Algorithm 3.3: sPRM - Construction of simpli�ed Probabilistic Roadmaps

1: N ← ∅
2: E ← ∅
3: for ki ← 1 to k do
4: pnew ←randomSample()
5: Pradius ←nodesInRadius(pnew , N, r)
6: for each pradius ∈ Pradius do

7: if collisionFree(pnew ,pradius) then
8: E ← E ∪ (pnew ,pradius)
9: end if

10: end for

11: N ← N ∪ pnew

12: end for

13: return G ..= (N,E)

The PRM is, similar to RRT, designed for solving path planning in a robot's con-
�guration space with higher dimensions but can also be applied to the metric space in
2D and 3D. In this work, only the metric space is relevant. The path planning problem
must be solved in space C = Cfree ∪Cobs which can be divided into free space Cfree and
obstacle regions Cobs .
sPRM's learning phase is shown in Algorithm 3.3. The graph G = (N,E) is initialized

with an empty set of nodes N and edges E. In each of the k iterations, a random
sample pnew is placed in Cfree and is connected to all nearby nodes Pradius for which a
collision-free edge can be placed. All edges and the random sample are added to G.
The query phase inserts pstart and pgoal and tries to connect them to nearby nodes in

N . If the connection is successful and there exists a path from pstart to pgoal through G,
the path planning is successful. Otherwise, the learning phase requires more iterations
to explore the space and connect all sub-graphs with each other. To �nd the shortest
path in G, Dijkstra's algorithm can be used.
While both PRM and sPRM are probabilistically complete, the former is not asymp-

totically optimal. This means, it does not converge to an optimal solution if the sample
size approaches in�nity [17].
The proposed sPRM has the disadvantage of an increasing time complexity when

adding new nodes to the steadily growing graph G. Therefore, a nearest neighbors
method was proposed by Kavraki et al. [49] which only allows to connect a new node
to a user-de�ned number of nearby nodes. This removes the growing time complexity
but also the asymptotic optimality [17].
Karaman and Frazzoli [17] proposed PRM* which combines the advantages of PRM

and sPRM. It is asymptotically optimal and has a constant time complexity. This is
achieved by replacing the static radius r for connecting nearby nodes with a function
that decreases while the sample size increases.

3.1.5. Dijkstra's Algorithm

Edsger Dijkstra published his algorithm in 1959 [143] which �nds the shortest path
between two nodes in a graph without negative edge weights. The algorithm can also
produce a shortest-path tree which is a spanning tree in a graph that features all

3. Mathematical Foundations 38

Algorithm 3.4: Construction of a shortest-path tree using Dijkstra's algorithm
Input: G, ninit

1: Q← ∅
2: for each n ∈ N do

3: cn ←∞
4: pn ← ∅
5: Q← Q ∪ n
6: end for

7: cninit ← 0
8: while Q 6= ∅ do
9: nnext ← n for n ∈ Q with min cn
10: Q← Q \ nnext

11: for each neighbor nnb of nnext still in Q do

12: cnew ← cnnext + c(nnext , nnb)
13: if cnew < cnnb

then

14: cnnb
← cnew

15: Pnnb
← nnext

16: end if

17: end for

18: end while

19: return C ..= {c0, c1, ..., cn}, P ..= {p0, p1, ..., pn}

shortest paths from a root node to every other node in the graph. For the �rst variant,
the algorithm is stopped as soon as the shortest path to the desired second node is
found.
The Algorithm 3.4 requires a graph G = (N,E) with nodes N and edges E as well as

a starting node ninit as input. Each edge has a designated cost c(ni, nj) which describes
the cost of moving from node ni to node nj. To initialize the search for shortest paths,
all nodes n ∈ N in the graph are associated with a cost cn ∈ C of in�nity and no
parent node pn ∈ P . Afterwards, they are added to the queue Q and the cost for ninit

is set to 0.
While Q is not empty, the node nnext with the lowest cost is selected and removed

from it. For each of its neighbors, a new cost cnew is calculated that consists of the
cost of nnext and the cost of the edge between it and the neighboring node nnb . If cnew

is lower than nnb 's current cost cnnb
∈ C, it is replaced and nnext becomes nnb 's parent.

Figure 3.4 shows the exploration of a small exemplary graph using Dijkstra's algo-
rithm starting at node A. Because a queue is employed which is ordered by the nodes'
cost, the shortest path for a particular node is known as soon as it is removed from
Q. Therefore, the algorithm can be used to �nd the shortest path between ninit and
a goal node ngoal by �nishing when ngoal is removed from Q. To get the shortest-path
tree, the algorithm continues until Q is empty.

3.1.6. k-d Tree

The k-d tree was introduced by Jon Louis Bentley [144] as a multidimensional binary
search tree where k stands for the dimensionality. It is utilized in this work for e�cient
nearest-neighbor and radius searches in a graph as required by the RRT, RRG and

3. Mathematical Foundations 39

Fig. 3.4.: The application of Dijkstra's algorithm on an exemplary graph with �ve nodes and starting
node A is shown in steps 1 to 6. The numbers inside parentheses in the nodes and the numbers on
the edges show their respective cost. Nodes and edges are marked bold if they are currently updated
and turn dark gray after being updated.
The �rst step shows the initial graph with all nodes initialized with a cost of in�nity and the starting
node A with a cost of 0. In the second, third and fourth steps, the neighbors of A, which are B, C
and D, are updated with the respective edge costs. Step 5 shows the improvement of the cost of node
D from node C. In step 6, node E is updated from node B. Updates from nodes D and E are omitted
in this �gure because they do not change the graph.

PRM algorithms. The k-d tree stores points in space by partitioning the space with
hyperplanes. Derived from these partitions, the points are separated into the di�erent
binary branches of the tree.
To construct a k-d tree for n points in k dimensions, the median point regarding the

�rst dimension is selected and it is split orthogonally to the point by a hyperplane in
this dimension. This point is the �rst node and becomes the root of the tree. For all
points on one side of the hyperplane, the median in the second dimension is selected
and another hyperplane is constructed which is orthogonal to the second dimension at
this point. The same is applied to the points on the other side of the �rst hyperplane.
The points are then added below the root node. This process is repeated as long as
there are multiple nodes on one side of the hyperplane. If only one point remains, it
becomes a leaf node. While iterating through the points, the dimension orthogonally
split by a hyperplane changes every iteration. If the highest dimension k was split in
the previous iteration, the �rst dimension is split next. Figure 3.5 shows the partition
of space and the corresponding constructed k-d tree for an example in two dimensions.
When inserting or removing elements from the k-d tree, re-organization or re-balanc-

ing of a�ected branches of the tree can be necessary to maintain the tree's performance
for nearest-neighbor and radius searches.

3. Mathematical Foundations 40

Fig. 3.5.: A 2D space partitioned by a k-d tree's points on the left and the corresponding k-d tree
on the right. Splits on the x-axis are highlighted in blue and splits on the y-axis in red. The points'
positions are marked with black dots on the left and correspond with the nodes' coordinates on the
right.

3.2. SLAM

To explore an area and plan paths to desired positions, it is necessary to precisely
localize the robot and construct a map, which is a representation of the world around it,
using the robot's sensors. But to derive an exact location of the robot, a map is required
with which the sensor measurements are aligned and to build a map, measurements
must be integrated from a known position of the robot.
This problem was termed Simultaneous Localization and Mapping (SLAM) by Hugh

Durrant-Whyte and Tim Bailey [145] but it has been researched before. In the follow-
ing, three approaches to solve SLAM are explained. The descriptions, �gures and
equations only show the 2D case for simplicity. These are based on Extended Kalman
Filters (EKFs), particle �lters and graphs. The �rst approach is chosen to generally
explain the SLAM method while the second and third are used in this work or relevant
related work.

3.2.1. Extended Kalman-Filter SLAM

EKF SLAM is an online SLAM approach which means that it calculates the possibility
P for the robot's pose xt and the map m using only currently available measurements
z1:t and odometry u1:t as can be seen in Equation 3.4 and Figure 3.6.

P (xt ,m|z1:t, u1:t) (3.4)

The measurements in this context are unique landmarks in the map. Normally, for
each measurement, a match between it and each particular landmark must be calculated

3. Mathematical Foundations 41

Fig. 3.6.: Calculation of the next robot pose xt+1 and map m from odometry ut and sensor measure-
ments zt for online SLAM.

�rst to �nd the matching landmark. To simplify the process here, the correspondence
of measurement and landmark is assumed known and therefore allows a distinct match.
The state vector µ consists of the mean values of the Gaussian distribution for the

robot's pose xt = (x, y, θ)T , the landmarks' positions and their signatures. The state
vector µ has a size of 3 · (i+ 1) where i is the number of landmarks. The matrix Σ
includes the covariance of these distributions.
Algorithm 3.5 begins by estimating the new mean value for the robot's pose µ̄t using

the function G with the current odometry ut and its previous pose xt−1. The estimated
covariance Σ̄t is calculated using the Jacobian matrix J of function G combined with
the previous covariance Σt−1 and the covariance of the odometry measurement Rt.
The mean values and covariance of the landmarks remain unchanged during these
calculations.
In the next step, the sensor measurements zit are used to build the Kalman matrix

Ki
t for each landmark. If a measurement includes a previously unobserved landmark,

its position is derived from the measurement and added to µ̄t . ẑit is the estimation for
the particular landmark and Hi

t the corresponding Jacobian matrix. The calculations
of Ki

t and ẑ
i
t are omitted for brevity.

µt and Σt are calculated based on the odometry and predictions for the new robot
pose and corrected using the sensor's measurements. Because the Kalman matrix is

Algorithm 3.5: Extended Kalman Filter Simultaneous Localization and Mapping
Input: µt−1,Σt−1, ut , zt

1: µ̄t ← µt−1 +G(ut , xt−1)
2: Σ̄t ← JtΣt−1J

T
t + Rt

3: µt ← µ̄t +
∑

i Ki
t(z

i
t − ẑit)

4: Σt ← (I −
∑

i Ki
tH

i
t)Σ̄t

5: return µt ,Σt

3. Mathematical Foundations 42

Fig. 3.7.: A simpli�ed particle �lter SLAM iteration is shown in three steps from left to right. The gray
circle is the robot's position and the yellow star a landmark that can be observed by measurements.
The uncertainty is shown as a red circle surrounding it. The red oval shows the probability distribution
of the odometry.
After the robot moved in step two, multiple particles are sampled depicted as circles with numbers 1
to 4. The sensor measurement is applied to each particle and the derived landmark positions shown
as small yellow stars are compared with the expected position. Step three shows, that particle 2 is
chosen as the new robot position because of its measurement's correlation with the expected landmark
position which is larger than the others.

densely populated, the observation of new landmarks leads to an improved position
estimation of the robot and all other landmarks [146].

3.2.2. Particle Filter SLAM

Particle �lters, which are also known as sequential Monte Carlo methods, can be em-
ployed for SLAM. They randomly sample particles and then evaluate each particle's
probability. Every particle represents a possible robot trajectory and a corresponding
map. Particles that seem unlikely to represent the real state of the robot are �ltered
out and discarded. Figure 3.7 depicts this process.
In the following, an exemplary particle �lter using Rao-Blackwell's method is de-

scribed. It was introduced by Giorgio Grisetti, Cyrill Stachniss and Wolfram Burgard
[29, 30] as GMapping and is available as a ROS package, which is used for testing the
exploration approach proposed in this work.
The probability for a possible robot trajectory x1:t and the corresponding map m is

based on its sensor z1:t and odometry measurements u0:t as can be seen in Equation
(3.5).

P (x1:t,m|z1:t, u0:t) = P (m|x1:t, z1:t)P (x1:t|z1:t, u0:t) (3.5)

A user-de�ned number of particles is sampled from the probability distribution of
the odometry and they are used to build a procedural path and map for each particle.
The following steps are repeated for this procedure [29]:

1. A new set of particlesXt = {x0t , x1t , ..., xit}, i ∈ N0 is sampled from the distribution
function π(xt |z1:t, u0:t) using the current set of particles Xt−1.

2. A weight wi is assigned to each particle depending on the distribution function

3. Mathematical Foundations 43

π. Equation (3.6) shows how the weights are calculated.

w(i) =
P (xit |z1:t, u0:t)
π(xit |z1:t, u0:t)

(3.6)

3. Particles with a lower weight are discarded in favor of particles with a higher
weight. This maintains the limited total number of particles. Low-weight particles
can be seen as unlikely states based on the odometry and sensor measurements.

4. A map is calculated for every particle xit based on the robot trajectory and the
measurements incorporated in this particle P (mi

t |xi1:t, z1:t).

Grisetti et al. [30] formulated several improvements to the previously described al-
gorithm. To prevent recalculating new particle weights in each iteration, a method to
derive them from the last iteration is introduced. Furthermore, resampling particles is
not executed every iteration but only when the criteria formulated in Equation (3.7)
is met.

neff =
1∑n

i=1 (wi)2
(3.7)

The variance of particle weights neff is used to determine the degradation of the
current particles' probabilities and is derived from the normalized weight of all n par-
ticles. If neff falls below a certain threshold, the particles are resampled. The authors
mention that when the robot enters known areas which is called a loop closure, neff

drops signi�cantly and causes a resampling because some particles are validated while
others fail [30].
A further improvement is deriving the sampling area from a distribution function

based on matching sensor measurements. Using a lidar is more precise than odometry.
If the scan matching does not yield viable results, the odometry is used as a fallback
option [30].

3.2.3. Graph-Based SLAM

Graph-based SLAM builds a global graph from the robot's positions, its odometry and
sensor measurements. The graph's nodes show a discrete history of the robot's positions
and edges represent odometry and sensor measurements connecting them. This is
shown in Figure 3.8. The robot's position is stored as a node after traveling a certain
distance or time. Because of imprecise measurements, edges should be represented
with a probability for each connection to other nodes. To simplify the process, only
the most probable connection is chosen. Constructing the nodes and edges is done by
the frontend of graph-based SLAM.
This simpli�cation causes deviations and errors in the graph resulting in a sub-

optimal map. A backend is introduced which tries to optimize the graph created by
the frontend. It compares the robot's position with the Gaussian distribution based
on odometry and sensor measurements and tries to �nd the best match regarding
the graph. This maximization problem is solved using Gauss-Newton on the sparse
matrix derived from the graph. It is sparse because nodes are mostly connected with
consecutive nodes and seldom with other nodes through loop closures [147].

3. Mathematical Foundations 44

Fig. 3.8.: A graph which stores the robot positions x0 to xt is shown. The directed edges repre-
sent odometry measurements between two particular positions while undirected edges show sensor
measurements indicating loop closures.

3.3. Exploration of Unknown Environments

To explore an unknown environment with a mobile robot, it must be categorized into
distinct fractions which are introduced �rst. This is followed by a strategy to explore
this environment and map representations utilized in this and related work which are
able to store and query details of the environment.

3.3.1. Classi�cation of the Exploration Space

Autonomous exploration in 3D is intended to map a volume V which is partitioned
into unknown Vun , free Vfree and occupied Voc space as can be seen in Equation (3.8).
A robot is utilized to classify the initially unknown environment.

V = Vun ∪ Vfree ∪ Voc ∈ R3 (3.8)
Vex = V \ Vnx (3.9)

The explorable space Vex is restricted by the robot's capabilities as well as occlu-
sions caused by obstacles and the environment's topology as shown in Equation (3.9).
The non-explorable space Vnx is de�ned by these occlusions, topology and the robot's
inability to reach certain areas of space, e.g., UGVs versus UAVs or the robot's size.

3.3.2. Next-Best Views

The robot commonly has a limited movement and sensor range to observe the envi-
ronment which necessitates an e�cient strategy to classify Vex . Connolly introduced

3. Mathematical Foundations 45

the term Next-Best View in 1985 [134] to describe the process of sampling multiple
viewpoints and selecting the best one regarding the maximization of an object's ob-
served volume. In this work, the term NBV is used to describe the next selected robot
position to maximize an exploration metric.
To compare di�erent viewpoints, their gain and cost are calculated and compared to

decide which viewpoint is the NBV. Di�erent metrics can be employed to derive gain
and cost functions in 2D and 3D environments. These metrics are addressed as the
reward function in the remainder of this work.
The gain can be calculated by ray tracing from the sampled viewpoints to calculate an

estimated gain which is equal to the expected amount of observed, previously unknown
space from the particular viewpoint as proposed by Connolly. Another metric is the
identi�cation of frontiers and their size. Frontiers are the borders between known and
unknown space in occupancy grid maps and were introduced by Yamauchi [63].
Cost metrics often depend on the distance from the robot to the viewpoint [6], the

time to travel to the viewpoint, the deviation from a straight path and the safety or
traversability of the path to the viewpoint [105].

3.3.3. OctoMap

The OctoMap was introduced by Hornung et al. in 2013 [32] and is a tool to e�ciently
store and query 3D occupancy grid maps. It is based on octrees which are a tree
structure where each node has exactly eight children. Starting at the root node, which
is a voxel that encompasses the complete space, every child node has eight children
that represent an octant of the parent's space. The leaf nodes have an edge length that
equals the resolution of the OctoMap. Every leaf node is classi�ed as occupied, free or
unknown by a probability estimation based on sensor measurements. This structure
can be seen in Figure 3.9
The leaf nodes store a probability value which classi�es them as free or occupied

depending on user-de�ned thresholds. The probability P for a node n is calculated
using a binary Bayes �lter which integrates previous measurements z1:t−1 and the new
measurement zt which can be seen in Equation (3.10). The probability changes when

Fig. 3.9.: A volumetric octree model is shown on the left and the corresponding octree structure on
the right. The black cube represents occupied space and shaded gray cubes indicate free space. These
are shaded in di�erent scales based on the particular node's level in the octree. The higher the level,
the darker the shade. White leaf nodes and the corresponding space are unknown.

3. Mathematical Foundations 46

sensor measurements are integrated as shown in Equation (3.11) which employs an
e�cient log-odds notation. Using ray tracing, all nodes between the sensor's position
and a measured obstacle have their probability to be occupied reduced while the node
at the end of the ray has it increased. Multiple measurements decrease the uncertainty
which allows pruning of leaf nodes if all eight children of one node have the same
classi�cation [32].

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1

(3.10)

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (3.11)

The OctoMap also allows e�ective queries for positions and rays which make it the
mapping tool of choice for multiple exploration approaches that were discussed in the
previous chapter [6, 7, 10, 18] and for this work as well.

3.3.4. TSDF and ESDF Mapping

Approaches to represent the mapped space, that recently became popular, are Trun-
cated Signed Distance Fields (TSDF) and Euclidean Signed Distance Fields (ESDF)
maps. They are based on signed distance functions which determine the metric dis-
tance of an arbitrary point in space to a boundary. Curless and Levoy [148] proposed
to reconstruct the surface of an object from sensor measurements using signed distance
functions.
Oleynikova et al. [149] introduced Voxblox in 2017 which builds a TSDF and derives

an ESDF from it. It is utilized in several state-of-the-art approaches discussed in the
previous chapter [8, 9, 105] and is detailed in the following.
First, a TSDF is stored as a voxel grid with a prede�ned edge length v and is

constructed using sensor measurements. For each point in the sensor measurement,
a ray is cast from the sensor to the observed obstacle. All voxels on the ray with a
distance below the truncation distance δ to this obstacle are updated. This includes
voxels in front of and behind the detected obstacle.
The distance value assigned to each voxel describes the distance from the particular

voxel center to the nearest detected obstacle inside the truncation range. Above this
range the distance value equals zero. Distance values are positive if the voxel center
is closer to the sensor than the obstacle for the respective measurement. A negative
distance value shows that the voxel center is occluded by the obstacle. An exemplary
2D TSDF map can be seen in Figure 3.10a.
Each voxel stores a distance and a weight value where the distance value is a com-

bination of all weighted distance measurements incorporated in the particular voxel.
The weight is determined by the distances of previous measurements from the sensor to
the obstacle. The further away the object is, the lower the weight of a particular mea-
surement which represents the increasing inaccuracy for longer ranges. The weighting
is required to average all measurements that fall into a certain voxel and increase the
reliability of the representation [149].
TSDF can be utilized to create a 3D mesh with sub-voxel accuracy for visualiza-

tion purposes using the voxels' distance values in a marching cubes algorithm [148].
Furthermore, an ESDF map is created from the TSDF map. The ESDF map stores

3. Mathematical Foundations 47

0.0

0.0

0.0

0.0

0.0

1.33

1.46

1.59

1.88

0.0

0.34

0.47

0.60

1.15

0.0

-0.66

-0.52

-0.22

0.63

1.48

-1.65

-1.52

-0.75

0.10

0.95

0.0

0.0

-1.28

-0.43

0.42

(a) TSDF

2.32

2.45

2.58

2.78

3.27

1.33

1.46

1.59

1.88

2.55

0.34

0.47

0.60

1.15

2.00

-0.66

-0.52

-0.22

0.63

1.48

-1.65

-1.52

-0.75

0.10

0.95

-2.64

-2.13

-1.28

-0.43

0.42

(b) ESDF

Fig. 3.10.: In (a), a 2D TSDF grid map can be seen after several measurements with a distance sensor.
The map has 1 m cell edge length and a truncation distance δ = 2 m. The bold black lines show an
obstacle and the numbers in each cell the distance from the respective grid cell's center to the nearest
observed obstacle. Negative values indicate that the cell's center is behind the obstacle. Gray cells
with a distance of 0 m are truncated cells. (b) shows the same map as an ESDF grid map which has
no truncation distance.

distance values similar to the TSDF map but without a truncation distance. A distance
to the nearest obstacle is known at every initialized voxel in the map. This di�erence
is visualized in Figure 3.10b.
Voxblox adapts an algorithm introduced by Lau et al. [150] to e�ciently update

the ESDF map when obstacles are inserted or removed. Two di�erent wavefront ex-
pansions are employed, one to raise and one to lower the distances in the cells. The
former is called when an obstacle is removed and the distances in surrounding voxels
must be invalidated and the latter when an obstacle is added and distances must be
reduced. The wavefront expansions are stopped once they reach cells that are closer to
another obstacle. After a raise wavefront, a lower wavefront is applied to all previously
invalidated voxels and sets their distances to the new nearest obstacle [149].

3.4. Shortest Possible Route through a Graph

The partition of exploration approaches into local and global became popular in more
recent work [9, 12, 14, 19, 20]. It often introduces a global graph connecting places
that have not been explored but should be visited. This requires a method to �nd
the most e�cient way to visit all of the global nodes which is known as the Travelling
Salesman Problem (TSP).
It describes �nding the shortest route through a weighted, undirected graph that

visits all of the graph's nodes exactly once and begins and starts at the same node.
The term TSP was introduced by Julia Robinson in 1949 [151] but the problem has
been researched even earlier. It is proven to be an NP-hard problem and therefore,
multiple heuristics were proposed to deliver a good result in a feasible time compared
to a brute-force approach. Heuristics are separated into tour construction and tour
optimization. Held and Karp [152] formulated a lower bound which is often used to
compare the heuristic's results for TSP. A selection of heuristics is described below with
a focus on the complexity and Held-Karp lower bound, followed by several variations
of TSP relevant to this work.

3. Mathematical Foundations 48

3.4.1. Tour Construction

Tour construction heuristics are employed to �nd an initial, viable path through all
nodes n and stop afterwards without trying to further improve the path. These heuris-
tics include a nearest neighbor search where the nearest unvisited node is selected for
each node as the next node in the path. This yields a complexity of O(n2) while being
within 25% of the Held-Karp lower bound. Another one is the greedy heuristic which
sorts all edges by length and adds them to the tour in this order with a complexity
of O(n2 log2(n)). It is within 15% to 20% of the Held-Karp lower bound. There are
insertion heuristics that start with a subset of nodes and insert new nodes similar to
the previous two algorithms which result in the same complexities.
The Christo�des-Serdyukov algorithm has a complexity of O(n3) but comes within

10% of the Held-Karp lower bound by using a minimal spanning tree and minimum-
weight perfect matching to build an Eulerian circuit. This is a path through a graph
that traverses each edge only once and starts and ends at the same node. From this
Eulerian circuit, a Hamiltonian circuit is constructed which resembles a path formulated
with TSP [153].

3.4.2. Tour Optimization

Once an initial path is found, it can be optimized using one of the following heuristics.
A simple approach is 2-opt as introduced by Croes [154] which iterates over all nodes in
the path, selects two of them and reverses the order of nodes and edges in between. If
the new order reduces the path length, the algorithm continues. If a complete iteration
through all nodes does not yield any optimization, 2-opt is �nished. Figure 3.11 shows
an exemplary 2-opt swap removing a path crossing itself. 2-opt has a complexity of
O(n2) and comes within 5% of the Held-Karp lower bound [153].
3-opt is another heuristic that functions similarly to 2-opt but it takes three nodes

and tries all possible combinations to reconnect them with each other. This leads to a
complexity of O(n3) and a result within 3% of the Held-Karp lower bound [153].
This can be extended to k-opt where k is an arbitrary number. Furthermore,

the number of nodes to swap can be dynamically adjusted as proposed by Lin and
Kernighan [155]. At each iteration, the Lin-Kernighan algorithm decides which num-
ber is most bene�cial. This brings it within 2% of the Held-Karp lower bound with a
complexity of O(n2.2) [153].

Fig. 3.11.: The images show a 2-opt swap of the paths between nodes B, C, E and F to remove a
crossing. On the left, the previous path can be seen. On the right, the crossing is removed.

3. Mathematical Foundations 49

3.4.3. Open and Generalized TSP

While the original TSP requests a path that leads back to the starting node, this is
not needed in certain applications. For them, open TSP can be applied which does not
require a path that returns to the starting node. This can easily be incorporated into
the heuristics by adding fake directed edges from every other node to the start node
with a distance of zero.
Another variation is the Generalized TSP introduced by Noon and Bean [156] which

separates the graph into disjoint sets of nodes and tries to �nd the shortest path visiting
only one node of each subset. The distance between nodes inside a subset is disregarded
and only the edges between nodes from di�erent subsets are known.

3.5. Conclusion

This chapter explains the foundations required for understanding the proposed ap-
proach and relevant related work. The sampling-based algorithms RRT, RRG and
PRM are detailed from which this work's exploration algorithm is derived. Comple-
mentary to these algorithms, Voronoi diagrams, k-d trees and Dijkstra's algorithm are
shown because they are utilized in this work.
The principles of SLAM are introduced as the robot's position in the world and the

map surrounding it must be known for an exploration. EKF SLAM is described as
the standard algorithm while particle �lter SLAM is more sophisticated and is the
algorithm used to test the proposed exploration approach RNE in Sections 5.2, 6.2 and
6.3.
To explore unknown environments and store the progress, they must be classi�ed

and mapped. A distinction between free, occupied and unknown space is formulated
and two mapping frameworks are introduced. These are called OctoMap and Voxblox
and are able to store this information. They can be used to e�ectively retrieve the
occupancy of certain areas using single voxel or ray queries.
These queries are utilized to formulate traversability information and information

gain for exploring robots. The term NBV is explained which describes choosing the next
viewpoint for the robot that maximizes a reward function incorporating information
gain and costs to reach the particular viewpoint. The mapping and NBV selection are
utilized in this work and shown in Chapter 5.
The TSP problem is introduced which describes �nding the shortest path connecting

all nodes in a graph while only visiting each of them once. In addition, several heuristics
to solve it within a certain lower bound regarding the path length are shown. In Chapter
8, standard and open TSP are deployed to e�ciently connect multiple viewpoints on
a global scale.

50

4. Robot Statemachine

To alleviate the autonomous exploration proposed in the next chapter, a state machine
is developed. It is used as an interface to the robot's path planning and motion control
and decouples these from the exploration which enables utilizing di�erent robots and
path planning approaches.
The state machine described in this chapter is called Robot Statemachine (RSM).

It o�ers an aided control for arbitrary mobile robots and can be used by simple GUI
commands. RSM enables sending the robot to explore or follow given waypoints au-
tonomously and execute special routines when reaching a goal. These routines can be
implemented through plugins and range from informing the operator to carry out a rou-
tine to autonomously sweeping a camera and identifying certain objects to be mapped.
It can be adapted for di�erent mobile robots and tasks through the implementation of
plugins for navigation, exploration and inspection tasks.
RSM includes functions intended for the EIT RawMaterials UNDROMEDA project

described in Section 1.1.1. The abilities to perform inspections and patrol tasks which
are detailed in this chapter are a part of these functions.
The �rst section of this chapter describes the design in detail regarding the underlying

states and the adaptability gained by the plugins as well as the GUI. Afterwards,
applications of RSM are shown.

4.1. Design

RSM is written in C++ and follows the UML state pattern [33]. It is a behavioral state
machine [35] which means that actions occur during state transitions and while a state
is active.
RSM is implemented as a ROS metapackage which is described in Section 2.1.1. In-

cluded in this metapackage is the package rsm_core that holds the state machine's core
and its integrated states. The rsm_additions package implements several exemplary
plugin states and helper functions. The RSM's GUI is realized by the rsm_rqt_plugins
and rsm_rviz_plugins packages.

4.1.1. States and Connections

The class responsible for state transitions only allows volatile states which makes an
additional class for handling data necessary. All implemented states need to inherit
from a virtual base state whose class diagram is shown in Figure 4.1 together with the
surrounding structures. Each state's base functions are called by the class handling
state transitions. To obtain data necessary for processing, each state has to interact
with the data handler class through ROS services and topic subscriptions.
RSM features some integrated states o�ering basic functionalities which are listed

below:

4. Robot Statemachine 51

Fig. 4.1.: Partial class diagram of the RSM which shows the most important attributes and methods
of each class.

� BootState

� IdleState

� TeleoperationState

� EmergencyStopState

� WaypointFollowingState

The BootState is always the �rst state to be called when the RSM is started and
simply subscribes to a service that informs it about the boot-up process. When the
process �nishes, the BootState initiates a transition to the IdleState. The latter
awaits input from the operator to transition to a desired state. One of these is the
TeleoperationState which becomes active as soon as a teleoperation command is
issued to the robot. The EmergencyStopState is activated when the operator pushes
the software stop button in the GUI. A transition to the IdleState is only initiated
when the button is released again. The WaypointFollowingState is called when way-
point following is started from the GUI. It manages the list of waypoints and forwards
the next waypoint as a navigation goal.
To realize exploration and waypoint following, the three plugins listed below need to

be implemented:

� CalculateGoalState

� NavigationState

� MappingState

The CalculateGoalState is responsible for extracting the NBV for exploration.
Therefore, it has to interface a package calculating exploration goals. For example,
the exploration approach presented in Chapter 5 can be utilized. The data handler
class expects a list of possible exploration goals to evaluate if the current goal is still
viable or has already been explored while moving which makes it obsolete. This is
only used when the exploration is run in interrupting mode in which the navigation
is aborted as soon as the current goal becomes obsolete. The extracted goal from

4. Robot Statemachine 52

the CalculateGoalState is then forwarded to the NavigationState which needs to
implement an interface to a designated navigation package. This interface has to be
able to retrieve the current status of the navigation and move forward and in reverse.
The MappingState can implement behaviors to rigorously scan the surrounding by
moving the robot's sensors if necessary. The NavigationState is also used for reaching
waypoints while waypoint following is active.
Waypoints can be linked to certain routines that are implemented as Routine States.

These are called when the respective waypoint is reached and can execute arbitrary
behaviors. Routine States are not mandatory to implement but there can be up to ten
di�erent routine states available.
An intended process for exploration starts with the CalculateGoalState forwarding

a goal to the NavigationState which then tries to reach this goal. If it succeeds, the
MappingState is called and transitions back to the CalculateGoalState to �nd a new

Fig. 4.2.: State diagram showing an exemplary implementation with normal states, additional plugin
states with a bold border and transitions.

4. Robot Statemachine 53

exploration goal after it is �nished. If the navigation fails, the goal is blocklisted and
the CalculateGoalState is called to �nd a new exploration goal. A state diagram
showing these transitions can be seen in Figure 4.2.
Waypoint following works similarly. The WaypointFollowingState extracts a nav-

igation goal from the list of waypoints and forwards it to the NavigationState. If
the NavigationState succeeds in reaching the goal, the respective Routine State is
called. It can execute an inspection task, e.g., reading a gauge. When the routine is
�nished or if there was no routine set for this waypoint, the WaypointFollowingState
is called again to determine a new navigation goal. The respective waypoint's status
is then set to visited. If the navigation fails, its status is set to unreachable and the
WaypointFollowingState is called to provide the next navigation goal.
The RSM also features a class to control the command velocity output to the motor

controller interface. It either maps the command velocity from teleoperation, from
autonomous operation or sends a stop command to the motor controller interface. The
command that is forwarded is set through the GUI. In the case of teleoperation, it can
also be set automatically by issuing a teleoperation command. This only works when
the software emergency stop is not pushed in the GUI. If it is, the stop command is
sent to the motor controller interface and the robot does not move.

4.1.2. Sample Implementation of Plugin States

A sample implementation provided in the rsm_additions package features plugins for
all of the previously described states. The CalculateGoalState interfaces the ROS
package explore_lite1 which is based on the FE algorithm introduced by Yamauchi [63]
and described in Section 2.4.1. The plugin subscribes to explore_lite's visualization
that shows frontiers on a 2D map and extracts the closest frontier center point to the
robot as a navigation goal.
The NavigationState realizes an interface to the ROS navigation package. It for-

wards received goals to the navigation stack and gets feedback from it regarding the
progress. It features a detection for when the robot is stuck for a certain amount of
time. If it is stuck, it tries to move to the current goal backwards which resolves the
blockade in case the robot's front is too close to an obstacle. After a brief amount of
time, the robot returns to forward movement. If it is still stuck afterwards, the goal
fails.
There are two implementations for the MappingState. The �rst one is a dummy

that transitions back to the CalculateGoalState. It is intended to be used with
sensors that continuously map the surroundings and do not need to execute a dedicated
mapping routine, e.g., �xed cameras or rotating scanners.
The second one is designed for a simulation used for testing. This MappingState

swivels a depth camera from one side to the other and back to create a dense 3D point
cloud. A RoutineState called ReversingRoutineState is also included and toggles
the reverse movement mode when the routine is executed. This means the robot is
driving in reverse when it was going forward before and vice versa. An additional data
handler class is provided that adds services to interface the explore_lite and navigation
packages.

1http://wiki.ros.org/explore_lite

http://wiki.ros.org/explore_lite

4. Robot Statemachine 54

4.1.3. GUI

The RSM can be operated through a GUI that enables the use of all its core function-
alities. The GUI is depicted in Figure 4.3 and can be integrated into RViz or rqt which
can be used in ROS for visualization. It always shows which state is currently active
and gives the user the options explained below.
The GUI o�ers control over the class handling the command velocities forwarded to

the motor controller interface. This includes the software emergency stop as well as
choosing autonomy, teleoperation or stopped. When the software emergency stop is
active, the other choices are disabled and the command velocity is set to stopped until
the software emergency stop is released again.
The exploration can be started and stopped by using the respective buttons in the

GUI where the exploration mode can be set as well. This mode can either be �nish or
interrupt where the former makes the robot reach each goal before transitioning to the
MappingState while the latter starts the transition as soon as a better goal becomes
available.
Waypoint following can be started and stopped through the respective buttons.

When waypoint following is stopped, there is the option to reset the current progress
and restore all waypoints to their initial values. It is possible to set the waypoint
following mode to one of the following three options: single, roundtrip and patrol.
The single mode lets the robot start from the �rst waypoint and then moves to all

consecutive ones in order. Upon reaching the last one it stops. In roundtrip mode,
after reaching the last waypoint, all waypoints are reset and it starts anew from the
�rst waypoint. This is repeated until manually stopped. Patrol mode works similarly.
After reaching the last waypoint, all waypoints are reset and it starts again in reverse

Fig. 4.3.: GUI used to control the RSM from RViz or rqt.

4. Robot Statemachine 55

Fig. 4.4.: Waypoints as interactive markers in RViz that can be manipulated by dragging and their
routines changed with the attached menu.

order. The �rst and last waypoints are only targeted once and their attached routines
are executed only once as well. Roundtrip and patrol can only be stopped manually.
The GUI also o�ers the possibility to set a waypoint at the robot's current pose with

a desired routine. A checkbox enables setting the reverse mode manually. When the
box is checked, the robot moves in reverse.
When using RViz, waypoints can be placed in the map by utilizing the Set Waypoint

Tool. The color of the marker corresponds with the waypoint's status. Blue is the
default color, green means the waypoint has been visited and red that it is unreachable.
The displayed markers are interactive and can be seen in Figure 4.4. Their position

and orientation can be changed. Furthermore, they o�er a menu where the routine to
be executed when reaching the waypoint can be set or the waypoint can be deleted.
Simple navigation goals can be sent in RViz using the 2D Nav Goal Tool. The

execution of these goals can be interrupted with the respective stop button in the GUI.

4.2. Applications

RSM is designed to facilitate and supervise autonomous behavior for a wide variety of
robots. Besides the usage in simulated tests and exploration experiments, it was utilized
in the UNDROMEDA project and in the RoboCup RRL which are explained in Sections
1.1.1 and 1.1.4. Figure 4.5 shows RSM deployed in a simulation, demonstrating simple
navigation, waypoint following and exploration with FE.
RSM was deployed on the robot Schrödi from the Nuremberg Institute of Technol-

ogy's AutonOHM team for the RoboCup German Open in 2019 and the RoboCup in
Sydney, Australia in 2019. Schrödi is shown in Figure 1.2. RSM was used for au-
tonomous repetitions in some of the mobility challenges of the RRL and during the

4. Robot Statemachine 56

(a) Simple goal navigation (b) Waypoint following (c) Exploration

Fig. 4.5.: RSM is used in simulations for simple goal navigation, waypoint following and exploration.
Light gray areas show free space, dark gray areas unknown space and black lines obstacles. The
translucent sphere marks the robot's position and green and red lines the robot's current navigation
path. The blue lines in the exploration show the frontier boundaries and green spheres are the frontier
markers to which the robot navigates when exploring the speci�c frontier.

exploration challenges. Team AutonOHM won �rst place in the German Open and
scored fourth place in Sydney.
For UNDROMEDA, RSM was deployed on the Clearpath Robotics Husky UGV and

used to supervise the robot during test runs. In the �nal test run, the odometry was not
working correctly. Therefore, the navigation could not be used as it relies on precise
odometry. Unfortunately, this ruled out the usage of RSM's autonomy functions in
UNDROMEDA's �nal test run.

4.3. Conclusion

The proposed RSM enables a high-level control of a robot and can be utilized to super-
vise an autonomous exploration which is used in the upcoming chapters. It separates
the robot's motion control and path planning from the exploration approach which
allows to exchange the former two if desired.
RSM o�ers interfaces which enable aborting currently pursued goals for better ones

and grant more resilience for the navigation planner. The ability to abort the current
goal for a better one is required for the exploration approach detailed in the next
chapter.
If necessary, mapping routines can be implemented, e.g., move a sensor head to

increase the map coverage without moving the whole robot. The GUI provided by
RSM aids in controlling the autonomous exploration and increases usability.
In conclusion, the RSM serves as an easy-to-use state machine, especially for the

development of exploration approaches and during simulations throughout this work.
The introduced plugin states enable rapid changes between di�erent approaches, for
example, FE introduced in this chapter and the sampling-based approach which is
presented in the next chapter.

57

5. RNE 1 - RRT-Based Exploration

This chapter introduces the �rst iteration of the Random-Sampling-Based Next-Best
View Exploration (RNE) which is the main contribution of this work. RNE enables
the exploration of di�erent environments with a UGV and is based on RRT. RRT was
proposed by LaValle [50] and is described in detail in Section 3.1.2. RNE evaluates the
randomly-sampled nodes in RRT to �nd an NBV which then is explored by the robot.
NBV is explained in Section 3.3.2.
This approach is heavily inspired by RH-NBVP that was introduced by Bircher et

al. in 2016 [6]. They build an RRT, evaluate the nodes and select an NBV from the
best branch for a UAV to explore. After each iteration, the RRT is rebuilt except for
the best branch. The proposed RNE is designed for UGVs and utilizes a permanent
RRT to improve exploration e�ciency compared to RH-NBVP. Furthermore, the gain
calculation is decoupled from the exploration thread which means it is conducted while
the robot explores instead of after reaching a goal.
AEP proposed by Selin et al. [7] utilizes RH-NBVP and adds a global exploration

mechanism which stores former RRT nodes that have not been explored by the robot
but yield a su�cient information gain. Furthermore, they introduce Sparse Ray Casting
(SRC) for gain calculation which is the main reference for this approach's Sparse Ray
Polling (SRP). SRP's goal is to reduce the computation for calculating an NBV.
The following sections go into detail about the design and ideas of RNE which include

SRP, a decoupled gain calculation and the traversability analysis incorporated in the
RRT's input function. This is the �rst iteration of the proposed exploration approach
while the following chapters continue with the evolution of RNE to further increase its
e�ciency.

5.1. Design

This section introduces the design of RNE and highlights certain parts that di�er from
RH-NBVP and AEP which inspired its development.
The �rst subsection describes how the RRT principle is used for this exploration

algorithm, followed by the general software implementation of RNE and its interface
to RSM, which is presented in Chapter 4. Afterwards, the method used to classify the
traversability of the grid map and particular nodes is explained.
This work's adaption of SRC is called SRP and is the designated method to calculate

the potential gain of a new node. It is presented in the next subsection followed by the
comparison through experiments between adaption and simple ray casting.
Finally, the di�erences when using coupled or decoupled gain calculation are exposed

by experimental test runs. The coupling describes if the gain is calculated in the same
process as the remainder of RNE's logic or in a separate thread.

5. RNE 1 - RRT-Based Exploration 58

5.1.1. RRT Adaption

The basic RRT algorithm, which is explained in Section 3.1.2, cannot be used for
exploration directly because it is intended to connect a start and a goal con�guration.
Since there is no designated goal at the start of an exploration, the algorithm must be
adapted.
Algorithm 5.1 shows how the RRT for exploration is constructed. The world space

V ∈ R3 as well as the robot's current position in the world space probot ∈ V are
provided. At �rst, the tree T = (N,E) with the set of nodes N and edges E is
initialized with its root node at the robot's current position.
As long as the exploration is not �nished, which is determined by the criteria ex-

plained in Section 5.1.8, the following statements are executed. The loop starts with
randomly sampling a position prand in the known free space Vfree . Afterwards, the node
in T closest to prand is determined and saved as pnear .
The steerCollisionFree function combines the steer and collisionFree func-

tions from Section 3.1.2. It tries to add a new node between the nearest tree node's
position pnear and prand to which the robot is able to move without collision.
As shown in Section 3.1.2, the position of the new node pnew is calculated using

the robot's input function. This results in a straight line with a minimum dmin and
maximum distance dmax between pnew and pnear .
If a connection without obstacles between pnear and pnew can be found, pnew is

created and added to the tree. This includes an edge between it and pnear . The input
function used in this work and the collision check are described in Section 5.1.4.
This tree growing process runs continuously during the exploration and builds T

while its nodes are visited by the robot. A continuously growing tree is chosen over
repeatedly building a new tree after reaching each goal like in RH-NBVP. Repeatedly
building a tree must be limited by a time factor or the number of added nodes to
decide if the exploration is �nished. This means, the robot could be led to a position
from which the limiting factor terminates the exploration even though there is still
a substantial fraction of Vex to be mapped. Vex is the explorable space introduced in
Section 3.3.1. The continuous tree is used to increase total map coverage by preventing
the termination of a run when encountering a local dead-end.

Algorithm 5.1: Rapidly-exploring Random Tree construction for exploration
Input: V,probot

1: T ←initTree(probot)
2: while not explorationFinished() do
3: prand ←samplePoint(V)
4: pnear ← findNearestNeighbour(T ,prand)
5: if pnew ←steerCollisionFree(V,prand ,pnear) then
6: addNodeToTree(T ,pnew ,pnear)
7: end if

8: end while

5. RNE 1 - RRT-Based Exploration 59

5.1.2. Software Design

RNE is developed as an open-source ROS package that can be used for exploration
with the RSM package. The robotics framework ROS is described in Section 2.1.1.
RNE includes a state plugin for RSM, which interfaces the exploration algorithm, and
a global planner that can be used as a plugin for the ROS navigation package. Details
regarding the interaction between RNE and RSM can be found in Section 5.1.3.
In Figure 5.1, RNE is shown in the ROS environment controlling the robot's move-

ment by forwarding goals to the ROS navigation package and processing the sensor
input. A SLAM algorithm, which is detailed in Section 3.2, is executed on the robot.
It calculates the robot's position in the surrounding space and builds a grid map in
which traversable tiles and obstacles are marked. The point cloud produced by the
robot's sensors is integrated into an OctoMap based on the robot's position. The
OctoMap is described in Section 3.3.3.
The algorithm stores all relevant RRT details in a ROS message. It contains a list

of all nodes and a reference to the node that currently is closest to the robot nr . Each
node n stores its coordinates pn , its gain G(n), the orientation to achieve this gain
ϕmax and its state sn. The state can be one of the seven states shown in Figure 5.2.
Furthermore, it has references to its parent node including the distance to it and a list
of references to all child nodes. The path Prn from pn to pnr through T as well as the
length of this path drn is also stored for each node.
For each node added to T , its gain is calculated using the OctoMap to assess the map

coverage at the particular node's position. When the previous goal node is reached or
aborted by the robot, a new goal is selected by choosing the node with the best reward
function. The new goal is then forwarded to navigation.

Fig. 5.1.: High-level overview of RNE's main functions interfacing other ROS packages as well as a
robot and its sensor(s).

5. RNE 1 - RRT-Based Exploration 60

Fig. 5.2.: The state diagram of the di�erent node states in RNE and the transitions between them.

The robot is required to have a front-facing sensor or array of sensors that outputs
a combined point cloud with a known range and FoV. In addition, it must be able to
perform SLAM with its sensors to enable an exploration.
When starting the exploration, T is initialized with a root node at probot with the

state visited. All other nodes are initialized with the state initial. While the tree con-
struction is running, a k-d tree to interface the nodes in T is maintained to enable
e�cient nearest neighbor and radius searches. k-d trees are described in Section 3.1.6.
For every newly created node, its gain and cost are calculated. The k-d tree is imple-
mented using nano�ann [157] which is a header-only library with a focus on run time
and memory e�ciency.
Furthermore, an ordered list containing references to the nodes is stored where the

�rst entry references the node with the best reward function. This �rst node is chosen
as the current exploration goal and its state is set to active or to active visited, if its
state has been visited before. After reaching a node, its state is set to visited. If the
current goal is reached, aborted or reaching it failed and the robot started to move
towards it, the goal node's gain is recalculated. All nodes' gains in a radius less than
two times the sensor's range around the robot are recalculated as well. The nodes in
this radius are found by a radius search in the k-d tree.
The check if the robot has moved when the current goal changes, is undertaken to

prevent recalculation of node gains when the robot did not move. Then, it is assumed
that the map did not change which results in the expected node gains remaining the
same. The radius of two times the sensor's range is chosen because it includes all nodes
whose gain could have changed from the robot's current position. This is due to the
robot exploring parts of the map that can also be perceived from the particular node's
position.
When calculating the gain of a node with the initial or visited state and it is below

a user-de�ned threshold, the node becomes explored. If it has been visited before, the
orientation of the robot when exploring the node ϕmax is stored and compared to the

5. RNE 1 - RRT-Based Exploration 61

recommended orientation from the new gain calculation. If they are similar, the node's
state is set to explored because no further exploration of the map is expected. For a
sensor with a limited horizontal �eld of view, multiple orientations at the same node
can be worth exploring.
The following list summarizes the node states that can be seen in Figure 5.2:

initial The node has been placed and its gain is worth exploring or still unknown.

active The node is the current exploration goal.

visited The node has been visited by the robot and its gain is not yet recalculated
or it still o�ers a su�cient gain at an orientation which di�ers from that
of the previous visit.

active visited A previously visited node is the current exploration goal.

explored The gain, which is calculated from the number of unknown, observable
voxels at this node, is below the threshold. Alternatively, a similar ori-
entation from it is chosen as the next goal, even though it has already
been visited with the same orientation before.

aborted The goal has previously been the current goal but a user command or
the availability of a better goal has stopped its exploration.

failed The navigation planner failed to calculate a path towards this node.

Since RNE is built with an interface to RSM, it can also be run in two di�erent
modes which are �nish and interrupt. In the former mode, an active goal node must
be reached or the attempt to reach it has to fail before a new goal can be chosen. In
the latter, an exploration goal can be interrupted if a better goal node is found. A
better goal node is a node with a higher reward function than the current goal.
Such a node can only be found, if the reward functions change while the robot is

busy navigating to the current goal. Calculating all available node's reward functions
before choosing a node and then starting navigation would render the interrupt mode
in RNE unnecessary. Therefore, RNE adds new nodes and calculates their reward
function while pursuing a goal. Because most nodes' reward functions around a goal
that has just been reached are recalculated, it might take some time before a valid
assessment can be made about the NBV to use as the upcoming goal.
To reduce the downtime, this approach runs the computation intensive raycasting in

a di�erent thread than the RRT construction. This eliminates the need for the robot
to wait after exploring a node because nearby node's gains are recomputed. It also
means that not all node's gains are known when the robot starts to move towards a
new goal. Therefore, the interrupt mode enables to switch the goal node if a better
goal is found. This parallel process is called decoupling. An evaluation of decoupling
can be found in Section 5.3.

5.1.3. RNE RSM Interface

RNE is designed to be operated together with RSM for which a plugin state and a
data handler are added. The data handler is necessary because of RSM's volatile
states which cannot store data.

5. RNE 1 - RRT-Based Exploration 62

The plugin state requests the current goal from RNE and sets it as the next naviga-
tion goal. Then, it triggers a transition to the navigation state.
The data handler receives the status of the ROS navigation package and forwards

to RNE if a goal has been reached or reaching it failed. If the exploration mode is set
to interrupt, it is checked if the current goal is obsolete. If it is, the data handler tells
the navigation to abort it. For this, it compares if the current goal and the goal with
the best reward function are the same. If they di�er, the current goal is obsolete.

5.1.4. Grid Map Traversability Analysis

The steerCollisionFree function checks if there is a connection between pnew and
pnear which is derived from the input function and can be traversed by the robot.
Since the approach is developed for UGVs, a grid map derived from the explorable
space Vex is used to determine the traversability. An approach for UAVs or UGVs
with manipulator arms would require a collision check in 3D instead of in a 2D grid
map derived from the 3D space V . The implemented steerCollisionFree function
assumes a non-holonomic robot which is able to turn on the spot.
A circular area around pnew with a radius rrobot is required which circumscribes the

robot's footprint. A rectangular corridor between pnew and pnear with at least the
robot's width wrobot must also be traversable. These shapes have to be translated to
the grid map's discrete coordinates.
To be able to determine which grid map tiles have to be queried for assessing the

traversability of an area, the structure of the grid map must be considered. The
utilized grid map is an OccupancyGrid from the nav_msgs ROS package1. It stores
meta data which includes the maps width wm and height hm measured in cell count
and its resolution rm in m/cell. Also, the origin of the map om = (xo, yo)

T in the ROS
map frame consisting of x- and y-coordinates as well as the orientation are included.
The map contains a data array with every cell's occupancy probability which ranges

from zero for a free cell mfree to 100 for an occupied cell moc. A data value of -1
indicates an unknown cell mun .
Figure 5.3 shows the order of the grid map cells in the OccupancyGrid. Per default,

the OccupancyGrid's width is in x-axis direction and the height in y-axis direction.
The data consisting of wm · hm entries is organized in the array in a row-major order.
Neighboring cells in x-axis direction have consecutive storage locations while neigh-
boring cells in y-axis direction can be iterated over by skipping wm entries for every
step.
Furthermore, an exemplary point p is depicted in Figure 5.3 for which the conversion

from world to grid map coordinates pm is clari�ed in Equation (5.1). Coordinates in the
grid map are denoted with a superscript m. Equation (5.2) shows the corresponding
OccupancyGrid data index mp for this point.

p ∈ R3 =

xpyp
zp

⇒ (
bxp−xo

rm
e

byp−yo

rm
e

)
=

(
xmp
ymp

)
= pm ∈ N2

0 (5.1)

mp = ymp · wm + xmp (5.2)

1http://docs.ros.org/en/melodic/api/nav_msgs/html/msg/OccupancyGrid.html

http://docs.ros.org/en/melodic/api/nav_msgs/html/msg/OccupancyGrid.html

5. RNE 1 - RRT-Based Exploration 63

0 1 2 3 4 wm − 2 wm − 1

wm wm + 1 wm + 2 wm + 3 2wm − 1

2wm 2wm + 1 2wm + 2

3wm 3wm + 1

4wm

(hm − 1)
·wm

hm · wm

height

width

X

Y

Z

p

Fig. 5.3.: The row-major data order of the OccupancyGrid is shown in the di�erently shaded grid
map cells. It starts at the grid map's origin om in the bottom left corner. The number inside a cell
represents the particular data index of it which can be derived from the map's width wm and height
hm. The relation to the axes of the world-�xed ROS map frame is depicted in the middle as well as
the exemplary point p whose conversion from world coordinates to grid map coordinates can be seen
in Equation (5.1).

To simplify the deduction of grid map cells to check for the circular area around the
potential new node pnew , it is aligned to the nearest grid map cell center as shown in
Equation (5.3). This aligned node palig allows a symmetric check of grid map tiles for
the circular area whose extent can be reused for every following traversability analysis
as rrobot remains unchanged during an exploration.

pnew ∈ R3 =

xnew

ynew

znew

⇒

(
bxnew

rm
e+ 1

2

)
· rm(

bynew

rm
e+ 1

2

)
· rm

znew

 =

xalig

yalig

zalig

 = palig ∈ R3 (5.3)

Pre-Calculation of Circle O�sets

Because of this alignment, the boundary of a circular area in the grid map can be
pre-calculated and applied to every point palig during the exploration. The goal is to
de�ne a set of coordinates describing the circle's boundary relative to the point's center
in the OccupancyGrid. These coordinates can be translated to each particular palig

5. RNE 1 - RRT-Based Exploration 64

Y

X

cm

rrobot

im0

im1

im2

im3

im4

im5

im6

Fig. 5.4.: The �rst quadrant of a circle with radius rrobot , whose center is placed at point cm, is
traversed along its border to derive the corresponding o�sets in the grid map. These o�sets are found
by iterating in y-axis direction while checking if the currently observed cell intersects with the circle.
Dark gray dots show the iterator positions imk , k ∈ 0, 1, ..., 6 which correspond directly to a border
grid map cell shaded in orange. Light gray dots show cells the iteration skipped because they do not
intersect with the circle. Yellow shaded cells represent cells inside the circular area that are not part
of the o�set cells.

and the area in between them has to be checked for obstacles by iterating over all cells
inside it. This check is described in the next sub-section and shown in Figure 5.5b.
To make this check more e�cient, each grid cell is queried regarding the row-major

data indexing. Therefore, lines parallel to the x-axis are traversed for cache-friendly
queries as they are stored consecutively in the data array. Algorithm 5.2 shows the
construction of o�sets that describe the boundary of the area to be checked. Figure
5.4 visualizes the calculation of these o�sets.
To simplify the construction of the o�sets, the line symmetry along the x- and y-

axes is utilized. Because of it, only one quadrant of the circle must be analyzed. The
simplest calculation can be executed in the positive quadrant. Therefore, the center of
the circle c is placed in the center of the �rst cell next to the map frame origin. The
iterator i is initialized with the same y-coordinate as c and with its x-coordinate at
the center of the last cell that falls inside the circle radius. This �rst iterator position
is then used to derive the �rst o�set which is the number of cells between it and the
circle center.
In the outer loop, which terminates when xi falls below xc, yi is decremented by

the grid map resolution rm in each iteration. The inner loop decrements xi by rm as
long as the circle does not intersect with the iterator's current cell. This is checked by

5. RNE 1 - RRT-Based Exploration 65

Algorithm 5.2: Pre-calculation of circle o�sets for traversability assessment

1: procedure precalculateCircleOffsets(rrobot)
2: Oc ← ∅
3: c ..=

(
xc
yc

)
←
(
rm
2
rm
2

)
4: i ..=

(
xi
yi

)
←
(
xc + b rrobot

rm
e · rm

yc

)
5: Oc ← Oc ∪

(
bxi−xc

rm
e

byi−yc
rm
e

)
6: while xi ≥ xc do
7: yi ← yi + rm

8: while xi > xc and rrobot <
√(

yi − yc − rm
2

)2
+
(
xi − xc − rm

2

)2
do

9: xi ← xi − rm
10: end while

11: if xi ≥ xc and rrobot ≥ yi − yc − rm
2
then

12: Oc ← Oc ∪
(
bxi−xc

rm
e

byi−yc
rm
e

)
13: end if

14: end while

15: return Oc

16: end procedure

comparing the distance between the bottom left edge of the iterator's cell and c with
rrobot . If rrobot is greater or equal, an intersection occurs.
The if-condition in the outer loop assesses if the cell at the iterator's last position

in the current iteration intersects with the circle by comparing the distance between
the cell's lower y-boundary and yc with rrobot . If rrobot is greater or equal, the iterator's
position is used to derive an o�set and add it to the set. The usage of this set is
described next.

Circle Traversability Analysis

A circular area with radius rrobot at palig has to be without obstacles to enable the
robot to turn on the spot with a safety margin. To determine if a circular area around
palig is traversable, Algorithm 5.3 is employed. It iterates over the o�sets Oc which are
produced in Algorithm 5.2 and applies them to all four quadrants of the circle as can
be seen in Figure 5.5b.
It starts by converting the new node's coordinates palig into the grid maps coordinates

pmalig using Equation (5.1). Then, the algorithm iterates over all entries in the o�sets
which consist of x- and y-direction. For every entry it is checked, if the line derived
from the o�sets is obstacle-free. Each line is constructed by subtracting the x-o�set
xmo from xmalig for the starting cell and adding it to xmalig for the last cell in the line. The
line's position on the y-axis is calculated by adding the y-o�set ymo to ymalig for the top
semicircle and subtract it for the bottom semicircle. For the �rst entry whose y-o�set
is 0, only one line is checked as it lies in the middle of both semicircles. The analysis
of each line is described in Algorithm 5.4. If it returns true, the line is traversable.

5. RNE 1 - RRT-Based Exploration 66

Algorithm 5.3: Check traversability of a circular area

1: procedure isCircleTraversable(palig , Oc)

2:

(
xmalig

ymalig

)
←worldToOccupancyGrid(palig)

3: for each om ∈ Oc, om ..= (xmo , y
m
o)T do

4: if not isLineTraversable(xmalig − xmo , xmalig + xmo , y
m
alig + ymo) then

5: return false
6: end if

7: if ymo 6= 0 then
8: if not isLineTraversable(xmalig − xmo , xmalig + xmo , y

m
alig − ymo) then

9: return false
10: end if

11: end if

12: end for

13: return true
14: end procedure

Algorithm 5.4: Check traversability of a line of grid map cells

1: procedure isLineTraversable(xmstart , x
m
end , y

m)
2: if xmstart < 0 or xmend ≥ wm or ym < 0 or ym ≥ hm then

3: return false
4: end if

5: for lm ← ym · wm + xmstart to ym · wm + xmend do

6: if ml = moc or ml = mun then

7: return false
8: end if

9: end for

10: return true
11: end procedure

Otherwise, it is not and therefore the complete circle is not traversable.
Algorithm 5.4 receives grid map coordinates from which a single line of consecutive

grid map indices is constructed. The x-coordinates range from the starting cell xmstart

to the last cell xmend and the y-coordinate ym is provided as well. First, it is assured
that none of these coordinates violate the OccupancyGrid map dimension boundaries.
If they do, the line is not traversable.
The algorithm iterates over all data indices lm between the start and the end cell

which are derived using Equation (5.2). During this process, each cell is examined to
observe if it's value ml equals occupied moc or unknown mun . If it does, the algorithm
terminates and returns that the line is not traversable. If all values are in the range of
free cells mfree , the line is traversable.

Rectangle Traversability Analysis

The traversability analysis for the rectangular corridor between the nearest node in the
tree pnear and the aligned point palig can be divided into two cases. The �rst, trivial

5. RNE 1 - RRT-Based Exploration 67

Algorithm 5.5: Check traversability of an aligned rectangular area

1: procedure isAlignedRectangleTraversable(r ..= (xr, yr)
T , γ, drem , wrobot)

2: if γ = π
2

or γ = 3π
2
then

3: rbl
..=

(
xbl

ybl

)
←
(
xr − drem

2

yr + wrobot

2

)
4: rtr

..=

(
xtr

ytr

)
←
(
xr + drem

2

yr − wrobot

2

)
5: else

6: rbl
..=

(
xbl

ybl

)
←
(
xr − wrobot

2

yr + drem

2

)
7: rtr

..=

(
xtr

ytr

)
←
(
xr + wrobot

2

yr − drem

2

)
8: end if

9: rmbl
..=

(
xmbl

ymbl

)
←worldToOccupancyGrid(rbl)

10: rmtr
..=

(
xmtr
ymtr

)
←worldToOccupancyGrid(rtr)

11: for ym ← ymtr to ymbl , y
m ∈ N0 do

12: if not isLineTraversable(xmbl , x
m
tr , y

m) then
13: return false
14: end if

15: end for

16: return true
17: end procedure

case is a corridor that is aligned with the grid map. The second case is an arbitrarily
rotated rectangle.
But �rst, a calculation is conducted to reduce the overlapping area of rectangle and

circle traversability check. The corridor is shortened to a length drem at which its
corners lie on the circle's radius. Otherwise, it would cover an area from one node to
the other with length D(palig ,pnear) and width wrobot . drem is calculated from Equation
(5.4) and reduces the area which would otherwise be checked twice by ddiff times wrobot .
Figure 5.5 shows this reduction.

ddiff =

√
r2robot −

(wrobot

2

)2
drem = D(palig ,pnear)− 2 · ddiff

(5.4)

To decide which algorithm has to be executed for a particular rectangle, its center
r and rotation γ from pnear to palig are calculated. It is assumed that the origin of
the map's rotational component equals zero. Therefore, γ values of zero or multiples
of π result in running the �rst algorithm for an aligned rectangle while other γ values
lead to the second, more complicated case. Algorithms 5.5 and 5.6 have r, γ, drem and
wrobot as their input.
For the �rst case, Algorithm 5.5 begins by calculating the coordinates of the bottom

left corner rbl and the top right corner rtr of the aligned rectangle depending on γ. The
corridor from pnear to palig can be parallel to the y-axis or to the x-axis. The corner

5. RNE 1 - RRT-Based Exploration 68

Algorithm 5.6: Check traversability of a rotated rectangular area

1: procedure isRectangleTraversable(r, γ, drem , wrobot)
2: {rl , rb , rt , rr} ←calculateCornerCoordinates(r, γ, drem , wrobot)
3: {rml , rmb , rmt , rmr } ← worldToOccupancyGrid({rl , rb , rt , rr})
4: aasc ← xr−xb

yr−yb
, adesc ← −1

aasc

5: a← aasc, a← adesc

6: ix ←
(
b xb
rm
c+ 1

2

)
· rm, iy ←

(
b yb
rm
c+ 1

)
· rm

7: o← xb+a·(iy−yb)−ix
rm

, o← xb+a·(iy−yb)−ix
rm

8: ym ← ymb
9: while iy < yt do
10: if yr + rm > iy ≥ yr then
11: a← adesc

12: o← xr+a·(iy−yr−rm)−ix
rm

13: xmend ← xmr
14: else

15: xmend ← xmb + boe
16: end if

17: if yl + rm > iy ≥ yl then
18: a← aasc

19: o← xl+a·(iy−yl−rm)−ix
rm

20: xmstart ← xml
21: else

22: xmstart ← xmb + boe
23: end if

24: if not isLineTraversable(xmstart , x
m
end , y

m) then
25: return false
26: end if

27: o← o+ a, o← o+ a
28: ym ← ym + 1
29: iy ← iy + rm
30: end while

31: if not isLineTraversable(xmb + boe, xmb + boe, ym) then
32: return false
33: end if

34: return true
35: end procedure

coordinates are converted to grid map coordinates using Equation (5.1). Then, the
algorithm iterates over all grid map slices between the top right corner's y-coordinate
ymtr and the bottom left corner's y-coordinate ymbl . If one of them is not traversable, the
aligned rectangle is also not traversable.
The second case is not as trivial as the aligned rectangle and is described in Algo-

rithm 5.6. At �rst, the coordinates of all the rectangle's corners are calculated using
Algorithm 5.7 and converted to the grid map coordinates with Equation (5.1).
Then, the rectangle's gradients are used to �nd the lower and upper bounds of the

rectangle for each y-coordinate. The algorithm iterates from the bottom corner, which

5. RNE 1 - RRT-Based Exploration 69

Algorithm 5.7: Calculate the positions of the corners of a rotated rectangle

1: procedure calculateCornerCoordinates(r ..= (xr, yr)
T , γ, drem , wrobot)

2: if γ < −π
2
then

3: γ ← γ + π
4: else if γ > π

2
then

5: γ ← γ − π
6: end if

7: if 0 < γ < π
2
then

8: rl ←
(
xr + wrobot

2
cos(γ)− drem

2
sin(γ)

yr + drem

2
cos(γ) + wrobot

2
sin(γ

)
9: rb ←

(
xr − wrobot

2
cos(γ)− drem

2
sin(γ)

yr + drem

2
cos(γ)− wrobot

2
sin(γ

)
10: rt ←

(
xr + wrobot

2
cos(γ) + drem

2
sin(γ)

yr − drem

2
cos(γ) + wrobot

2
sin(γ

)
11: rr ←

(
xr − wrobot

2
cos(γ) + drem

2
sin(γ)

yr − drem

2
cos(γ)− wrobot

2
sin(γ

)
12: else

13: rl ←
(
xr − wrobot

2
cos(γ)− drem

2
sin(γ)

yr + drem

2
cos(γ)− wrobot

2
sin(γ

)
14: rb ←

(
xr − wrobot

2
cos(γ) + drem

2
sin(γ)

yr − drem

2
cos(γ)− wrobot

2
sin(γ

)
15: rt ←

(
xr + wrobot

2
cos(γ)− drem

2
sin(γ)

yr + drem

2
cos(γ) + wrobot

2
sin(γ

)
16: rr ←

(
xr + wrobot

2
cos(γ) + drem

2
sin(γ)

yr − drem

2
cos(γ) + wrobot

2
sin(γ

)
17: end if

18: return {rl , rb , rt , rr}
19: end procedure

has the lowest y-coordinate of the rectangle, to the top corner. To derive the bounds,
the intersection of the boundary of the currently observed cell to the next cell in y-
direction with the particular rectangle edge is calculated. The x-coordinates of these
cells provide the lower and upper bounds for each slice. The slices in which the left or
the right corner or both are present, mark the change of gradient from ascending to
descending and vice versa.
Algorithm 5.7 shows that for angles above π/2 and below −π/2, the direction is

reversed so that all regarded corridors have an angle γ between −π/2 and π/2. This
removes mirrored cases and the following calculation of the corners is reduced to two
cases instead of four.
Each corner is calculated using drem and wrobot , as well as sine and cosine of γ. γ also

determines which coordinates are assigned to which of the four corners of the rotated
rectangle: left rl, bottom rb, top rt and right rr.
These coordinates are used to derive the gradient of the edges between the bottom

and the left and right corners in Algorithm 5.6. Because of the symmetry in rectangles,
the gradient from the bottom to the right corner equals the gradient aasc from the left
to the top corner. The gradient from the bottom to the left corner equals the gradient

5. RNE 1 - RRT-Based Exploration 70

adesc from the right to the top corner which is also aasc's inverse.

X

Y

rrobot

wrobot

drem

ddiff

palig

pnear

(a) Traversability check of a rotated rectangular area

X

Y

D(palig ,
pnear)

wrobot

drem

ddiff

palig

pnear

(b) Traversability check of a circular area

Fig. 5.5.: Occupancy checks for the grid tiles that intersect with the corridor are shown in (a) and
the circle in (b) when palig should be connected to pnear . Orange tiles mark the outline found by the
proposed methods while yellow tiles are also checked. The green arrows show the direction of iterating
over the tiles. The green rectangle and circle mark the start.

5. RNE 1 - RRT-Based Exploration 71

iy starts from the top boundary of the cell containing rb and iterates over all bound-
aries along the y-axis until it passes the cell containing rt. The intersection on the
x-axis of the upper and lower edges with the cell boundary at iy can be calculated by
starting at the bottom corner's x-coordinate xb. Then, the respective gradient times
the di�erence between iy and yb is added.
The o�sets o and o from the upper and the lower iterator to the baseline ix are

calculated to derive the start and end coordinates for the line traversability checks
described in Algorithm 5.4. ix is de�ned as the center of the cell at which rb is on the
x-axis. Furthermore, ym represents the current iteration's y-coordinate in the grid map
coordinate system and is initialized with ymb . The current gradients of the upper edge
and the lower edge are stored in a and a respectively.
While the algorithm loops over all cells between rb and rt in y-direction, it checks

if the left or right corner is passed by the iterator iy. If it is, the particular upper or
lower gradient changes from aasc to adesc for a and from adesc to aasc for a. The upper
or lower iterator is reinitialized using the particular x-coordinate of the left or right
corner and the di�erence between the corner's y-coordinate and iy times the respective
gradient. The particular o�set is recalculated as well and set to the di�erence between
the matching iterator and ix in grid cells.
If the left or right corner is passed, the particular grid cell bounds xmstart and xmend

are set to the respective corner's x-coordinate xml or xmr . Otherwise, o or o are added
to xmb to retrieve xmstart or x

m
end respectively. Then, Algorithm 5.4 is called with xmstart ,

xmend and ym. If the line is traversable, the algorithm continues, otherwise it stops and
returns that the rectangle is not traversable.
Afterwards, o and o are increased by the respective gradient and ym and iy move to

the next grid cell in y-direction. When o and o are reinitialized at reaching the left or
right corner, the respective gradient for one grid cell is subtracted �rst because they
have been previously incremented in each iteration. In these iterations, xmstart and x

m
end

are derived directly from the particular corner's x-coordinate in the grid map.
This concludes one iteration and the next one begins. After the last iteration, that

ends when iy passed the top corner, a last line traversability check is executed.

Application of the Traversability Analysis

The previously described algorithms are applied as shown in Figure 5.5. The corridor
is checked �rst, followed by the circle. If both checks pass, the new node is added to
T .
Figure 5.6 depicts a screenshot from RViz which highlights the actual area of multiple

nodes and corridors between them that have been checked in the OccupancyGrid map.

5.1.5. Sparse Ray Polling

After the nodes are placed, it has to be decided if it is rewarding to explore a speci�c
node or if the space surrounding it is already mapped. To obtain this information, the
possible map coverage to be added when exploring this node needs to be calculated. It
is approximated using the amount of previously unknown space the robot is expected
to perceive at the node's position which is called the node's gain.
To calculate this amount, rays can be traced from the position the sensor would be

at at this node into every direction that could be in the sensor's FoV. Therefore, the

5. RNE 1 - RRT-Based Exploration 72

Fig. 5.6.: An RViz screenshot including the circular and rectangular areas checked for the traversability
analysis is shown. The areas that are highlighted in green represent the actual areas while the grid
cells in the lightest shade of gray have been checked using Algorithms 5.3, 5.5 and 5.6. The grid map
cells in a medium shade of gray represent free space, a dark shade of gray is unknown space and black
cells show occupied space.

node is placed at a height above the ground that is equal to the sensor's height hsensor

measured from the bottom of the robot. Vertical ray tracing is used to identify the
ground height at the sampled node's x- and y-coordinates.
To identify the orientation that yields the best gain for each node, ray tracing is

executed all around it. Ray tracing operations in an OctoMap are a computation
heavy task. Therefore, SRC which is a less computation intensive option proposed by
Selin et al. [7], is used as a foundation for the following approach that is called Sparse
Ray Polling (SRP).
SRP samples a set P of prede�ned positions in the space V surrounding a node. This

set of sampling points P is built based on the parameters supplied to the algorithm
and is de�ned in Equation (5.5). P consists of all positions that are de�ned by the
iterators ri , ϑj and ϕk which range from their respective lower to upper bounds. rmin

and rmax for ri are derived from the sensor's minimum and maximum range, ϑmin and
ϑmax for ϑj range from the minimum of the sensor's vertical FoV to its maximum and
ϕmin = 0 and ϕmax = 2π for ϕk describe the circle's circumference.

5. RNE 1 - RRT-Based Exploration 73

P =
⋃
ri

⋃
ϑj

⋃
ϕk

P (ri , ϑj , ϕk)

{ri = ∆r · i | i ∈ N,
rmin

∆r

≤ i ≤ rmax

∆r

}

{ϑj = ∆ϑ · j | j ∈ N0,
ϑmin

∆ϑ

≤ j ≤ ϑmax

∆ϑ

}

{ϕk = ∆ϕ · k | k ∈ N0, 0 ≤ k <
2π

∆ϕ

}

(5.5)

The iterators are bound to user-de�ned step sizes ∆ = (∆r ,∆ϑ,∆ϕ). They should
be set according to the voxel grid size's edge length, the sensor's resolution and the
processing power of the computer running the gain calculation. If the steps are too
small, the computation time increases and voxels are likely to be sampled multiple
times. Too large steps decrease the computation time but can lead to omitted voxels
and less informative results. Figure 5.7 shows exemplary sample points in a voxel grid.
When the exploration is running, the respective node's position is added to each pre-

calculated sample point's position to obtain the coordinates to check in the OctoMap
for calculating the node's gain. If one of the sample points on a ray is occupied,
the remaining points on this ray, that are further away from its start, are not sampled
because the sensor's vision in that direction is blocked. This pre-calculation is expected
to reduce the time to calculate each node's gain because the OctoMap's ray cast method
does not have to be used to count the unknown voxels for each new node �rst.
To obtain the particular node's gain G(n), P is translated to an exemplary node's

position pn . The translation on the z-axis is assessed by initially setting the height zn

of pn to the height of its parent node in T .
Afterwards, vertical ray tracing in the OctoMap is performed to �nd the ground's

y

z

x

ϑ

∆ϑ

ϕ

∆ϕ

rmax

∆r

rmin

Fig. 5.7.: SRP is shown in a voxel grid with two exemplary sample points colored in orange that are
on the cyan arrow, which is the ray cast direction. The orange cubes represent the voxels, that are
sampled, while the orange arrows and grid tiles aid in identifying the voxels' positions in the grid.

5. RNE 1 - RRT-Based Exploration 74

height hground at pn . The node's height is then set to zn = hground + hsensor . If no
ground within a maximum height di�erence hmax from zn is found, the gain function
�nishes and G(n) is set to −1.
The full horizontal revolution is polled to obtain the best orientation ϕmax for the

robot at pn . Therefore, a horizontal sector with the size of the sensor's horizontal FoV
with the most gain G(ϕmax) is determined. Equation (5.6) describes �nding G(ϕmax)
over all discrete orientations ϕi using the sum of gains for each slice of poll points Gϕ(i)
inside the horizontal FoV ϕhor .

G(ϕmax) = max
ϕi

ϕi+
ϕhor

2∑
i=ϕi−

ϕhor
2

Gϕ(i), i ∈ ϕk (5.6)

The node's next state sn+1 is derived using Equation (5.7) which depends on the
maximum number of observable voxels in the sensor's FoV gmax and a user-de�ned
threshold gmin . A repeated exploration of a node is not reasonable if the node's current
status sn equals visited and the recalculated ϕmax+1 ≈ ϕmax . This could lead to the
robot getting stuck re-exploring the same node repeatedly. If sn is visited and ϕmax+1 6=
ϕmax , the node's new state depends solely on its gain.

sn+1 =

explored,
G(ϕmax)/gmax < gmin or
sn = visited and ϕmax+1 ≈ ϕmax

initial, G(ϕmax)/gmax ≥ gmin

(5.7)

The node's gain G(n) is set to G(ϕmax) and the best orientation ϕmax is stored if the
node's state remains initial or visited. If it is set to explored, G(n) and ϕmax are set to
zero.

5.1.6. Reward Function

RNE's goal is to enable a robot to create a 3D map of a previously unknown envi-
ronment. For this, RRT is deployed to create a tree of nodes which serve as possible
exploration goals. The order in which the nodes are selected as the next goal and the
decision if a particular node is worth exploring, is based on a reward function.
This reward function R(n) is used to determine the NBV which serves as the next

exploration goal. It is calculated for all nodes in T whose state is not explored or failed.
The node with the highest reward is selected as the NBV. R(n) is shown in Equation
(5.8) and consists of the gain G(n) which was introduced in the previous section and
the cost C(n). The reward function is adapted from RH-NBVP [6].

R(n) = G(n) · C(n) = G(ϕmax) · e−drn (5.8)

C(n) for node n is determined by the distance along the tree's edges drn between
the node closest to the robot pnr and the particular node's position pn . This distance
metric guarantees that a path with the calculated length exists while the Euclidean
distance disregards possible obstacles between both nodes and resulting detours.
The formula for C(n) gives a strong bias towards nearby goals. This should reduce

the total exploration duration and the traveled path length because it avoids back-and-
forth motion. On the other hand, the explored volume is expected to increase steadily.

5. RNE 1 - RRT-Based Exploration 75

A greedier approach that only focuses on maximizing the gain explores vaster amounts
of space early in the exploration.

5.1.7. Global Navigation Planner

The exploration approach introduced in this chapter creates a tree T in the world space
to map an unknown environment. It identi�es the nodes in the tree that are worth
exploring. A part of this approach is the navigation planning from the robot's current
position to a particular goal node.
For this, a global planner for the ROS navigation stack is proposed which follows

the tree's edges when moving from one node in T to the next. The path also resembles
the distance from the cost function C(n) and therefore gives a more precise estimation
of the real cost for traversing to a particular node.
The introduced planner is named RneGlobalPlanner and is re�ned in the following

chapters. The word global in its name refers to the naming of the ROS navigation
package which divides planners into local and global. A global planner proposes a
more direct path that does not necessarily regard the robot's kinematics and relies
on a map built by the robot. A local planner considers the robot's kinematics and
actual sensor input to be able to react to dynamic obstacles or changes in the map in a
restricted area around the robot. This di�erentiation is independent of the distinction
between local and global exploration shown in Chapter 8
The distance drn and the path Prn in T between pnr and pn are stored for each node

n during the exploration. Prn holds an ordered list of references to all nodes in the
path from the particular node to pnr including itself. Therefore, the robot's position is
actively monitored and it is always checked which node in T is closest to the robot. If
this node changes due to the robot's movement, drn and Prn are updated for all nodes.
This update is based on the following logic. When a new node n is added to T ,

drn and Prn are calculated based on its parent node np. drn equals the parent node's
distance to the robot drnp plus the distance between node and parent node. Prn copies
Prnp and the new node is added to the list.
The update of drn and Prn for each node when the robot moves and pnr changes,

depends on the direction of the movement in the tree regarding the particular node:

Towards node: The robot moves towards the regarded node along a tree edge. drn is
reduced by the distance between new and old nearest node. The former nearest
node is removed from Prn .

Away from node: The robot moves away from the regarded node along a tree edge
which results in drn being incremented by the distance between new and old
nearest node. The new nearest node is added to Prn .

Jump to node: The new and old nearest node have no connecting edge in the RRT.
This is caused by a localization error or a local planner deviation from the global
path. All drn and Prn are recalculated starting at the currently nearest node
with a breadth-�rst expansion through the complete tree. The same logic as for
initializing a new node is used. The exception is that drn and Prn are not always
initialized from the parent node but also from child nodes, depending on the
expansion direction.

5. RNE 1 - RRT-Based Exploration 76

When the next exploration goal is selected, the particular node's path is retrieved,
intermediate poses are added between all edges and the robot's position is connected
to the �rst or second node in the path. The robot can be closer to the �rst node but
already on the edge between the �rst and second node. If this is the case, the �rst and
currently nearest node is removed from the path and the robot's position is directly
connected to the second node. Otherwise, it is connected to the �rst node.

5.1.8. Termination Condition

There are two exit conditions for RNE which are provided to it as parameters. The
�rst is the timer duration texit which is started when the list of nodes to be explored
is empty and stopped when a new node is successfully added. The timer value should
be set depending on the area to be explored and the available computation power.
Restricted areas with narrow passages tend to increase the time RRT needs to place
new nodes. Once the timer �nishes after no new nodes have been placed for the set
amount of seconds, the exploration �nishes.
The minimum gain threshold gmin is the indirect second exit condition because it

in�uences when nodes are set to the status explored. The exploration terminates as
soon as all nodes are explored and no new nodes can be added. If the value of gmin is
too low, all nodes with at least a minimal gain are visited which increases the overall
duration. If it is too high, most nodes are set to explored before they are visited which
reduces the total map coverage.

5.2. Sparse Ray Casting and Sparse Ray Polling

This work's approach SRP is signi�cantly inspired by SRC which was introduced by
Selin et al. [7]. They proposed a sparse sampling in an OctoMap at user-de�ned
intervals in r, ϕ and ϑ directions.
Spherical volume elements are attributed along the ray in radial distance with an

increasing volume further away from the node. The volume contributes to the speci�c
gain, so that an unknown voxel closer to the node yields less gain than one further
away. They sample all around a node and extract the orientation with the maximum
gain for the particular node.
Selin et al. showed that their approach outperforms RH-NBVP while requiring far

less computation time. In RH-NBVP, the sensor orientation is randomly sampled like
the node's position. For this orientation, a view frustum is constructed from the FoV
and range of the sensor. Then, all voxels inside the frustum in the OctoMap are iterated
over to derive the gain. Selin et al. compared their SRC with RH-NBVP's approach
which takes approximately 100 times longer to calculate the gain.
Oleynikova et al. [87] employed sub-sampling of the frustum derived in RH-NBVP by

checking only one voxel out of a user-de�ned number. They showed, that sampling only
one out of 20 voxels reduces the computation time by factor three while the percentage
of unknown voxels only deviates by one percent compared to the full sampling method.
Based on the �ndings in [7, 87], SRP is developed to reduce the time required for

calculating the potential gain of a node while sustaining a similar level of map coverage.
It is detailed in Section 5.1.5. The following comparison through a set of experiments
highlights the di�erences between SRC and SRP.

5. RNE 1 - RRT-Based Exploration 77

Experimental Setup

The experiments are conducted in the simulation environment Gazebo and run on a
computer using Ubuntu 18.04 with 16GB RAM, an AMD Ryzen 5 1600 six core proces-
sor and an NVIDIA GeForce GTX 1050Ti GPU. The world used for these experiments
can be seen in Figure 5.8a.
Since the calculation depends on the sensor's FoV and range, three di�erent sensor

setups are used for variation which are listed below with their respective abbreviations:

RS: The �rst setup has an Intel RealSense depth camera with a FoV of 87x58 degrees
mounted on a swiveling joint which enables a total horizontal FoV of 223 degrees.
The camera's sensing range lies between 1 m and 8 m and is placed on a Clearpath
Robotics Husky UGV2. It can be seen in Figure 5.8d.

VL: The second sensor is a Velodyne VLP-16 lidar3 tilted at a 90 degrees angle on a
rotating joint which results in an all around 360x135 degrees FoV. The Velodyne's
range starts at 0.5 m and extends up to 100 m. It is placed on a Clearpath
Robotics Husky UGV as well and depicted in Figure 5.8c

T3: The last setup also has the above-mentioned depth camera without a swiveling
joint mounted on a TurtleBot3 Burger4 and is shown in Figure 5.8b.

The ROS package GMapping is used as the SLAM approach which is described in
Section 3.2.2. GMapping needs odometry from the robot to estimate the localization
which is provided by the simulated robot. The Husky UGV uses an EKF to fuse the
Inertial Measurement Unit (IMU) and wheel encoder readings to derive an odometry.
A SLAM approach is required to localize the robot and create a map to use for the

traversability analysis. Since the environments for the evaluation are �at, a 2D SLAM
is su�cient with no need for an additional algorithm to evaluate traversability based
on the robot's kinematic constraints. The ROS navigation stack's DWA planner is
employed for local planning which follows the proposed RneGlobalPlanner's waypoints
while trying to maintain a secure distance to obstacles.
SRP and SRC are used directly after each other so that the OctoMap is assumed

to be identical for every node created by RNE whose gain must be calculated. For
each pair of calculations, the duration t, the number of voxels that are checked v and
the resulting best yaw ϕmax are recorded. The maximum number of voxels vmax is the
highest recorded number of observed voxels that is seen from a single node during an
experiment. The number of voxels and max voxels is aggregated over all ϕ steps and
henceforth the view score refers to this total number of voxels and not to the number
of voxels inside the FoV of the best orientation ϕmax .
Depending on the step sizes ∆ = (∆r ,∆ϑ,∆ϕ), the duration and the number of

voxels varies greatly. To verify similar behavior throughout di�erent settings, a variety
of step sizes is chosen for each sensor. The di�erent step sizes are 5, 10 and 15 degrees
for ∆ϑ and ∆ϕ for these experiments. They determine the number of rays to trace.
The ∆r step size varies between 2, 5, 10 and 15 cm for the depth camera sensor setups
and 3, 5, 10 and 15 cm for the lidar sensor setup.

2https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
3https://velodynelidar.com/products/puck/
4https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://velodynelidar.com/products/puck/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

5. RNE 1 - RRT-Based Exploration 78

(a) Simulation environment with an omitted roof (b) Turtlebot3 with an Intel RealSense depth camera

as T3

(c) Husky UGV with a rotating Velodyne PUCK

VLP-16 lidar as VL

(d) Husky UGV with an Intel RealSense depth cam-

era as RS

Fig. 5.8.: The Gazebo simulation environment world can be seen in (a) and di�erent robots and sensor
setups with their abbreviations in (b) to (d).

The computer used for the simulation is unable to cope with the lidar setup's longer
range and therefore increased number of voxels to check for a step size of 2 cm. There-
fore, it is increased to 3 cm. The voxel edge length of the OctoMap for these experiments
is always the same as ∆r .
The above-mentioned step sizes are combined which results in 12 con�gurations for

each sensor setup. For each con�guration, one exploration is conducted and all gain
calculations are saved in pairs. For every pair, the di�erence in best yaw ϕdif and the
di�erence in view score vsdif is calculated with Equations (5.9) and (5.10) respectively.
v and vmax for SRP and SRC respectively are used to deduct a view score vs for each
gain calculation. ϕdif must be between 0 and 180 degrees since 0 degrees equals 360
degrees orientation.

5. RNE 1 - RRT-Based Exploration 79

ϕdif =

{
|ϕSRC − ϕSRP | , 0 ≤ |ϕSRC − ϕSRP | ≤ 180
360− |ϕSRC − ϕSRP | , |ϕSRC − ϕSRP | > 180

(5.9)

vsdif =
vSRC

vSRCmax

− vSRP

vSRPmax

(5.10)

For the duration, the number of voxels and the maximum number of voxels factors
are determined by dividing the SRC values by the SRP values which results in the
duration factor λt = tSRC

tSRP
, the voxels factor λv = vSRC

vSRP
and the maximum number of

voxels factor λvmax =
vSRCmax

vSRPmax
.

Experiment Results

To compare SRP and SRC, the mean of every recorded attribute is computed which
includes the factors λt, λv and λvmax . For the yaw ϕdif and view score di�erences vsdif ,
their respective Standard Deviation (SD) σ is computed in addition to their mean
value µ. The averages over the di�erent con�gurations can be seen in Table 5.1 and
the values for each con�guration in the Appendix in Tables A.1 (p. 160) and A.2 (p.
162).
The overall results show that SRP is around 12 times faster than SRC. For the

particular con�gurations it can be deduced that this value is corresponding to the
di�erent step sizes and henceforth the maximum amount of checked voxels. The values
range from a factor of around 2.5 for the lidar with step sizes of 10 degrees for ∆ϑ and
∆ϕ and 3 cm for ∆r , to approximately 54 for the depth camera with step sizes of 5
degrees for ∆ϑ and ∆ϕ and 15 cm for ∆r .
It is noticeable that the factor scales di�erently when changing ∆ϑ and ∆ϕ or ∆r .

Increases and decreases in all step sizes proportionally lead to an increase or decrease in
the maximum number of checked voxels. But only ∆ϑ and ∆ϕ correlate with the average
duration and henceforth the duration factor while ∆r seems to be inversely proportional
to the duration factor. This is caused by the SRC duration remaining approximately
the same when only changing ∆r while the SRP duration scales proportionally with
it. Therefore, the SRC duration is mostly based on the number of rays cast and the
length of the ray while the voxel edge length only plays an inferior part. This indicates
that there are con�gurations with a su�ciently �ne-grained resolution where SRC is
faster than SRP. But the computer used for these experiments is not able to operate
with these con�gurations as they lead to a crash of the simulation. Therefore, they
are probably not suitable to be used on a mobile robot with more limited processing
power.
The average factor for the number of observed voxels for the swiveling depth camera

is at roughly 1.41 which means that SRC examines around 40 percent more voxels
than SRP. For the lidar, this factor is at approximately 1 which means they are equal
in average but the particular con�gurations vary from a factor of 0.79 to 1.13. The
rigidly mounted depth camera setup's average factor is 1.34. For the swiveling and
rigidly mounted depth camera, the maximum voxels factor is around 50 percent higher
for SRC while for the lidar the factor is at 1.28.
The higher maximum voxels factors are caused by SRC checking every voxel a ray

is cast through while SRP only samples along the ray. For horizontal or vertical rays,

5. RNE 1 - RRT-Based Exploration 80

Tab. 5.1.: The averages of the duration λt, voxels λv and maximum number of voxels factor λvmax

as well as the averages µ and SDs σ of the yaw ϕdif and view score di�erences vsdif are shown for
the comparison between SRC and SRP. These values are depicted for the Husky robot with a depth
camera as RS, the Husky robot with a lidar as VL and the Turtlebot3 robot with a depth camera as
T3. They are also averaged over all con�gurations of the comparison.

Con�gu-
ration

λt λv λvmax

ϕdif vsdif

µ σ µ σ
RS 8.52340 1.41394 1.47323 4.87078 17.58356 -0.00917 0.01329
VL 7.55720 1.01844 1.28347 21.98247 37.73998 -0.04124 0.04423
T3 18.88893 1.34252 1.51288 9.42592 26.14318 0.00493 0.03981
All 11.65651 1.25830 1.42319 12.09305 27.15557 -0.01516 0.03244

the number of voxels is the same for both variants. Because both depth camera setups
have the same range, voxels and maximum voxels factors are expected to be similar.
Furthermore, the behavior described below is observed during the experiments. Rays

traced by SRP are not always aborted upon hitting a solid wall. Figure 5.9 shows a
wall in the OctoMap and rays traced by SRP and SRC.
The image on the left features both SRP and SRC while SRP is hidden on the right.

A ray going through a gap in the wall in the bottom left corner can be seen where both
approaches continue the ray tracing. A second ray can be seen in Figure 5.9a which is
only traced by SRP while Figure 5.9b shows that SRC stops tracing because of the wall
as indicated by the white circle. It can be deduced that SRP occasionally penetrates a
wall in the OctoMap. This is caused by an unfavorable angle and distance where the
sample points are placed directly before and behind the wall.
Because of the signi�cantly longer range of the lidar sensor compared to the depth

camera, the penetration e�ect for SRP described before is likely to cause similar voxels
and max voxels factors between SRP and SRC for the lidar setup. If such a penetration

(a) SRC and SRP (b) SRC

Fig. 5.9.: Penetration of walls for SRP depicted as blue and red spheres and SRC as blue and red
cubes shown with OctoMap voxels as purple to green cubes. (a) shows SRP and SRC while (b) only
shows SRC with the white circle marking the position where the ray in (a) penetrates the wall.

5. RNE 1 - RRT-Based Exploration 81

e�ect occurs for the lidar setup, far more voxels are added than if it occurs for the depth
camera.
In addition to this, the longer range in the enclosed simulation environment increases

the impact of horizontal rays for the long-range lidar since there often is more distance
to a far wall than to the ceiling or ground. These horizontal or near horizontal rays
have the same number of voxels for SRP and SRC. The shorter range of the depth
camera prevents this e�ect.
The overall combined average yaw di�erence is approximately 12.1 degrees with a

SD of 27.2 degrees. For the swiveling depth camera, the average yaw di�erence is only
4.9 degrees with a minimum of 1.6 degrees for ∆ϑ = ∆ϕ = 15 degrees and ∆r = 10cm.
The rigidly mounted depth camera has an average yaw di�erence of 9.4 degrees and
the lidar 22.0 degrees with a maximum of 35.2 degrees for ∆ϑ = ∆ϕ = 15 degrees and
∆r = 5cm.
The signi�cantly higher average yaw di�erence and SD of the lidar setup is probably

caused by the sensor's 360 degrees horizontal FoV. Minor di�erences in the sum of
perceived unknown voxels are the reason that a completely di�erent yaw is chosen.
A smaller horizontal FoV creates a stronger focus towards a particular direction, that
according to the lower average yaw di�erences for the depth cameras, is less prone to
these minor di�erences between SRC and SRP.
The view score di�ers heavily between the di�erent setups and con�gurations which

is re�ected in the SD being larger than the mean values. When regarding the view
score and the view score di�erences for single con�gurations in Appendix A (p. 160),
it can be seen that the di�erences are small compared to the overall view score mean
values.
This indicates that using SRC or SRP has only a minor impact on the view score of

each particular node which results in a similar gain G(n) as well as selecting the same
nodes as the next exploration goals.
In conclusion, SRP is around 12 times faster than SRC while obtaining similar results

regarding the best orientation and view score which is derived from the identi�ed
amount of observed unknown voxels. It coincides with the �ndings in [87] which shows
that sub-sampling decreases the computation time while having only a minor impact
on the calculated relative gain.

5.3. Coupled and Decoupled Gain Calculation

To demonstrate the advantage of decoupled gain calculation over a coupled gain calcula-
tion, simulations are conducted. Decoupled gain calculation describes the computation
of the node gain in a di�erent process than the remaining RNE as explained in Section
5.1.2. Coupled gain calculation blocks the exploration process while it determines the
node gains after reaching a goal.
The simulations are run in Gazebo and reuse the previously introduced environment

and con�gurations from Section 5.2 which can be seen in Figure 5.8. Step sizes are set
to 10 degrees for ∆ϕ and ∆ϑ and 10 cm for ∆r .
For each of the con�gurations, 10 runs with coupled gain calculation and 10 runs

with decoupled gain calculation are executed. For the coupled gain calculation, the
exploration mode is set to �nish and for decoupled gain calculation, it is set to interrupt.
These modes can be set in the RSM and are explained in detail in Section 4.1.3. The

5. RNE 1 - RRT-Based Exploration 82

Tab. 5.2.: The mean value µ and SD σ of exploration duration, path length and mapped occupied
voxels for di�erent con�gurations are shown for multiple simulation runs using coupled and decoupled
gain calculation as CF and DI respectively. The con�gurations are the Husky robot with a depth
camera as RS, the Husky robot with a lidar as VL and the Turtlebot3 robot with a depth camera as
T3. The best mean values for each robot con�guration are printed in bold letters.

Con�guration
Duration [s] Path [m] Voxels
µ σ µ σ µ σ

RS-CF 336.35 90.08 74.71 30.56 148038.8 42746.3
RS-DI 315.68 35.60 54.34 10.73 153983.4 10013.1
VL-CF 467.95 261.64 74.72 39.33 127038.5 22119.7
VL-DI 434.54 68.19 65.28 20.25 127473.4 10327.3
T3-CF 616.65 214.15 96.23 39.68 100886.4 12412.2
T3-DI 445.69 95.92 58.94 9.66 102779.4 7950.0

interrupt mode allows abandoning a currently pursued goal if a better goal becomes
available while the �nish mode enforces the completion of the current goal before
transitioning to the next.
The coupled gain calculation combined with the �nish exploration mode is referenced

as CF and the decoupled gain calculation with the interrupt exploration mode as DI.
Table 5.2 shows the results of the simulations regarding exploration duration, path
length and mapped occupied voxels. For all values, the mean µ and the SD σ are
presented.
For all con�gurations, the decoupled gain calculation leads to shorter duration and

paths as well as a slightly increased amount of perceived occupied voxels. The large
SD is caused by the randomness of the node sampling and is two to three times as large
for CF because sub-optimal goals are pursued even when better alternatives become
available.
The improvement in duration varies between approximately 7% for RS and VL and

peaks at around 38% for T3. The path length is reduced by approximately 13% for
VL to 39% for T3. The improvement in mapped occupied voxels is below 5% for all
con�gurations.
The experiment demonstrates that the ability to continue moving towards a goal

while not all nodes' gains are calculated and to abort inferior goals when better ones
become available, signi�cantly reduces the exploration duration and path length.

5.4. Conclusion

This chapter describes RNE's �rst iteration that is based on an RRT to produce a
tree structure whose nodes are evaluated regarding their particular information gain
and distance to the robot to select an NBV. The information gain of each node is
calculated using SRP and is decoupled from the remaining exploration process. This
enables aborting a current goal as soon as a superior goal becomes available. A distance
metric based on the path from the node nearest to the robot to the particular node is
proposed. It is also used to derive a global navigation path for the robot to follow.
But there are the following drawbacks with this implementation:

1. The larger the already explored space grows, the fewer samples are placed close

5. RNE 1 - RRT-Based Exploration 83

to the robot. This increases the likelihood of back-and-forth motions because no
new nodes are placed near it and it has to move to unexplored nodes further away.

2. The global navigation path o�ers a previously traversability-checked, safe corridor
for the robot but can lead to large detours due to the tree structure. In the case
of a nearby goal that is not in the same branch of the tree, the global path goes
back along the tree's edges. Only when the �rst mutual node towards the goal
node is reached, it moves upwards in this branch.

3. These occasionally ine�cient global paths are also used to calculate the distance
to each node which favors the exploration of the current tree branch but hinders
exploring nearby promising nodes in other branches.

Because of these drawbacks, early comparisons with implementations of RH-NBVP
and AEP adapted to UGVs outperform this �rst iteration of RNE. This can be seen
in an experiment shown in the following chapter's Table 6.1 and outline that RNE
requires improvements.
When using the default global planner from the ROS navigation stack instead of the

introduced global path planner, RNE is able to increase the map coverage and reduce
the exploration time. The default global planner follows a direct path towards its goal
if there are no obstacles in the way.
But the proposed global planner's included traversability check of all nodes and

edges is an important aspect of RNE. Instead, other improvements to the exploration
approach are introduced in the next chapter which are expected to compensate the
drawbacks mentioned above.

84

6. RNE 2 - RRG-Based Exploration

The second iteration of RNE is presented in this chapter. It builds on top of Chapter
5 in which RRT is utilized for building a tree that guides the exploration. A global
planner based on this tree, that was introduced in the �rst iteration, causes large
detours and decreases the exploration's e�ciency.
In this iteration, RRT is replaced with RRG, that is explained in Section 3.1.3.

Replacing the tree with a graph allows for advanced connectivity between the nodes
to be explored. Karaman and Frazzoli [17] showed that the RRG is asymptotically
optimal unlike RRT. This means that the resulting path for an in�nite amount of
nodes is optimal while this is not guaranteed for RRT. This change is intended to
remove the drawbacks from the previous iteration regarding the sub-optimal global
path planner and the distance metric.
Local sampling is introduced which adds additional nodes in proximity to the robot.

This should enhance local exploration and reduce the back-and-forth motion from the
RRT-based approach. It is inspired by the works of Wang et al. [60], Denny et al. [61]
and Gammell et al. [59] which adjust the sampling space to improve sample placement.
Their approaches are introduced in Section 2.3.
In the upcoming sections, the RRG-based approach is detailed �rst, followed by the

adapted path and distance calculation in the graph and the addition of local sampling.
Furthermore, the proposed approach is compared to the �rst iteration and to versions
of the algorithms RH-NBVP and AEP that have been adapted for UGVs.

6.1. Graph-Based Design

The change from RRT to RRG is implemented by adapting the algorithm, that con-
structs a tree, to build a graph instead. Therefore, it connects all nearby nodes with
each other. Furthermore, the distance and path calculations require changes to �nd
the optimal paths through the graph which is not as trivial as in a tree. Finally, lo-
cal sampling enhances local exploration and is intended to reduce the total traveled
distance.
Similar to RRT, all information regarding the graph is stored in a ROS message

which is detailed in Section 5.1.2. Compared to the previous message, nodes no longer
contain information about parent and children nodes but a list of references to all edges
connecting them to other nodes. Furthermore, a list of edges is added to the message
where each edge e holds references to the nodes it is connected to and its length.

6.1.1. Adapted Algorithm

The algorithm to construct the RRG G = (N,E) for exploration is shown in Algorithm
6.1. It requires the robot's position probot , the maximum distance dmax the robot can

6. RNE 2 - RRG-Based Exploration 85

Algorithm 6.1: Rapidly-exploring Random Graph construction for exploration
Input: V,probot , dmax

1: G ←initGraph(probot)
2: while not explorationFinished() do
3: prand ←randomlySamplePoint(V)
4: pnear ← findNearestNeighbour(G,prand)
5: if pnew ←steerCollisionFree(V,prand ,pnear) then
6: Nd ← findNodesInRadius(G,pnew , dmax)
7: Nc ← ∅
8: for pd ∈ Nd do

9: if collisionFree(V,pnew ,pd) then
10: Nc ← Nc ∪ pd
11: end if

12: end for

13: addNodeToGraph(G,pnew , Nc)
14: end if

15: end while

move according to the input function explained in Section 3.1.2 and the world space
V .
The sets of nodes N and edges E are initialized with the method initGraph which

creates a root node at probot and sets E ← ∅. The remaining algorithm is executed while
the explorationFinishedmethod, which is explained in section 5.1.8, is not satis�ed.
First, prand ∈ V is generated and the node closest to it pnear ∈ N is determined.
Afterwards, the steerCollisionFree method, that is introduced in Section 5.1.1,

is used to determine the position of a new node pnew based on the robot's input function.
If it can be placed and connected to pnear with a minimum edge length of dmin and a
maximum edge length of dmax without a collision, the iteration continues. Otherwise,
the sampled position is discarded.
Then, all nodes Nd ∈ N within the radius dmax around prand are identi�ed. Every

node that can be connected to pnew without a collision is added to the set Nc. The
collisionFree method's collision check is described in Section 5.1.4. Finally, pnew is
added to the graph with edges to all nodes in Nc.
Apart from switching from RRT to RRG as the structure for the nodes and connec-

tions, most of the implementation remains the same. The traversability analysis and
the termination condition are the same. Only the traversability check for the corridor
is repeated for every additional edge added to the RRG.

6.1.2. Distance and Path Calculation

The distance drn and the path Prn between the node nearest to the robot nr and n are
still maintained and stored in the particular node. But due to the change from RRT to
RRG, several adaptions are introduced to the calculation and the RneGlobalPlanner.
If nr changes, all drn and Prn are recalculated using Dijkstra's algorithm starting at

nr as described in Section 3.1.5. This approach's implementation uses a self-balancing
binary search tree for the queue with the remaining nodes in Dijkstra's algorithm which
results in a computational complexity of O(|E| log(|N |)).

6. RNE 2 - RRG-Based Exploration 86

(a) (b) (c)

Fig. 6.1.: The e�ect of local sampling on the sample density for the exploration of an exemplary
environment is shown above with light gray areas indicating free space, dark gray unknown space and
black occupied space. The robot can be seen as a black rectangle. The nodes and edges of the graph
appear in blue and green. Image (a) shows the initially explored map. Images (b) and (c) depict the
graph after 30 sec of exploration. In (c), local sampling is activated.

When a new node nnew is added to the graph, drnnew and Prnnew are derived from
nnew 's neighbor with the shortest drn similar to the �rst iteration. The edge and edge
length to this neighbor are added to Prn and drn respectively and assigned to nnew .
Then, Dijkstra's algorithm is started from nnew but without resetting all other nodes'
drn and Prn �rst. Only nodes, whose drn is larger than that of the newly established
connection, are therefore improved.

6.1.3. Local Sampling

The random sampling in V can be extended by local sampling around the robot to
increase the sample density in its proximity. This enhances the local expansion of the
graph, especially in large environments where new samples are unlikely to be placed
close to the robot's location.
Additional samples are placed in a circular area with radius rls around the robot.

The local sampling can be executed in addition to the sampling in all of V so that two
nodes are added in each iteration of the RRG construction.
Figure 6.1 shows the e�ect of local sampling in an exemplary environment after 30 sec

of exploration compared to no local sampling. The additional density and connectivity
in the graph are visible while the outward expansion remains similar.

6.2. Comparison to Tree-Based Exploration

To show the increased e�ciency of RRG with local sampling, RRG and RRT with and
without local sampling are compared to each other. Local sampling is referenced as LS
in the following �gures and tables.
The simulation environment and computer for the comparison are the same as in

Section 5.2 and the two utilized robot con�gurations in this experiment are similar
as well. The �rst robot con�guration is called VL which can be seen in Figure 5.8c
and features a rotating Velodyne PUCK VLP-16 lidar. The second con�guration is
referenced as C. It looks the same as the RS con�guration shown in Figure 5.8d but
its Intel RealSense depth camera is rigidly attached and cannot be swiveled.

6. RNE 2 - RRG-Based Exploration 87

(a) Indoor simulation environment with dimensions of

25x25x2.5 m with an omitted roof and added barriers in

the red circles.

(b) Cave simulation environment with dimensions of

60x90x30 m with added barriers in the red circles.

Fig. 6.2.: Gazebo simulation environments used for the comparison.

Figure 6.2a depicts the small and medium environments referenced as SE and ME
respectively. SE is a small part on the left of ME that is separated by barriers which are
removed in the ME scenario. Figure 6.2b shows a large underground cave environment
referenced as CE that is modi�ed from [158] to make untraversable areas inaccessible
to the robot. All runs in SE and ME are limited to 30 min and runs in CE to 1 h.
All simulations use the following parameters: texit = 10s, dmin = 1m, dmax = 2m,

rls = 5m, ∆ϕ = ∆ϑ = 10 degrees, ∆r = 0.1m, gmin = 0.05 for VL in SE and ME and
gmin = 0.1 for every other combination. The OctoMap resolution is eV = 0.1m.
Four di�erent combinations are executed in 5 variants with 10 runs each. The com-

binations are referenced as RNE which is RRG with LS, RRG, RRT with LS and
RRT.
The variants are C-SE, C-ME, VL-SE, VL-ME and VL-CE. Runs in which the robot

gets stuck during navigation are discarded. This is caused by insu�cient localization
due to erroneous odometry which leads to navigation planning too close to obstacles.
A minimum of 7 valid runs is required for each combination and variant, otherwise
failed runs are repeated.
The results of the comparison can be seen in Table 6.1 which shows that RRG is

superior to RRT in every scenario regarding the duration and traveled path length. The
mean duration of RNE compared to RRT+LS is decreased by up to 48.1% and the mean
path length by up to 43.5% for VL-ME. The mapped volume is approximately equal
throughout the runs but with a decrease for runs that ended prematurely because of
the time limit. This causes the SD of 0 for VL-CE RRT+LS since all runs stop because
of it.
RRT also has a higher SD for the duration and path length that is caused by the ran-

dom tree structure in which the robot has to backtrack to reach di�erent branches while
the RRG's interconnected graph leads to more reliable and reproducible explorations.
LS improves the duration and path length for RNE and has the most signi�cant

impact on VL-CE. The advantage of RNE is more prominent in larger environments
compared to small environments like C-SE where mean duration and distance are only
decreased by up to 3% and 0.1% respectively.

6. RNE 2 - RRG-Based Exploration 88

Tab. 6.1.: Comparison between RRG with local sampling as RNE, RRG, RRT+LS and RRT showing
the mean µ and SD σ of duration, traveled path length and mapped volume. The depth camera and
lidar con�gurations as C and VL respectively are used in the small, medium and cave environments
as SE, ME and CE respectively. The best mean values for each variant are printed in bold letters.

Con�guration
Duration [s] Path length [m] Mapped volume [m3]

µ σ µ σ µ σ

C-SE RNE 532.50 87.73 80.14 11.79 803.6 14.1
C-SE RRG 549.00 58.40 80.22 8.51 799.8 15.6
C-SE RRT+LS 798.33 157.28 113.40 30.96 768.4 87.8
C-SE RRT 836.67 323.44 129.17 32.71 798.5 23.1
C-ME RNE 1056.67 66.29 192.09 9.71 1685.9 7.0
C-ME RRG 1116.67 42.50 202.31 17.83 1692.6 9.8
C-ME RRT+LS 1651.88 180.26 248.18 71.44 1551.8 256.0
C-ME RRT 1713.00 164.59 276.18 32.69 1480.8 270.6
VL-SE RNE 270.00 32.40 45.09 7.84 928.2 23.4
VL-SE RRG 319.50 57.51 57.11 8.37 913.9 24.8
VL-SE RRT+LS 370.50 76.58 72.55 10.16 910.8 26.5
VL-SE RRT 372.00 60.75 70.70 9.49 917.6 32.3
VL-ME RNE 768.00 93.49 157.86 28.09 1684.7 35.1
VL-ME RRG 850.50 102.18 211.15 38.54 1702.5 20.0
VL-ME RRT+LS 1480.50 293.15 279.56 36.59 1701.7 57.3
VL-ME RRT 1150.50 377.51 228.57 48.44 1690.9 58.1
VL-CE RNE 2155.00 199.42 481.41 55.97 10007.4 200.1
VL-CE RRG 2655.12 217.87 682.87 72.58 10083.9 255.5
VL-CE RRT+LS 3600.00 0.00 650.81 96.36 9946.6 505.1
VL-CE RRT 3551.67 145.00 897.58 82.35 10296.8 44.8

6.3. Comparison to State-of-the-Art Approaches

To compare the proposed approach to the current state-of-the-art, sampling-based ap-
proaches RH-NBVP and AEP, they are adapted to the previously presented robot
con�gurations. RH-NBVP and AEP are detailed in Section 2.4. Since they are orig-
inally implemented for UAVs, the adaptions use this approach's steer function and
2D sampling method without local sampling.
Furthermore, their existing gain functions are replaced with SRP and integrate this

work's exit conditions gmin and texit . For RH-NBVP and AEP, texit replaces the maxi-
mum tries to �nd new samples. If the timer runs out, the current best node or frontier
for AEP is designated as a goal. If there is no node with a minimum gain, the explo-
ration terminates.
Because of these adaptions, the two approaches are referenced as RH-NBVP* and

AEP* in the following. The same �ve variants as in the previous simulations are
executed 10 times each. The RRT's maximum edge length for both is l = 1m,
RH-NBVP*'s degression coe�cient is set to λ = 0.5 and AEP*'s to λ = 0.75, its
GCR threshold to gzero = 1. The maximum and minimum amount of nodes are
Nmax = 400, N = 30 for ME and CE and Nmax = 200, N = 15 for SE with RH-NBVP*.
AEP*'s N is the same and Nmax is only half of RH-NBVP*'s. These values are based

6. RNE 2 - RRG-Based Exploration 89

Tab. 6.2.: RNE, RH-NBVP* and AEP* simulation results with mean µ and SD σ of duration, traveled
path length and mapped volume. The depth camera and lidar con�gurations as C and VL respectively
are used in the small, medium and cave environments as SE, ME and CE respectively. The best mean
values for each variant are printed in bold letters.

Con�guration
Duration [s] Path length [m] Mapped volume [m3]

µ σ µ σ µ σ

C-SE RNE 532.50 87.73 80.14 11.79 803.6 14.1
C-SE RH-NBVP* 623.33 96.66 89.33 16.18 746.0 7.0
C-SE AEP* 658.50 100.26 100.61 14.28 756.0 12.7
C-ME RNE 1056.67 66.29 192.09 9.71 1685.9 7.0
C-ME RH-NBVP* 1782.86 45.36 250.79 63.73 1494.3 245.8
C-ME AEP* 1762.50 59.37 256.19 17.78 1575.0 87.9
VL-SE RNE 270.00 32.40 45.09 7.84 928.2 23.4
VL-SE RH-NBVP* 820.71 170.08 111.61 23.67 922.3 21.4
VL-SE AEP* 589.29 64.64 86.11 14.77 911.9 25.1
VL-ME RNE 768.00 93.49 157.86 28.09 1684.7 35.1
VL-ME RH-NBVP* 1786.88 24.63 234.72 5.63 1574.3 106.9
VL-ME AEP* 1386.43 346.07 180.43 74.59 1479.5 204.9
VL-CE RNE 2155.00 199.42 481.41 55.97 10007.4 200.1
VL-CE RH-NBVP* 3519.38 228.04 398.83 25.78 8471.9 837.9
VL-CE AEP* 3429.00 530.29 387.44 81.84 8934.4 1137.7

on [7].
Table 6.2 shows the results of RH-NBVP* and AEP*. The results for RNE from

Table 6.1 are listed again for better comparability. Furthermore, Figure 6.3 displays
the mean volume and the path length over time for RNE, AEP* and RH-NBVP* in
the VL-CE variant as well as the OctoMap after 30 minutes of exploration for AEP*
and RNE. It can be seen, that the continuously-built RRG with LS and the decoupled
gain calculation lead to a vaster explored area of the map in less time while traveling
shorter distances.
The proposed RNE achieves an increase in the mapped volume of 18.1% compared

to RH-NBVP* and 12% to AEP* in the VL-CE variant while �nishing the exploration
in 38.8% and 37.1% less time respectively. The path lengths of RH-NBVP* and AEP*
are shorter because of their slower pace compared to RNE and the time limit at which
they are still not �nished with the exploration. Even in the smaller C-SE variant, RNE
decreases the duration by 14.6% compared to RH-NBVP* and 19.1% to AEP* as well
as the distance by 10.3% and 20.3% respectively.

6. RNE 2 - RRG-Based Exploration 90

(a) (b)

(c) (d)

Fig. 6.3.: The mean mapped volume in (a) and path length in (b) are shown over time for the lidar
con�guration in the cave environment. The tinted areas depict the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. The recorded OctoMap after
30 minutes of exploring with AEP* can be seen in (c) and with RNE in (d). The OctoMap's voxels
are colored according to their relative height.

6.4. Conclusion

In this chapter, the advantages of an RRG-based exploration including local sampling
compared to an RRT-based approach are detailed. The comparison to the �rst iter-
ation can be seen in Table 6.1 and shows that the disadvantages of the RRT-based
implementation are eliminated. This second iteration's contributions are listed in the
following:

1. The transition from RRT to RRG reduces the exploration duration and the path
length signi�cantly when using the proposed RneGlobalPlanner as a global plan-
ner in the ROS navigation stack.

2. Local sampling additionally decreases the duration and traversed path length of
the exploration because it promotes local exploration and reduces back-and-forth

6. RNE 2 - RRG-Based Exploration 91

motion.

3. The second iteration of RNE is compared to RH-NBVP and AEP adapted to
UGVs and demonstrates superior e�ciency regarding duration, path length and
mapped volume.

But for larger explorations, the number of nodes and edges can signi�cantly grow.
This also increases the required computation time to calculate all node gains and detect
the optimal path and distance to each of them using Dijkstra's algorithm. To reduce
this computational load, an approach to reduce the number of nodes and edges in
the graph is proposed in the next chapter. This third iteration's goal is to keep the
e�ciency of the exploration on the same level.
The current iteration also produces zigzagging navigation paths due to the random-

ness of placed samples. A strategy to put samples and therefore paths closer to the
center between obstacles is introduced in the next chapter as well. It is expected to
straighten the paths, reduce the path length and speed up the exploration.
To enable adapting the exploration to di�erent situations, the current reward func-

tion is improved in the next iteration. It allows customization and incorporates heading
changes, traversability and more into the selection of the NBV.

92

7. RNE 3 - Topology-Based

Exploration

The previous chapter presented the second iteration of RNE which introduced an RRG-
based exploration to optimize paths from one node to another along the graph's edges.
It added a local sampling in an area around the robot to increase the sample den-
sity near it. These changes allow RNE to outperform the state-of-the-art approaches
RH-NBVP and AEP which were adapted for usage with UGVs.
In this chapter, the previously introduced, RRG-based exploration is further im-

proved by decreasing the number of nodes and edges in the graph. The goal is to
reduce the computation time while retaining a similar level of exploration e�ciency.
The traversable area around each node is incrementally in�ated and checked for

obstacles up to a user-de�ned maximum radius which should be equal to or less than
the robot's sensor range. These in�ated nodes have a higher safety margin to obstacles
and increase the amount of explorable unknown space from them compared to nodes
close to obstacles which block the robot's vision.
This Node Area In�ation (NAI) is inspired by related works from Brock and Kavraki

[54], Rickert et al. [55], Shkolnik and Tedrake [56] and Gao and Shen [57, 58] which
are described in Section 2.3.
Since the in�ation process is most useful when nodes are placed in the center of

hallways, rooms or drifts, a topology-based NAI is proposed. It pushes nodes away from
obstacles, unknown space and other nodes encountered during the in�ation process to
increase their respective radius.
Furthermore, a revised cost function is presented which can be customized by user-

de�ned factors and takes gain, distance, traversability, heading and node radius into
consideration. Another method to update node rewards during the robot's movement
towards a goal node is introduced as well. This enables replacing the current goal node
with a better node if its state changes to explored during the approach of the robot.
An increased exploration e�ciency at the cost of more computation time is expected
from this addition.
NAI is described �rst, followed by the method to move nodes away from obstacles

during the in�ation process. Then, the new reward function and a heuristic to update
node gains before reaching a goal are presented with an extensive evaluation. Finally,
the in�ation process and new reward function are compared to the previous iteration
of RNE.

7.1. Node Area In�ation

NAI is introduced to increase the safety margin between the robot and obstacles. It
also enhances the amount of observable unknown space for a particular node due to
less occlusion by nearby obstacles which is shown in Figure 7.1.

7. RNE 3 - Topology-Based Exploration 93

X

Y

pnew

X

Y

pnew

Fig. 7.1.: The images show the placement of a new node pnew . The thick dark gray lines depict solid
walls while the orange area is the FoV from the particular node. It is blocked by the walls and limited
to a maximum range. It can be seen that the placement further away from obstacles in the right
image enables a much greater observable space than in the left image.

The new node placement and the NAI's traversability check, which are described in
the following sub-sections, replace the input function introduced in Section 3.1.2 and
the traversability check detailed in Section 5.1.4.

7.1.1. Node Placement

The previous input function determines the position of a new node pnew based on the
sampled point prand and the nearest neighbor in the existing graph pnear . pnew is placed
on a ray from pnear through prand on which it has to be positioned below a maximum
distance and above a minimum distance from pnear .
For NAI, this variable distance is removed. Instead, new nodes are placed directly

next to the nearest node in the graph G with an intersecting area that has a width
equal to the robot's width wrobot . This means no rectangular traversability checks have
to be conducted anymore as can be seen in Figure 7.2.
The distance to the nearest node dinfl to place a new node is based on Equation (5.4)

and can be seen in Equation (7.1) where rnear is the radius of pnear . Figure 7.2 shows
this distance between a new node pnew and its nearest node pnear in G.

dinfl =

√
r2robot + r2near

2
−
(wrobot

2

)2
(7.1)

The desired distance dinfl to place pnew is chosen to ensure that the distance between
both intersection points of the node areas of pnear and pnew equals wrobot . This assures
that there is a traversable corridor between both nodes that is wide enough for the
robot to �t through.
Before this new input function is executed, the nearest neighbor must be determined.

This is not as simple as using the radius search from a k-d tree as described in Section
3.1.6 because the relevant distance is not the distance between pnear and prand but
between the area boundaries of the two nodes. While prand is initialized with a radius
of rrobot , the radius of pnear can be signi�cantly larger.

7. RNE 3 - Topology-Based Exploration 94

X

Y

pnew
rrobot

pnear rnear

prand

wrobot

dinfl

Fig. 7.2.: The placement of a new sample prand which is moved to pnew next to its nearest neighbor
pnear . The calculated distance dinfl between pnew and pnear assures that the robot can safely traverse
from one node to the other because of the width of the intersection area that must be equal to wrobot .

To �nd the nearest neighbor, an exhaustive search over all nodes in G has to be
conducted where rnear is subtracted from the distance between pnear and prand . The
node with the smallest resulting distance is the nearest neighbor in G. If this distance
is below zero, prand is discarded as it lies inside an existing node's area.
Because the node areas are expected to be small compared to the total exploration

area, the number of nodes to be checked for the nearest neighbor search can be reduced
by the following heuristic. The largest node radius that is currently present in G is
stored and its sum with the initial node radius rrobot is used for a radius search in the
k-d tree. Only the nodes returned by this radius search must be checked as all other
nodes are too far away from prand . If the radius search returns no nodes, the nearest
node given by the k-d tree is used as pnear , even though it might not be the closest
node. This is intended to reduce the computation time for large graphs.

7.1.2. Traversability Check

After the node has been placed and passed its traversability check for the circle with
radius rrobot , incrementally growing rings around the node are analyzed and added to
the node radius, if they are traversable. The radius is incremented by the grid map's
resolution in each iteration. New nodes are aligned to the grid map as described in
Section 5.1.4. This alignment is not detailed here for simplicity.
To determine which grid map cells to check and to prevent checking cells repeatedly,

7. RNE 3 - Topology-Based Exploration 95

Algorithm 7.1: Calculation of increasing circle o�sets for traversability assessment

1: procedure calculateNextInflatedCircleOffsets(Oc, O,R)
2: j ← |O|
3: if j = 0 or rj + rm ≤ rmax then

4: Op ← ∅
5: if O = ∅ then
6: rj+1 ←

(
d rrobot

rm
e+ 1

)
· rm

7: Op ← Oc

8: else

9: rj+1 ← rj + rm
10: Op ← Oj

11: end if

12: Oj+1 ←precalculateCircleOffsets(rj+1)
13: for o← 1 to |Op| do
14: xmstart ← xmpo + 1, xmpo ∈ Opo

15: Oj+1o ← Oj+1o ∪ xmstart

16: end for

17: end if

18: return O,R
19: end procedure

the o�sets for each ring are calculated using Algorithm 7.1. It requires the o�sets Oc

for the circle with the robot's radius. Oc is calculated using Algorithm 5.2. Also, the
already existing ring's o�sets O and the set of corresponding radii R are required.
Algorithm 7.1 calculates the next in�ation ring's o�sets and radius until the maxi-

mum node radius is reached. For this radius, the sensor range rmax is used. Therefore,
the radius of the largest checked in�ation ring rj plus the grid cell size rm is compared
to rmax to determine if another in�ation ring's o�sets must be calculated.
Then, the new ring's radius rj+1 and the previous ring's o�sets Op are determined.

If no in�ation ring o�sets have been calculated before, its radius is derived from the
robot radius in grid cells plus one and Op is set to Oc. Otherwise, rj+1 is based on the
previous ring's radius rj plus rm and the previous ring's o�sets are assigned to Op.
The next ring's o�sets Oj+1 are calculated using Algorithm 5.2 with radius rj+1

instead of rrobot . Then, for every y-o�set, a start value xmstart for the x-axis is determined
from Op and added to the set. An exemplary application of this algorithm can be seen
in Figure 7.3.
Algorithm 7.2 applies the previously calculated ring o�sets O and analyzes if a ring

at index j at the position pnew is traversable. For all o�sets in Oj, the lines derived
from it are checked in the grid map using Algorithm 5.4.
For every o�set apart from the set referencing the circle's center, four lines are

constructed and checked using the y-o�set ymj , the x-o�set xmj and the x-axis start
o�set xmstartj

.

7. RNE 3 - Topology-Based Exploration 96

Algorithm 7.2: Check traversability of a ring

1: procedure isRingTraversable(pnew , O, j)

2: pmnew
..=

(
xmnew

ymnew

)
←worldToOccupancyGrid(pnew)

3: for each J ∈ Oj , J ..= {xmj , ymj , xmstartj
} do

4: if not isLineTraversable(xmnew + xmstartj
, xmnew + xmj , y

m
new + ymj) or

5: not isLineTraversable(xmnew − xmstartj
, xmnew − xmj , ymnew + ymj) then

6: return false
7: end if

8: if ymj > 0 then
9: if not isLineTraversable(xmnew + xmstartj

, xmnew + xmj , y
m
new − ymj) or

10: not isLineTraversable(xmnew − xmstartj
, xmnew − xmj , ymnew − ymj) then

11: return false
12: end if

13: end if

14: end for

15: return true
16: end procedure

X

Y

pnew

rrobotr1

r2
r3

Fig. 7.3.: This image shows pnew and its initial node radius rrobot with the circle's area that is checked
in the grid map for traversability tinted in light gray. The dashed circles around it and the grid map
cells colored in matching colors depict the di�erent NAI steps 1 to 3. The circles have the radii
r1, r2, r3 ∈ R and the marked grid map cells are de�ned by the corresponding o�sets O.

7. RNE 3 - Topology-Based Exploration 97

7.1.3. Application of Node Area In�ation

After the a new random sample is placed with a large enough intersection to the nearest
node in the graph and a circle with radius rrobot at the potential new node's position
passed its traversability check, NAI starts.
The o�sets for the smallest ring radius are selected from O and used with Algorithm

7.2. If no collision is detected, the in�ation process continues. Otherwise, it is stopped
and the node's radius remains equal to rrobot .
In each following iteration, the next ring's o�sets and respective radius are used as

an input for Algorithm 7.2. A failed traversability analysis results in canceling the
in�ation process and the node's radius is set to the previous iteration's radius.
If the o�sets for a new in�ation step do not exist yet, Algorithm 7.1 is called to

calculate them and the corresponding radius r.
If NAI fails due to unknown grid map cells, this is stored in the node. When the

particular node is updated because of the exploration of a nearby node, it is checked
if a previous in�ation process failed due to unknown cells. In this case, the in�ation
process is continued and it is checked, if new connections to neighbor nodes become
available because of it.

7.1.4. Connection to Neighbor Nodes

After NAI, the edges to all connectable nodes must be found and added to the graph.
All nodes in a radius around the newly placed node are retrieved by using a radius
search in the k-d tree. This radius is de�ned as the node's radius plus the largest node
radius in the graph.
For every retrieved node pn, it is checked if the distance between pn and the new

node pnew is equal or less than dinfl . If it is, an edge between pn and pnew is added to G.
dinfl is de�ned in Equation (7.1) and describes the minimum required distance between
two nodes with radius rrobot for pnew and rnear for pn. This assures that the intersection
between both node areas has a width of wrobot and guarantees the possibility of a safe
passage between both nodes for the robot.
Finally, Dijkstra's algorithm is run as described in Section 6.1.2. It is started at the

new node and the other node's distances are not reinitialized. Therefore, only better
connections that became available because of the new node, are updated.

7.2. Topology-Based Node Area In�ation

To enhance the placement of nodes, a topology-based NAI process is proposed. It
allows larger NAI and therefore bigger safety margins to obstacles and more suitable
view distances to objects for the sensors.
Therefore, collisions occurring during NAI no longer immediately stop the in�ation

process but are used to de�ect the node's position in the opposite direction. After
moving the node, the in�ation process is continued until the next collision occurs
which repeats the previous steps. This causes nodes to move away from obstacles and
unknown cells during the in�ation process and migrate towards the center of free space.
This can be seen in Figure 7.4

7. RNE 3 - Topology-Based Exploration 98

X

Y

pnew

rradius

(a)

X

Y

pnew

(b)

X

Y

pnew

(c)

X

Y

pnew

rmax

(d)

Fig. 7.4.: NAI with a new node pnew which is moved away from obstacles, that are depicted as dark
gray cells, is shown in the images from (a) to (d). If pnew 's in�ated area displayed as a dotted gray
circle collides with an obstacle, it is moved in the opposite direction in the following image. The
current in�ation radius at its current position is shown as a black circle while previous in�ation steps
are displayed as dashed gray circles. The previous node positions can be seen as gray dots. The
process is stopped at image (d) because the in�ation area reached the maximum range of the robot's
sensor rmax .

If there are collisions in multiple contradicting directions, the node cannot be moved
and the in�ation process is terminated. Similar directions can be combined to adjust
the movement of the node.
Furthermore, the node should move away from its nearest neighbor node to avoid

being encircled by it or encircling it. For each in�ation step, it is checked if the node
has to move in the opposite direction from its neighbor node to maintain the distance
dinfl between them.

7. RNE 3 - Topology-Based Exploration 99

7.2.1. Node Area In�ation with Moving Nodes

Algorithm 7.3 describes the process of in�ating a node area including the movement
away from obstacles and the nearest neighbor. It requires the aligned, newly sampled
node's position pnew for which the circular o�sets Oc with radius rrobot have already
been checked using Algorithm 5.3. Furthermore, pnew 's nearest node pnear and the
existing o�sets O and radii R for the in�ation process are provided.
The in�ation radius rnew is initialized with rrobot and the iterator j over the in�ation

o�sets is set to one. The set of previous positions Pprev consists only of pnew at the
start.
The movement direction D is a tuple containing the direction dird and the informa-

tion if the direction has already been merged dirm. dird can have one of the following
states:

center : The node remains stationary and is not moved. This indicates that no
collision with obstacles or unknown space occurred and that the neighboring
node's distance to pnew is in bounds.

none: Multiple contradictory collisions are detected and there is no direction to
move to. The in�ation process must be stopped.

Algorithm 7.3: In�ate node area and move it away from obstacles

1: procedure inflateNodeArea(pnew ,pnear , O,R)
2: rnew ← rrobot

3: j ← 1
4: Pprev ← {pnew}
5: D ..= {dird, dirm} ← {none, false}
6: while rnew ≤ rmax do

7: if j > |R| then
8: O,R←calculateNextInflatedCircleOffsets(Oc, O,R)
9: end if

10: D ←isRingTraversable(pnew , O, j)
11: if dird = none then
12: return rnew

13: else

14: if dird = center then
15: rnew ← rj

16: j ← j + 1
17: else if not checkMovementWithNearestNode(pnew ,pnear ,D)
18: or not moveNode(pnew , dird, Pprev) then
19: return rnew

20: end if

21: end if

22: end while

23: return rnew

24: end procedure

7. RNE 3 - Topology-Based Exploration 100

X

Y

w
es
t east

north

south

south-
west

south-
east

north-
west

north-
east

pnew

Fig. 7.5.: Node nnew 's radius is in�ated from the dashed circle to the solid circle at its position
pnew . The shaded grid map tiles mark the areas that are checked for collisions. If a collision with an
obstacle or unknown space is detected, the opposite direction is returned as the movement direction.
For example, an obstacle in the southeast cell leads to an evasion in northwest direction.

e.g. north: One of the eight directions shown in Figure 7.5 that point towards the
particular grid cell which is adjacent to the grid cell pnew is located at.

The algorithm loops over all in�ation rings until the maximum radius rmax is reached.
Before Algorithm 7.2 is called, it is checked if there are further entries in R for the
iterator j to proceed. If there are not, the next in�ation ring is calculated using
Algorithm 7.1 and added to O and R.
For movable nodes, Algorithm 7.2 is adjusted to return the direction in which the

node has to be moved in case of a collision with occupied or unknown grid cells. As
can be seen in Figure 7.5, the node is moved in the opposite direction of the detected
collision. If multiple collisions are detected, their directions are merged using Algorithm
7.4 which is explained in Section 7.2.2. The returned direction is stored in D.
If there is no direction to evade the collisions, the algorithm terminates and returns

the current radius rnew up to which the node area has been in�ated. If the node does
not need to be moved, rnew is increased to the next in�ation radius rj ∈ R and the
iterator j is incremented.
Otherwise, Algorithms 7.5 and 7.6 are called to assess if the proposed movement

direction can be applied to the node. If one of these two algorithms returns false, the
in�ation process is terminated as well.

7. RNE 3 - Topology-Based Exploration 101

X

Y

pnear rnear

pnewrrobot

rnew

Fig. 7.6.: The new node pnew is in collision with the dark gray obstacle after being in�ated, which
is shown as a dotted circle, and therefore has to be moved north. Due to an increasing proximity
with its nearest neighbor node pnear , the moving direction is adjusted to northeast to avoid obstacle
and pnear . The dashed arrows around pnew 's former position indicate the available directions for its
movement. The chosen direction is drawn as a solid arrow. The dashed black circle shows pnew 's
initial radius and the solid black circle indicates the in�ated area.

Figure 7.6 illustrates the concept of the repulsion from occupied cells and the neigh-
bor node applied to a newly placed node pnew .

7.2.2. Handling Multiple Collisions

When multiple collisions with occupied or unknown grid cells are detected or the new
node pnew moves too far away from or too close to its neighbor node pnear , multiple
directions to move the node to are found. Depending on these directions, they either
can be merged or lead to the termination of the in�ation process.
In Algorithm 7.4, the tuple D which is outlined in Section 7.2.1 and a new direction

dnew are merged. The algorithm returns true if the merge is successful and false if it
fails. Furthermore, D is changed to the merged direction when it is successful.
First, it is checked if dird equals center. If it does, it is overwritten with dirnew and

the merge completes successfully.
Otherwise, the di�erence dirdiff between dird and dirnew is calculated which is the

absolute di�erence between both directions in degrees. Because all directions are mul-
tiples of 45 degrees and the maximum di�erence in a circle is 180 degrees, dirdiff is
limited to the numbers listed in the algorithm.
If dirdiff equals zero, the merge is successful as both directions are the same. In

7. RNE 3 - Topology-Based Exploration 102

Algorithm 7.4: Merge two directions of node movement

1: procedure mergeDirection(D ..= {dird, dirm}, dirnew)
2: if dird = center then
3: dird ← dirnew

4: else

5: dirdiff ← |dird − dirnew |, dirdiff ∈ 0, 45, 90, 135, 180
6: if dirdiff = 0 then
7: return true
8: else if dirm and dirdiff ≥ 90 or dirdiff ≥ 135 then
9: return false
10: else

11: dird ←combineDirections(D, dirnew , dirdiff)
12: dirm ← true
13: end if

14: end if

15: return true
16: end procedure

case of a previous merge dirm and a di�erence of greater equals 90 degrees or just a
di�erence of greater equals 135 degrees, merging fails.
Otherwise, the directions are combined based on Equation (7.2). The �rst two

cases describe merging two directions with a di�erence of 45 degrees. In this case,
the diagonal direction in the grid map is kept. All other cases represent 90 degrees
di�erences where the intermediate direction is stored in dird. It does not matter which
of the variables has which direction for these cases.

dird =



dird dirdiff = 45 and dird mod 90 6= 0

dirnew dirdiff = 45 and dird mod 90 = 0

north {dird, dirnew} = {northeast, northwest}
east {dird, dirnew} = {northeast, southeast}
south {dird, dirnew} = {southeast, southwest}
west {dird, dirnew} = {southwest, northwest}
northeast {dird, dirnew} = {north, east}
northwest {dird, dirnew} = {north,west}
southeast {dird, dirnew} = {south, east}
southwest {dird, dirnew} = {south,west}

(7.2)

Finally, dirm is set to true. If the merge did not terminate before, it returns its
success.

7.2.3. Moving Nodes

Before a new node pnew is moved during the in�ation process, it is assessed if a move-
ment in the proposed direction is acceptable. This regards the distance to its nearest
neighbor pnear in the graph and if it has been moved to a new and traversable position.

7. RNE 3 - Topology-Based Exploration 103

Algorithm 7.5: Assess node movement regarding the nearest neighbor

1: procedure checkMovementWithNearestNode(pnew ,pnear ,D)
2: pmoved ←movePoint(pnew , dird)
3: if D(pmoved ,pnear)− rnear < 0 or D(pmoved ,pnear) > dinfl then

4: dirn ←getDirection(pmoved ,pnear)
5: if not mergeDirection(dirn,D) then
6: return false
7: end if

8: pmerged ←movePoint(pmoved , dird)
9: if D(pmerged ,pnear)− rnear < 0 or D(pmerged ,pnear) > dinfl then

10: return false
11: end if

12: end if

13: return true
14: end procedure

First, Algorithm 7.5 simulates the movement of pnew in the given direction dird to
a new position. The method movePoint returns the coordinates of pnew 's adjacent
grid cell center pmoved according to dird. The Euclidean distance between pmoved and
pnear is calculated and it is checked if pmoved is inside the nearest node's radius rnear or
outside the distance dinfl from Equation (7.1). dinfl is the distance at which both nodes
can be connected with a safe width of the intersection area. If one is true, the node
must not be moved. Otherwise, this algorithm returns true because the movement
violates no constraints.
The direction dirn, in which the node moves, is acquired from the method get-

Direction. It calculates the arctan between pmoved and pnear and rounds it to the
nearest of the eight cardinal directions shown in Figure 7.5. The opposite direction is
chosen if pmoved must move closer to pnear instead of away from it.
Afterwards, Algorithm 7.4 is used to merge new and given directions. If it fails, the

given movement is not allowed regarding the distance to the nearest node pnear and
the in�ation process must be terminated. Otherwise, the merged direction is stored in
dird.
A new position pmerged is then simulated for the merged direction and it is checked

if the distance between pmerged and pnear violates the distance boundaries. If pmerged is
not inside rnear and the distance is equal to or less than dinfl , the node movement can
be conducted. Otherwise, it fails and the in�ation process stops.
This assessment's goal is to add nodes to the graph which are connectable to at least

the nearest node due to the distance constraint dinfl . Furthermore, it prevents newly
sampled nodes from collapsing into the position of already existing nodes because of
the required minimum distance larger than the nearest node's radius rnear .
Algorithm 7.6 de�nes the process of moving the node pnew in direction dird while

regarding the previous node positions Pprev . After pnew has been moved to a new
position pmoved , which is the center of an adjacent grid map cell in the direction of
dird, it is checked if pmoved already has been moved to this position before.
In this case, the algorithm fails and the in�ation process is stopped as pnew is moved

back and forth. Otherwise, the new position is stored in pnew and it is added to Pprev .

7. RNE 3 - Topology-Based Exploration 104

Algorithm 7.6: Move node away from obstacles

1: procedure moveNode(pnew , dird, Pprev)
2: pmoved ←movePoint(pnew , dird)
3: if pmoved /∈ Pprev then

4: pnew ← pmoved

5: Pprev ← Pprev ∪ pnew

6: return true
7: end if

8: return false
9: end procedure

7.2.4. Adding Nodes to the Graph

When the in�ation process �nishes, node pnew is added to the graph G and connected
to nearby nodes using the method described in Section 7.1.4. Nearby nodes are found
using a radius search and edges to them are added depending on the distance dinfl

introduced in Equation (7.1).
Afterwards, Dijkstra's algorithm is executed to update the node's distances and

paths to the robot as described in Section 6.1.2.

7.3. Topology-Based Node Area In�ation Conclusion

In conclusion, Figure 7.7 shows the di�erence between the di�erent strategies of basic
RRG, additional NAI and topology-based NAI. The exemplary comparison highlights
the improved overall distances of node centers to obstacles when using the in�ation
process. The movement of nodes away from obstacles also leads to a topology-based
graph and a signi�cant reduction of nodes compared to the basic RRG approach while
maintaining a similar area coverage.
Furthermore, the topology-based graph has far less zigzagging edges between the

nodes which should speed up the exploration due to straighter and shorter paths.
Another option to reduce zigzagging deployed by state-of-the-art approaches like

TARE, which is introduced in Section 2.4.2, is path smoothing. But this is often only
used on the already selected path to an exploration goal which would deviate from the
traversability-checked path in this work. The topology-based NAI furthermore incor-
porates the straightened path in the cost function to enable a more realistic exploration
goal selection.
A thorough evaluation is undertaken in Section 7.7. This comparison emphasizes the

di�erent layouts of the graphs built due to the varying strategies. To more adequately
take the di�erent topologies into consideration, the cost function is revised in the next
section to also regard other metrics besides the distance.

7.4. Revised Reward Function

In this section, an enhanced reward function is introduced which replaces the previous,
simpler function shown in Section 5.1.6. It is based on the RH-NBVP's cost function

7. RNE 3 - Topology-Based Exploration 105

(a) (b) (c)

Fig. 7.7.: Comparison of an exemplary node placement between RRG (a), NAI (b) and topology-based
NAI (c) after 30 sec of exploration in the medium environment shown in Figure 6.2a. Green circular
and rectangular areas show traversable space identi�ed by the proposed approach. Dark green and
blue lines and dots show the edges and nodes of the graph respectively. The black rectangle marks the
robot's position. Rectangular traversability checks are no longer required for NAI shown in images
(b) and (c).

and solely relies on the number of observable unknown voxels and the distance to the
goal node.
For the new reward function R(n) = G(n) · C(n), the gain G(n) and cost functions

C(n) are updated. While the cost function is changed to include more factors, both
G(n) and C(n) are adapted to have more comparable values.

7.4.1. Gain Function

The gain function is adjusted from the number of observable unknown voxels at the
best robot orientation G(ϕmax) to the ratio G(ϕmax)/gmax that is introduced as the view
score in Section 5.1.5. It uses the maximum number of observable unknown voxels for
the sensor's FoV gmax .
This new gain function is in a range between zero and one instead of between zero

and an arbitrary voxel number that di�ers widely from sensor to sensor. This makes
the di�erent factors of the reward function easily readable and more comparable.

7.4.2. Cost Function

The revised cost function C(n) includes the distance, change in heading, traversability
and radius of a node n and is shown in Equation (7.3). For comparability, a revised
cost function Cb(n) for the basic RRG is introduced in Equation (7.4) which omits the
radius part.

7. RNE 3 - Topology-Based Exploration 106

C(n) = e−
d·D(n)+h·H(n)+t·T (n)

1+r·I(n) (7.3)

Cb(n) = e−(d·D(n)+h·H(n)+t·T (n)) (7.4)

C(n) is still based on the exponential function with a negative power which lets it
decay rapidly for increasing costs. For all parts, user-de�nable factors are introduced,
which allow to modify the exploration focus depending on the particular requirements.
The di�erent parts of the cost function are detailed in the following.

Distance

The distance D(n) remains the distance drn between the node nearest to the robot nr

and the node n. It is measured as the sum over all edge lengths in the path between
the nodes in meters as described in Section 6.1.2.
The distance factor d ∈ [0, 1] can be used to reduce the in�uence of the distance on

the overall cost function. This means that nodes further away from the robot do not
in�ict a signi�cantly higher cost than closer nodes. If d is set to zero, the distance has
no impact on C(n). This is expected to increase the traveled distance but probably
leads to more information gain early in the exploration as nodes with a high gain are
prioritized.

Heading

To calculate the heading H(n) to a node n along the edges of the graph from nr , the
heading change at each node must be aggregated. This includes the heading change
from the robot's current heading to nr and the heading change to the best orientation
at the speci�c node.
Therefore, additional attributes are stored in the graph's ROS message that is de-

scribed in Section 6.1. Each edge e in the list of edges stores its length, which is the
distance between the node positions it connects, as well as the indices of those two
nodes in the list of nodes. They are stored as the �rst and second node where the �rst
node is always the node with the lower index. Furthermore, the edge's orientation ϕe
is stored in degrees which is calculated from the �rst node to the second using arctan.
The orientation is measured in the ROS map frame that is described in Section 2.1.
Nodes also hold the following three additional attributes:

Heading into node: The orientation ϕin is the angle in degrees at which the edge e
enters the particular node n measured from the ROS map frame. Because the
edge's orientation ϕe di�ers depending on the direction in which it is traversed,
the indices of both nodes connected by e have to be regarded. If the index inprev

of the previous node nprev in the path to the robot Prn is smaller than the index
in of node n, ϕin equals ϕe. Otherwise, ϕe must be inverted. If n = nr , the
orientation of the robot ϕr is used because no nprev exists. This di�erentiation is
shown in Equation (7.5).

ϕin(n) =


ϕe(nprev , n), inprev < in

ϕe(nprev , n), in < inprev

ϕr , n = nr

(7.5)

7. RNE 3 - Topology-Based Exploration 107

Heading change to node: The accumulated change in heading Φ(n) in degrees along
the graph's edges in path Prn is calculated iteratively. Therefore, the heading
change ϕdiff (nprev , n) from node nprev in the path to node n is added to the previous
node's accumulated heading change Φ(nprev) as shown in Equation (7.7).

ϕdiff (nprev , n) = |ϕin(n)− ϕin(nprev)| (7.6)

Φ(n) =

{
Φ(nprev) + ϕdiff (nprev , n), n 6= nr

0, n = nr
(7.7)

ϕdiff (nprev , n) is the absolute heading di�erence in degrees between the expected
heading into n and nprev . If n = nr, the heading change to this node is zero.

The �rst node in Prn can be omitted if the robot is already on the edge heading
towards the second node, based on the metric shown in the last paragraph of
Section 5.1.7.

Heading change to node's best orientation: The accumulated heading change to
a node n in addition to the heading change to this node's best orientation ϕmax

results in the heading cost factor H(n) that is shown in Equation (7.8). ϕmax

is introduced in Section 5.1.5 and references the orientation at a particular node
which yields the most information gain.

Additionally, H(n) is divided by the factor 90 which results in a quarter-turn of
the robot in�icting the same cost as 1 m of distance.

H(n) =
Φ(n) + |ϕmax − ϕin(n)|

90
(7.8)

H(n) equals zero, if the node is explored or failed, or if ϕmax has not been cal-
culated. If it is explored or failed, it is not considered for the exploration goal
selection anymore. ϕmax is a result of the information gain calculation for a node
which is required before a node can be considered as an exploration goal.

The heading factor h ∈ [0, 1] in�uences the heading's impact on the cost function.
When h equals one, a node in 2 m distance in front of the robot is more preferable for
exploration than a node 1 m directly behind the robot. Assuming that both nodes have
an equal gain. If h equals 0.5, a turn of 180 degrees equals 1 m of distance regarding
the cost function.

Traversability

The traversability T (n) is calculated based on the traversability analysis undertaken
to place and connect new nodes. Similar to the heading, the traversability is the sum
over the particular traversability of all nodes and edges along the path Prn .
Therefore, the methods introduced and referenced in Sections 5.1.4 and 7.1.2 are

modi�ed to accumulate the values of all individual cells for an area in addition to
checking their traversability. The sum of these values which range between mfree and
moc, are stored for all particular nodes and edges. Furthermore, the accumulated value

7. RNE 3 - Topology-Based Exploration 108

ctrav , the total number of cells ccells and the number of cells coc, that are not equal to
mfree , inside each node and edge area are saved.
To retrieve the traversability cost τ for a node n, the formula from Equation (7.9)

is used which requires ctrav , ccells and coc. The average traversability value of all cells
whose values are unequal to mfree is divided by moc. This normalizes the value to a
range between zero and one. In addition, the ratio of cells with a value above mfree to
ccells is calculated. To take the larger radius of in�ated nodes and the corresponding
higher number of cells into account, τ is multiplied by the ratio between the robot's
radius and the particular node's radius rn. This e�ectively decreases the cost for larger
radii.

τ(n) =

(
ctrav

coc ·moc

+
coc

ccells

)
· rrobot

rn
(7.9)

T (n) =

{
T (nprev) + τ(n), n 6= nr

τ(n), n = nr

(7.10)

Equation (7.10) describes the calculation of T (n) which is based on the traversability
of the previous node in the path nprev . nr is initialized with just its own traversability
cost τ(n). A node with, e.g., a quarter of its cells having a value of moc/4, has a
traversability cost of 0.5.
For comparison, Equations (7.11), (7.12) and (7.13) show the calculation of Tb(n)

for basic RRG without NAI. The node's traversability cost τb(n) is calculated without
a radius ratio but includes the maximum traversability value of a cell in the node's
radius cmax . This maximum value is omitted for in�ated nodes as it is typically moc−1
because the node's area is in�ated until a collision occurs.
The traversability cost τb for each edge e is derived in the same way. The traversabil-

ity T (n) consists of the cost of the previous node nprev plus the particular node's cost
and the cost of the edge connecting these two. The cost for nr is set to τb(n). If there
are no tiles with a value unequal to mfree , the traversability cost for a particular node
or edge is zero.

τb(n) =
ctrav

coc
+ cmax

moc

+
coc

ccells

(7.11)

τb(e) =
ctrav

coc
+ cmax

moc

+
coc

ccells

(7.12)

Tb(n) =

{
Tb(nprev) + τb(n) + τb(e(nprev , b)), n 6= nr

τb(n), n = nr
(7.13)

The user-de�ned traversability factor t ∈ [0, 1] adjusts the impact of the traversability
on the cost function. Lower values reduce the importance of choosing paths that are
without traversable obstacles.

Radius

The node radius takes a special role in the cost function because its goal is to guide
the robot towards more central paths with a safer distance from obstacles and a better
observation range.

7. RNE 3 - Topology-Based Exploration 109

The node radius rn is determined by the in�ation process introduced in Section 7.1
and starts at the robot's radius rrobot . It is limited by the maximum sensor range rmax .

ρ(n) =

{
ρ(nprev) + rn, n 6= nr

rn, n = nr
(7.14)

I(n) =
ρ(n)

|Prn | · rrobot

− 1 (7.15)

Equation (7.14) models the accumulation of all radii ρ in Prn which is used to derive
I(n) shown in Equation (7.15). I(n) is divided by the robot's radius rrobot and the
number of nodes in the path Prn to retrieve the ratio of each node's radius in the path
compared to rrobot . ρ(n) for nr is set to rn. To set I(n) ∈ [0, rmax/rrobot − 1], one is
subtracted. This enables a radius factor r in the cost function.
I(n) is used to scale the complete cost function C(n) to emphasize paths through

nodes with larger radii. This is intended to increase the safety margin to obstacles
and the observable volume due to a greater viewing distance. The distance, heading
and traversability in C(n) are divided by one plus the radius function times the radius
factor r.
The radius factor r ∈ [0, 1] determines how much the cost is in�uenced by the radius.

If larger radii are not desired to have an impact on a node's cost, the factor should be
set to zero. A path through nodes with a respective radius of 2 · rrobot has half the cost
compared to a path through nodes with a respective radius of rrobot .

7.5. Cost-Based Path Planning

The new cost function introduced in the previous section is also intended for the global
navigation planner RneGlobalPlanner. It is proposed in Section 5.1.7 and modi�ed in
Section 6.1.2.
The new path planning is not solely based on the particular node's distance to the

robot drn but on the complete cost function C(n). Dijkstra's algorithm is applied to
the graph with C(n) replacing drn .
The best path to each node is recalculated as soon as the robot traverses to a new

nearest node nr in the graph. Starting at nr , Dijkstra's algorithm is run and the path
with the least cost for each node is found. Furthermore, due to the in�uence of the
robot's heading on the cost function, paths must be recalculated as well when the
heading changes.
For all nodes with an edge to nr and for nr itself, the heading from the robot to

the particular node is identi�ed. If the robot is between two nodes, the heading and
remaining cost is calculated based on the robot's current orientation. This means the
heading cost is based on the heading di�erence between the robot and the particular
node directly without assuming a possible detour through nr .

7.6. Re-Updating Nodes

To further speed up the exploration, re-updating the gain of unexplored nodes is intro-
duced. While the robot moves to the current goal node, only newly added or updated

7. RNE 3 - Topology-Based Exploration 110

nodes with a better reward can cause the selection of a new goal which aborts the
current one. If no better node becomes available, the node gains are only updated
after reaching the current goal. During the travel to the current goal, the gain of nodes
on the path is changing and needs to be updated accordingly. This is expected to
enhance the exploration by abandoning goal nodes before the robot reaches them. The
switch to better goals is anticipated to reduce the exploration duration and traveled
path length.
Nodes with status initial or visited can be re-updated while no new or initial node

gains must be calculated. A list of all nodes to re-update is maintained and all nodes
that are not explored or failed are added to it and sorted by their Euclidean distance
to the robot in ascending order. The closest node's gain function is re-updated �rst.
After a node's gain has been calculated, it is removed from the list.
Furthermore, the list is re-initialized every time a new node becomes the nearest

node to the robot. For this, all nodes currently in the list of re-updatable nodes are
discarded and each node with status initial or visited is added again afterwards. A
list of the three previous nearest nodes is maintained to prevent constant re-updating
when the robot localization is imprecise and the nearest node switches back and forth
rapidly. The re-initialization is only conducted if the new nearest node is not already
in this list.
When the nearest node is the current goal node, a re-update of it is triggered when

the robot comes closer than one-tenth of its radius. Especially if the robot has to align
its heading to the best orientation for the speci�c goal node, this re-update can cause
the selection of a new goal and skip the slow �nal approach to the current goal.
Also, a heuristic to reduce the number of re-updatable nodes is used. If a node

should be re-updated whose drn is larger than rmax , re-updating is stopped and the list
of re-updatable nodes is cleared. It is assumed that nodes at this distance are only
marginally impacted by the robot's current observations.

7.7. Comparison to RRG-Based Exploration

To evaluate the enhancements introduced to RNE in this chapter, a series of simulations
is conducted that explores the impact of each change compared to the basic RRG-based
algorithm.
First, the setup for the simulations is explained, followed by the results for the

di�erent enhancements which goes into detail about the impact of each factor.

7.7.1. Evaluation Setup

While previous simulations were conducted using a desktop computer speci�ed in Sec-
tion 5.2, the following experiments are run on an NVIDIA DGX-2. The DGX-2 is
equipped with a Dual Intel Xeon Platinum 8168 processor with 2.7 GHz and 24 cores,
16 NVIDIA Tesla V100 GPUs and 1.5 TB RAM.
But each simulation is limited to using one GPU, 12 CPU threads and 16 GB of

RAM. Furthermore, the simulation is run in a headless Docker container with RViz
and Gazebo GUIs deactivated. The container also runs an X server using Xvfb1 because
the Gazebo depth camera simulation requires it to render the camera data.
1https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

7. RNE 3 - Topology-Based Exploration 111

(a) Simulated box robot with depth camera and 2D lidar

as C.

(b) Simulated box robot with 3D lidar as L.

Fig. 7.8.: Simulated arti�cial box robot con�gurations for the factor comparison experiments.

The environments shown in Section 6.2 are used for the simulations. The environ-
ment from Figure 6.2a without the added obstacles is referenced as ME and from Figure
6.2b as CE. They use the same time limits, 30 min for the former and 1 h for the latter.
The C con�guration's Clearpath Robotics Husky UGV shown in Figure 5.8d is re-

placed with a simple box that can move and rotate horizontally but has the same sensor
setup and placement. The second con�guration features a rigidly attached Velodyne
PUCK VLP-16 lidar and is referenced as L. Both con�gurations can be seen in Figure
7.8.
The Husky is replaced with the arti�cial box robot to reduce the impact of the

simulated wheels on the result. The Husky is a skid steer drive which can cause jerky
motions while rotating on the spot. This is avoided using the hovering box robot that
has no direct ground contact and utilizes Gazebo's planar move plugin2.
Furthermore, the robot localization is directly extracted from Gazebo and therefore

without uncertainty. This removes the impact of partly sub-optimal localization on
the following experiment's results.
The parameters are the same as in Section 6.2 but gmin for the L con�guration is set

to 0.03. Three variants are run which are C-ME, L-ME and L-CE. For each variant,
ten runs are executed and the mean µ and SD σ for the duration, path length, mapped
volume and algorithm run time are reported.
The algorithm run time is the percentage of how much time the calculations of RNE

require. For this, the required processing time of the main algorithm and the decoupled
gain calculation are aggregated. These values can be higher than one because two
processing threads are used.
Furthermore, the number of failed and total runs is shown as well. Failed runs are

automatically detected by a di�erence between explored and placed nodes of more than
10 and the overall mapped volume. If it is below 1500 m3 for ME and 8000 m3 for
CE, the run counts as failed. These values are based on the experience from previous
experiments where failed runs were de�ned manually.
The simulations to compare the impact of each factor are carried out in three stages.

The �rst stage uses the basic RRG-based RNE proposed in Chapter 6. The second
stage adds NAI from Section 7.1 and the third stage utilizes topology-based NAI shown
in Section 7.2.
For each stage and factor, di�erent combinations to explore the particular factor's

2https://classic.gazebosim.org/tutorials?tut=ros_gzplugins#PlanarMovePlugin

https://classic.gazebosim.org/tutorials?tut=ros_gzplugins#PlanarMovePlugin

7. RNE 3 - Topology-Based Exploration 112

impact are run. To reduce the total number of simulation runs, only the following four
combinations are chosen for each factor F:

F0.5 The �rst combination sets the respective factor F to a value of 0.5. The
remaining factors are set to 1.

F0 F is set to value 0, the other factors to 1.

NF0.5 All factors besides F are set to a value of 0.5. F is set to 1.

NF0 F is set to 1, the remaining factors to a value of 0.

For each combination, the descriptor F is replaced with the particular factor's ab-
breviation which are D for the distance factor d, H for the heading factor h, T for the
traversability factor t and R for the radius factor r. At each stage, one set of runs is
executed with all factors set to 1 for comparability which is referred to as 1.
The results of all 1350 runs from the 135 combinations are discussed in the following

subsections and are listed in detail in Appendix A (p. 163).

7.7.2. Basic RNE Cost Factors

The �rst stage is about the comparison of the newly introduced cost function's impact
on the exploration performance of the RRG-based RNE algorithm. Without NAI, the
cost function Cb(n) from Equation (7.4) is used and only the distance d, heading h and
traversability factors t are evaluated.
Table A.3 (p. 167) shows that reducing the distance factor d signi�cantly reduces

the exploration duration in all environments as nodes with the most gain are preferred
regardless of their distance to the robot. This comes at the price of a vastly increased
traveled path length as the robot has to backtrack later to explore smaller, left-out
areas.
The overall algorithm run time is mostly una�ected by the varying distance factor

but the amount of failed runs increases for the ND combinations. This is probably
caused by selecting the closest node which might be close to obstacles and has a high
traversability cost that is not regarded in these combinations. Ultimately, the robot
gets stuck on these nodes as it maneuvers too close to obstacles too often.
In Figure A.1 (p. 164), it can be seen that a reduced distance factor increases the

amount of observed map volume early on as well as the traveled path length. The
curves of the ND combinations are very similar to the default combination 1. This
shows the major impact the distance has on the cost function.
The heading factor causes hardly any change in the results when being reduced

which can be observed in Table A.4 (p. 168) and Figure A.2 (p. 165). When it is
the only remaining factor, it signi�cantly speeds up the exploration but also increases
the traveled path length. This is caused by the robot preferably following mostly
straight paths. It also increases the explored volume early in the run compared to
other combinations.
Table A.5 (p. 168) and Figure A.3 (p. 167) show that the traversability factor, similar

to the heading factor, causes no signi�cant impact on the duration or path length when
being reduced. When the other factors are reduced to 0 and the traversability factor t
remains 1, the traversed path length drastically increases. This is caused by following

7. RNE 3 - Topology-Based Exploration 113

paths that stay clear of obstacles �rst and returning to nodes closer to obstacles later
in the exploration.
Furthermore, when reducing the traversability factor, more runs fail in the C-LE

variant because badly traversable nodes are not evaded anymore.

7.7.3. Node Area In�ation RNE Cost Factors

The second stage adds NAI to the RNE algorithm and utilizes the cost function C(n)
from Equation (7.3). The distance d, heading h, traversability t and radius factors r
are varied and discussed in the following.
In Figure A.4 (p. 170), a clearer distinction between the di�erent combinations for

the distance factor can be seen compared to basic RNE. A decrease of d causes a faster
exploration with more explored volume early on but also a longer traveled path length.
The reduction of all factors but the distance factor has the opposite e�ect. Less early

map coverage and a decreased path length are also reported in Table A.6 (p. 175).
An increased rate of failed runs for D0 and the ND combinations for the L-CE

variant shows that selecting nearby or far away nodes can get the robot stuck in larger
environments.
The heading factor for the in�ation process behaves similarly to the basic RNE as

shown in Table A.7 (p. 175) and Figure A.5 (p. 171). Reducing it has hardly any e�ect
on the exploration but the NH combinations signi�cantly decrease the duration and
increase the path length. For the L-CE variant, the path lengths are similar for the
di�erent combinations. But the non-NH combinations run into the time limit while
NH �nishes the exploration.
Table A.8 (p. 176) shows that the traversability factor's e�ect is also similar to the

basic RNE. It has a minimal impact when reduced and reducing all other factors
increases the traveled path length vastly. This can also be seen in Figure A.6 (p. 173).
It is notable, that the number of failed runs is lower than for the basic algorithm. This
is probably due to the increased safety margin to obstacles because of NAI.
The radius factor is not added to the cost function like the remaining factors but

divides it and therefore decreases the cost when it rises. Table A.9 (p. 176) and Fig-
ure A.7 (p. 174) show that reducing the radius factor increases the duration of the
exploration. For the C-ME and L-CE variants, the reduction of r also decreases the
traveled path length which is probably caused by selecting nearby nodes over further
away nodes with a larger radius.
As the radius factor can only reduce the cost of nodes, the NR0 combination leads

to failed and signi�cantly worse explorations. The NR0.5 combination reduces the
exploration duration for all variants and increases the path length for C-ME and L-CE
which is likely caused by the reduction of the distance factor.
For the R0 combination, the number of failed runs in the L-CE variant is increased

which is caused by not favoring paths with larger radii that increase the safety margin
to obstacles.

7.7.4. Topology-Based Node Area In�ation RNE Cost Factors

The topology-based NAI exploration is the third stage of the cost factor comparison.
It uses the same cost function and factors as NAI RNE.

7. RNE 3 - Topology-Based Exploration 114

Decreasing the distance factor again reduces the duration and increases the path
length as shown in Table A.10 (p. 183). Also, the map coverage is increased early and
all combinations are distinguishable in Figure A.8 (p. 178), similar to the NAI results.
The ND combinations reduce the traveled path length but increase the duration as
well.
Table A.11 (p. 183) and Figure A.9 (p. 179) show only a minor impact for reducing

the heading factor as well as for combination NH0.5. Combination NH0 causes a
reduction of the duration and for variant C-ME an increase in traveled path length.
Following the topology-based, in�ated nodes seems to speed up the exploration without
drawbacks if a sensor with a 360 degrees FoV is deployed. Otherwise, the robot has to
backtrack to map unobserved space.
The traversability factor's impact can be seen in Table A.12 (p. 184) which shows

that reducing it causes minor decreases in duration and path length. Furthermore, the
NT combinations lead to an increased duration for C-ME, a decreased duration for
L-ME and a signi�cantly decreased duration for L-CE. The NT0 combination shows
an elongated path length which can also be seen in Figure A.10 (p. 181).
Reducing t does not lead to a signi�cant increase in failed runs compared to the

other two stages which is caused by the topology-based paths having a greater safety
distance to obstacles.
Table A.13 (p. 184) shows that decreasing the radius factor increases the exploration

duration which emphasizes its positive e�ect on the exploration.
The NR combinations behave similarly to the second stage as can be seen in Figure

A.11 (p. 182). NR0.5 reduces the duration and increases the path length for C-ME
and L-CE variants probably caused by the reduced distance factor. NR0 leads to failed
runs and considerably worse results which is expected.

7.7.5. Re-Updating Nodes RNE Cost Factors

In addition to the previously described cost factor evaluations, another 10 runs for each
variant are conducted for the topology-based NAI together with re-updating nodes.
The con�gurations and parameters remain the same. All cost factors are set to one for
this comparison.
Table 7.1 shows the results of comparing the basic RRG-based RNE implementation

referenced as RRG, RNE with NAI referenced as I, topology-based NAI referenced as
T and re-updating nodes referenced as R.
The results averaged over time can be seen in Figure 7.9 which shows that each

enhancement increases the map coverage earlier but also leads to longer traveled path
lengths. The run time is decreased for variants L-ME and C-ME when using NAI or
topology-based NAI. Re-updating nodes increases the run time as expected but it is
still below the basic RRG-based approach for L-CE.
For variant C-ME, NAI and re-updating nodes add an overhead in processing com-

pared to the gain calculation. It is not as expensive for C because of the much smaller
range of the depth camera.
The topology-based NAI with re-updating achieves a reduction in exploration dura-

tion of around 20% for C-ME and L-CE, and 41% for L-ME compared to RRG. The
increased path length of 31% is caused by the RRG runs being stopped at the time
limit of 60 min for L-CE.

7. RNE 3 - Topology-Based Exploration 115

Tab. 7.1.: Comparison of basic RRG-based RNE as RRG, RNE with NAI as I, RNE with topology-
based NAI as T and RNE with re-updating nodes as R. It shows the mean µ and SD σ of duration,
traveled path length, observed volume and algorithm run time as well as the amount of total and
failed runs for the camera and lidar con�gurations as C and L respectively in the medium and cave
environments as ME and CE respectively. The best mean values for each variant are printed in bold
letters.

Con�gu-
ration

Duration [s] Path [m] Volume [m3] Run time [%] Runs
µ σ µ σ µ σ µ σ Failed Total

C-ME RRG 1020.00 57.01 159.36 20.24 1604.2 15.4 0.232 0.014 0 10
C-ME I 883.50 58.52 184.10 21.64 1594.6 31.1 0.288 0.023 0 10
C-ME T 856.50 52.55 180.18 14.88 1605.5 16.3 0.276 0.009 0 10
C-ME R 820.50 44.63 200.27 18.18 1608.3 3.2 0.274 0.015 0 10
L-ME RRG 1236.00 79.44 207.70 21.71 1597.9 8.4 0.327 0.032 0 10
L-ME I 945.00 72.11 199.69 24.65 1595.6 7.4 0.349 0.029 0 10
L-ME T 963.33 165.64 216.64 33.34 1598.0 6.9 0.318 0.023 1 10
L-ME R 729.00 64.50 175.47 20.49 1587.3 4.5 0.452 0.023 0 10
L-CE RRG 3594.00 7.75 499.02 39.87 8327.6 157.8 0.534 0.032 0 10
L-CE I 3399.00 143.04 654.21 28.63 8424.2 74.8 0.488 0.017 0 10
L-CE T 3337.50 126.54 649.15 38.90 8394.5 54.3 0.473 0.020 0 10
L-CE R 2929.50 239.55 655.71 53.88 8417.9 75.3 0.533 0.018 0 10

When comparing topology-based NAI to NAI, only a small decrease of maximally
3% in duration can be measured. But the run time is decreased by around 4%, 9% and
3% for the variants C-ME, L-ME and C-LE respectively.
Re-updating nodes compared to topology-based NAI decreases the duration by up

to 24% for L-ME and 12% for L-CE. On the other hand, the run time is increased by
42% for L-ME but only 12% for L-CE.

(a)

7. RNE 3 - Topology-Based Exploration 116

(b)

(c)

Fig. 7.9.: Mean mapped volume, path length and algorithm run time over the duration for basic
RRG-based RNE as RRG, RNE with NAI as I, RNE with topology-based NAI as T and RNE with
re-updating nodes as R. The tinted areas show the SD of the particular values. A line ends at the �nal
duration of the longest run of the particular variant. Sub-�gure (a) shows the camera con�guration
in the medium environment, (b) the lidar con�guration in the medium environment and (c) the lidar
con�guration in the cave environment.

7.7.6. Evaluation Conclusion

The introduction of the revised reward function highlights the varying impact of the
di�erent factors of the cost function. The distance factor takes the most prominent part
as it signi�cantly in�uences the traveled path length, duration and early map coverage
for each of the enhancements. The heading and traversability factors have minor roles

7. RNE 3 - Topology-Based Exploration 117

but are shown to be able to alter the exploration results when the distance factor is
reduced. For the simulations with NAI, the radius factor decreases the exploration
duration.
NAI and topology-based NAI each decrease the exploration duration and the com-

putation time. They also reduce the risk of failed runs for the di�erent variations
signi�cantly. The re-updating of nodes speeds up the exploration even more but comes
at a vast increase in computation time.

7.8. Conclusion

This chapter introduces several enhancements for the RRG-based RNE implementation
and evaluates them in a set of experiments. The following enhancements are proposed
with the described bene�ts:

Reward Function A new reward function is introduced which standardizes all fac-
tors. It consists of the node gain and the cost function which takes distance,
heading change, traversability and node radius into consideration. The path
planning is also changed to use this cost function instead of just the distance like
in previous iterations. This enables more re�ned paths depending on the cost
function's factors.

Node Area In�ation NAI increases the distance between the robot and obstacles.
This reduces the risk of collisions and makes the robot observe larger areas which
improves the exploration by decreasing its duration.

Topology-based Node Area In�ation Moving new nodes away from obstacles, un-
known space and nearby existing nodes during the in�ation process creates topolo-
gy-based graphs. These perform better in an exploration than graphs with just
NAI.

Re-Updating Re-updating node gains while the robot moves to the current goal
allows to replace the goal early on with a better node. This reduces the duration
signi�cantly but also increases the algorithm run time.

The described enhancements increase the e�ciency of the proposed third iteration of
RNE compared to the previous iterations using RRT and RRG. The new cost function
can be adapted to speci�c robots and exploration requirements. For example, a reduced
distance factor leads to more observed space early in the exploration and a decreased
duration at the cost of a longer robot path length.
The goal to reduce the computation time using the topology-based NAI is successful

when not utilizing re-updating. But there is still a large overhead produced by the
steadily growing graph size during large explorations.
Hybrid approaches that separate the exploration algorithm into a global and a local

part were highly successful in the DARPA SubT Challenge which is introduced in
Section 1.1.4. The separation of RNE into a global and a local part in its fourth
iteration is inspired by these approaches and is expected to reduce the computation
time growing with graph size.

118

8. RNE 4 - Local and Global

Exploration

This chapter describes the fourth and �nal iteration of RNE which introduces the
distinction between local and global exploration to reduce the computation overhead
of maintaining a constantly growing graph.
The algorithm described in Chapter 7 becomes the local part of this hybrid RNE

implementation. Its graph is limited to a local area around the robot while a global
exploration graph keeps track of unexplored nodes from the local exploration.
These nodes must be visited to complete the global exploration. A shortest route

has to be found which goes through every node exactly once to e�ciently visit all of
them. This is implemented with a TSP solver which is introduced in Section 3.4.
The implementation of a hybrid exploration including a TSP solver is inspired by

[7, 9, 12, 14, 18, 19, 20]. Some of these approaches detailed in Section 2.4 were used in
the DARPA SubT Challenge described in Section 1.1.4.
To remove and add nodes in the local graph as well as to integrate unexplored,

removed nodes into the global exploration, further methods are introduced to RNE.
A clustering of global nodes is also implemented to reduce the number of nodes that
have to be connected by the TSP solver.
The �rst section describes the changes to the local exploration followed by the global

exploration and implementation details of the �nished RNE package. To highlight the
fourth iteration's improvements compared to the previous implementations, simula-
tions are conducted. Another comparison to state-of-the-art approaches, from which
some were successfully deployed in the DARPA SubT Challenge, is executed. Finally,
the proposed approach is demonstrated in an experiment with a real robot in an un-
derground environment.

8.1. Local Exploration

The local exploration uses the algorithms introduced in the previous chapters which
conclude to RNE with a sampling- and topology-based NAI including re-updating
nodes. Several adaptions are introduced in the following that allow RNE to be used in
a local exploration area which dynamically follows the robot's position.

8.1.1. Exploration Area

The local exploration uses a sliding area that moves along with the robot. New nodes
are only sampled inside this area and nodes that fall outside when the robot moves, are
removed. To reduce computation time, nodes are only pruned from the graph when a
new node becomes the nearest node to the robot instead of a frequency-based pruning.

8. RNE 4 - Local and Global Exploration 119

The local exploration area is de�ned as a circular area around the robot with a user-
de�ned radius rG. For each node in the graph G, the distance to the robot is calculated.
To determine more computation e�ciently if a node is inside this area, the squared
radius is used.
If the distance is above the pruning radius rpr = rG + rrobot , the particular node is

removed from the graph. The area in which new nodes are sampled and added to G
is restricted to rG. rrobot is added to rG for rpr to prevent nodes from being removed
and added at a similar spot when the robot moves back and forth or the localization
oscillates slightly.
Nodes that are outside rpr are removed and all edges connected to them as well. But

it must be checked if there are nodes connected to the nodes to be removed that have
no other connection to the local graph. These nodes are classi�ed as disconnected and
are removed as well.
For all removed edges, it is checked if the path to the robot Prn of the node at the

particular edge has a node that is pruned as its next node in Prn . If it has, the node is
added to a list of disconnected nodes. For each of the disconnected nodes, that have
been added to the list, all neighboring nodes, where the disconnected node is the next
node in Prn , are added to the list as well. If one of these neighboring nodes has a Prn

without a disconnected node, it is added to a list of connected nodes. If a connected
node later is disconnected, it is removed from the list of connected nodes again.
After all nodes with an edge to removed or disconnected nodes have been categorized,

Dijkstra's algorithm is executed from each connected node without resetting all others
cost function as described in Section 6.1.2. All nodes that are reconnected to the graph
by Dijkstra's algorithm, are removed from the list of disconnected nodes. Finally,
all remaining disconnected nodes are removed from the graph. Figure 8.1 shows an
example for the previously described process.

Fig. 8.1.: The left �gure shows a local graph before the robot moves and the right �gure afterwards.
Gray circles are nodes in the graph and the lines connecting them are the edges. The black rectangle
represents the robot, the dashed circle the local pruning radius rpr and bold black lines show obstacles.
In the right �gure, red circles show removed nodes that are outside of the local area and dashed lines
represent removed edges. The yellow circles are disconnected nodes that are �nally removed as their
path to the robot leads through removed nodes. The green circle symbolizes a connected node that
remains in the graph.

8. RNE 4 - Local and Global Exploration 120

8.1.2. Removing and Adding Nodes

To allow a sliding exploration area, nodes have to be removed from the graph. The
lists of nodes and edges are stored in a list as a part of the ROS message introduced in
Section 5.1.2 and re�ned in the previous iterations of RNE. Both lists are ordered by
the respective node and edge indices which are also used for referencing connections.
To reduce the computation, nodes and edges are not removed from the lists because

this requires re-indexing all nodes or edges with a higher index than the removed item
as well as their references. Instead, a new inactive status is introduced to which a
removed node is set. Edges receive a �eld to indicate if they are inactive. Only if a
removed node or edge is the last element in the list, it is removed to free memory.
Another two lists holding the respective indices of inactive entries for nodes and

edges are maintained. If a new node or edge is added, the inactive entry with the
smallest index is replaced with a new active entry.
If the last entry of the list of nodes or edges is removed and the prior entries are

inactive, they are removed up to the �rst active entry. Furthermore, the removed
entries' indices are deleted from the list of inactive entries.
When nodes are removed, they are added to the list of global targets if they are not

already explored or failed. The mechanism of adding them is described in Section 8.2.

8.1.3. Pruning of Encircled Nodes

Due to the added possibility of removing nodes and edges from the graph, a further
reduction of the number of nodes is introduced.
If an in�ated node completely encircles another node, which means that the complete

area of the encircled node lies inside the other node's area, it is pruned from the graph.
This encirclement is detected when searching for neighboring nodes of the in�ated node
and therefore adds only marginal computational load.
As the larger node is already connected to all neighbors of the encircled node due

to the overlapping areas, the encircled node can be removed without the need to add
new neighbors to the encircling node. The removal is handled as described in Section
8.1.2.
If the encircled node is connected to one or more global paths and is the node nearest

to the robot, it cannot be removed and remains in the graph. Because it lacks a next
node in the path to the robot, the global paths to the local graph cannot be reconnected
which prevents the node's removal. The global paths are detailed in Section 8.2.1.

8.1.4. Transition between Local and Global Exploration

Because the local exploration is based on the previous iteration of RNE, it also inherits
the exit conditions presented in Section 5.1.8. If no unexplored nodes are present in
the local graph, a timer is started. Adding new, explorable nodes stops this timer.
When the timer ends, the local exploration is terminated and the global exploration

is initialized. The closest node to the robot is added as the start to the global planner
and connected to all global targets. This process is explained in detail in the next
section.

8. RNE 4 - Local and Global Exploration 121

8.2. Global Exploration

The global exploration is used to keep track of unexplored, pruned nodes from the local
exploration and calculates a path through all of them that is ordered to minimize the
path length. For this, a TSP solver is deployed. To reduce the required computation
time, removed unexplored nodes are clustered into global targets. During the local
exploration, paths to all of these global targets are maintained.
When a global target is reached by the robot during the global exploration, the local

exploration is initialized with a root node at the global target's position.
The global targets and connections are stored in a ROS message. The targets and

connections are organized in lists and can be set to inactive or can be removed, similar
to the nodes and edges of the local exploration shown in Section 8.1.2.
The Global graph H = (T,C) contains global targets T with a respective position

called viewpoint pt and a merged distance dt, which is explained in Section 8.2.2.
H includes global connections C = (ti, tj or G), ti, tj ∈ T, i > j with waypoints
wc1 ,wc2 , ...,wcn ∈ Wc and length lc. A global connection which is also referenced as
a global path, connects a global target ti with another global target tj or the local
graph G. The �rst target always refers to the target with the larger index in the list of
targets.

8.2.1. Global Connections

Global paths connect global targets with the local graph and with each other. They
are actively maintained while the local exploration area moves with the robot. Global
paths consist of removed nodes which serve as waypoints for a connection between two
global targets or a global target and the local graph.
When an unexplored node is removed from the local graph, a new global target is

added or merged with an existing global target as explained in the next section. To
calculate a path through all global targets starting from the robot's current position,
which is in the center of the local exploration area, each global target is connected to
the local graph via a global path.
For all new global targets, a path to the local graph is created which is connected

to the �rst still active node in the previously removed node's path to the robot Prn .
To keep track of the global path's connection, the particular node stores a reference to
the path that is connected to it. When this node is removed from the local graph, the
global path is continued to the next node in the removed node's Prn .

Pruning Global Goals and Connections

When a new node's area is in�ated and added to the local graph, global paths and
targets can be pruned or removed if they are too close to it. This is shown in Figure
8.2.
A k-d tree, which is described in Section 3.1.6, is used to �nd all global targets

around the new node that can be connected to it according to the metric de�ned in
Section 7.1.4. If the distance between both nodes is smaller than the robot radius,
the global target is removed immediately. Otherwise, a node is sampled exactly at the
global target's position in the next iteration with the goal to connect it to the local
graph and remove the global target.

8. RNE 4 - Local and Global Exploration 122

Fig. 8.2.: Both images show a local graph with nodes indicated by gray circles and the edges between
them as lines. The global targets t1, t2, t3 are shown as rhombuses with their respective global con-
nections to the local graph. The robot is depicted as a black rectangle, the local exploration radius
rG as a dashed circle and relevant node radii as dotted, semi-transparent circles.
In the right image, two nodes have been added to the local graph, one of them near t1 and the other
directly next to t2. t1 is shown in yellow because it can be directly connected to one of the new nodes.
Therefore, a new node is sampled on top of it in the next iteration of the graph construction. t2 is
pruned from the global graph due to the proximity to a new node. Furthermore, the global path to
t3 is shortened and connected to the same new node that removes t2. Red dashed lines show the
removed global connections, bold lines the new ones.

When a global target is removed because a node from the local graph is placed at
its position, the path to the local graph of global targets connected to the removed
global target can be optimized. If their respective path to the removed global target
is shorter than their path to the local graph, the former can replace the latter.
Furthermore, for each global target's connection c to the local graph, a k-d tree is

used to �nd all waypoints Wc that intersect with the new node's radius. The waypoint
closest to the global target is connected to the new node if it and other waypoints are
inside the new node's area. All waypoints between the closest waypoint and the local
graph are pruned from the global path and it is connected to the new node.
A further check is conducted to �nd any global targets connected to the new node

whose connecting path's length can be reduced when being redirected through it. Also,
new global target to target connections are established if both are connected to the
new node and have not been connected with each other previously.

Global Target to Target Paths

Paths between all global targets must be established to deploy a TSP solver. They
can be created when the local exploration is �nished and are constructed through the
node nearest to the robot. But to reduce the overall global path length, connections
between global targets are attempted based on mutually connected nodes. When an
unexplored node is removed and added as a global target, it is checked if there already
is a global path connected to the removed node or the next node in the removed node's
path to the robot Prn . If there is, a global path between both targets is created by
copying the existing global target's paths to the local graph and adding the removed
node or connected node to the list of waypoints.
When a node, that serves as a connecting node for one or more global paths, is

removed from the local graph these paths have to be reconnected to another node in
the local graph. The next remaining node in the removed node's Prn is selected as the

8. RNE 4 - Local and Global Exploration 123

new connecting node. All removed nodes between the former and new connecting node
are added as waypoints to the respective global path. If the new connecting node has
connections to other global paths, it is checked if the global targets of the particular
paths can be merged, which is described in Section 8.2.2. Otherwise, a new global
path is established between the global targets by joining both paths' waypoints to the
connecting node.
Before the TSP solver is deployed, all missing global paths must be built. Therefore,

all missing target to target connections are detected and calculated. These missing
connections are calculated using Dijkstra's algorithm. It is started from the connecting
node of each global target with missing connections. The goal is to �nd the shortest
paths through the local graph from one global target's connecting node to all other

(a) (b)

(c) (d)

Fig. 8.3.: The creation of the missing global paths between the global targets t1, t2 and t3 can be
seen in the images above. Gray points depict nodes in the local graph whose area is indicated with
a dashed circle. The black rectangle is the robot and rhombuses are the global targets. Thick gray
lines represent the global paths, nodes with a bold border the connecting nodes and thick, black lines
the edges between the connecting nodes n1, n2 and n3 and the node nearest to the robot nr.
Image (a) depicts the local and global graphs before the missing connections are established. The �rst
mutual node in the connecting paths of t1 and t2 is searched in (b). Node n4 is this �rst mutual node
and colored in orange. Dijkstra's algorithm now has an upper bound of the orange path's length from
n1 to n2 over n4. In (c), the �rst mutual node for the connecting paths of t1 and t3 is determined
which is nr. The upper bound is increased to the much longer orange path from n1 to n3.
Image (d) shows the resulting global paths marked in green which are found by Dijkstra's algorithm
and added to the global graph. Because t2 and t3 are already connected, no new paths have to be
created for them.

8. RNE 4 - Local and Global Exploration 124

global target's connecting nodes which are not already connected.
To reduce the computation required by Dijkstra's algorithm, an upper bound for the

distance to each regarded node is calculated. This upper bound is found by searching
for mutual nodes in Prn of the connecting nodes. This is checked for each combination
of global targets with a missing connection. The nearest mutual node to the connecting
nodes is used to calculate the path length from one connecting node through the mutual
node to the other connecting node via the local graph's edges. The worst mutual
node regarding the path length is the node nearest to the robot nr at which all paths
converge. The longest mutual path found for all missing connections of a global target
is used as the upper bound for path lengths in Dijkstra's algorithm. This creation of
missing global paths can be seen in Figure 8.3.
The paths found by Dijkstra's algorithm are then appended to both global target's

paths to the local graph to establish a new global path between the formerly uncon-
nected targets. If multiple global target's paths to the local graph share a connecting
node, the calculated paths can be reused to reduce computation time.
Finally, all global paths to the local graph are extended to nr from their respective

connecting node by using its Prn . Then, all global targets are connected to each other
and to nr.

8.2.2. Goal Clustering

Every time an unexplored node falls outside the local exploration area and is removed
from the graph, it is added to the list of global targets. The amount of global targets
should be as small as possible to reduce the computation time required by the TSP
solver.
Therefore, a heuristic is introduced with the goal to cluster nearby global targets

which are inside the local exploration radius rG of each other, if a local exploration
would be started at one of them. This heuristic is applied each time when two or more
global target's connections are set to the same connecting node in the local graph.
Figure 8.4 visualizes the heuristic.
For the heuristic, a global target tf is focused which is being created or whose local

connecting node is replaced with a new one. The heuristic iterates over all global
targets ti with a respective connection ci to the new connecting node of tf . For each
pair of targets tf and ti, it is checked if they can be merged.
tf and ti with their respective global connections to the local graph cf and ci are

needed for this decision. The position of the speci�c global target pt, the distance of
other targets already merged into it dt and the length of its global connection lc are
also required for tf and ti.
During the iterations, it can be detected that one of the global targets cannot be

merged into other targets because its distance dt is too large. Then, it is stored as tnm

including its connection to the local graph cnm and the length of this connection lcnm .
If a global target already has other targets merged into it, the Euclidean distance

to the furthest of these targets is stored in the remaining global target as the merged
distance dt. When this global target is a candidate for clustering, its dt plus the
Euclidean distance to the other global target must not be larger than rG. If it is, the
target cannot be merged into any other target. Only the other way around is allowed,
if this constraint is not also violated. This guarantees that all merged global targets

8. RNE 4 - Local and Global Exploration 125

are covered by a local graph area placed at the remaining global target. Otherwise,
valuable targets might be lost.
The following list describes the decision if a pair of targets can be merged:

� If the combined length of both connections is lcf + lci ≤ 2 · rG and the Euclidean
distance between both targets' viewpoints is D(ptf ,pti) ≤ rG, the targets can
potentially be merged. The combined length has to be below or equal to 2 · rG
instead of just rG because of possible obstacles between two targets or detours in
the global path which prevent a direct connection.

� The merged distance of tf or ti plus the Euclidean distance between both view-
points has to be dtf +D(ptf ,pti) ≤ rG or respectively dti +D(ptf ,pti) ≤ rG.

� If only ti cannot be merged, it is checked if tnm has been set in previous
iterations. If it has not been set, ti is set as tnm .

� If tnm already exists, the combined connection path length has to be
lcf + lci < lcnm . If it is, ti replaces the current tnm .

� Else, ti is added to the list of global targets that can be merged.

� Else, both targets cannot be merged.

Afterwards, it is checked if tnm exists. In this case, all targets, that are in the list
of targets that can be merged, are merged into tnm . Otherwise, the global target with
the shortest connection to the local graph is chosen from the list of targets that can be
merged. All other targets from this list are then merged into it.

Fig. 8.4.: The clustering of global targets is shown which occurs when unexplored nodes shown as
blue points are removed from the local exploration area depicted as a dashed circle. The clustering
also occurs when global paths are continued because their connecting node is removed. The robot is
shown as a black rectangle and global targets t1, t2 and t3 as rhombuses. t2 has curly braces around
it to symbolize that it has other targets merged into it. The global paths are bold lines while edges
in the local graph are normal lines. Explored nodes in the local graph are shown as green points.
On the left image, all global targets are connected to separate nodes in the local graph. Due to the
robots movement, the local graph area is moved in the right image and causes the pruning of two local
nodes. The �rst one is still unexplored and becomes global target t4 into which the existing target t1
is merged initially. The second one is the connecting node for t2 whose global path is extended to the
remaining node. This results in all global targets being newly connected to a single node in the local
graph.
Even though t4 is the closest target to the local graph, t2 cannot be merged into other targets due
to other, further away targets already merged into it. Therefore, t2 remains and all other targets are
merged into it and removed including their global connections which are colored in red.

8. RNE 4 - Local and Global Exploration 126

The merged distance of the remaining global target is increased to the largest Eu-
clidean distance to one of the merged target's viewpoints, if it is larger than the current
merged distance. All targets that have been merged into another target are removed
from the global graph including all of their connections.

Removing Unexplored Nodes

When an unexplored node is removed from the local graph, it is transformed into a
global target that is connected to the local graph through a global path to the next
node in Prn of the removed node. But before, it is checked if the new global target can
be clustered with other nearby global targets.
If multiple nodes worth exploring get removed, they are stored in a list which is

sorted ascendingly by their local path length to the robot. Nodes in this list, that are
each others neighbors, are grouped. For each group, only the node with the shortest
path to the robot is considered for becoming a global target. All other nodes are
discarded.
Before any of the remaining nodes becomes a global target, all global paths con-

nected to a particular removed node and its global path's connecting node are iterated
over. For each combination with the potential new global target, the above heuristic
is executed.
If one of the other global targets cannot be clustered because its merged distance is

too large, it becomes tnm and the new global target is merged into it. In case multiple
global targets can be clustered together, the global target with the shortest path to
the local graph is selected and it is attempted to merge all other targets into it. If the
merged distance constraint is violated, the responsible global target is removed from
the merge process and the new potential target is the remaining global target. The
maximum distance between the merged targets is stored in the remaining target.
Global paths to every other global target, that has not been clustered during the

previously described process, are added afterwards.

Continuing Global Paths

When continuing a global path because its respective connecting node is removed from
the local graph, it is checked if there are already other global paths connected to the
new connecting node.
If there are, it is attempted to cluster these global targets. The above heuristic is

utilized to assess the possibility of clustering these targets. This means, all potential
new connections are checked regarding the Euclidean distance between them, the com-
bined distances of the global paths connected to the particular node in the local graph
and their merged distances. Based on possible targets that cannot be merged and the
distance to the local graph of each global target, it is decided which targets are merged.
All remaining global targets are connected with a global path which is constructed

from both target's paths to the local graph.

8.2.3. Traveling Salesman Problem Solver

Once the local exploration �nishes when no explorable nodes remain, a route connect-
ing all global targets must be found. As previously stated, all active global targets

8. RNE 4 - Local and Global Exploration 127

are connected with each other through global paths and to the robot's position via
the global connections to the local graph. If there are no active global targets, the
exploration is completed and RNE terminates.
The initial tour connecting all global targets and the robot is constructed chaining

the targets ascendingly by their index, starting with the robot's position. Since the
global targets are added chronologically, this initial tour often yields a good enough
estimate. Also, only the �rst target is going to be the goal for the robot and the process
is repeated afterwards.
The 2-opt swap TSP solver, which is described in Section 3.4.2, is applied to the

initial tour to optimize it. The �rst target of the tour is omitted from the 2-opt swap
as it is the robot's current position and cannot be changed. Furthermore, open TSP is
utilized because the robot is not required to return to its current position. Open TSP
is described in Section 3.4.3.
When no further improvement is detected in an iteration of 2-opt swap, the �rst

target after the robot's position in the tour is selected as the goal for the robot. The
global connection from the robot to it is sent to the navigation as a global plan.
2-opt swap is chosen over other heuristics because of the reduced computational

complexity of O(n2) and the resulting path still being within 5% of the Held-Karp
lower bound [153]. Even though other heuristics, like 3-opt or Lin-Kernighan are more
likely to deliver a better tour, their complexity is larger [153]. Because only the �rst
goal in the tour is executed, the 2-opt swap is considered su�cient for this use case.

8.2.4. Global Navigation

The �rst global target is selected from the tour calculated by the 2-opt swap TSP
solver. The corresponding global connection from the target to the robot's position is
used to construct a path for the global navigation planner. It is introduced in Section
5.1.7 and improved in Sections 6.1.2 and 7.5.
The waypoints of the global connection are reversed because they are ordered from

global target to robot. Also, intermediate points are added in between.
When the robot follows the waypoints towards a global target, a k-d tree is used

to keep track of the waypoint closest to the robot. As soon as the robot reaches
the previous to last waypoint, the local exploration is started and the local graph is
initialized at the last waypoint, which is also the global target's viewpoint.
Furthermore, when the navigation to a global target fails, the next global target

from the previously calculated tour is chosen as a goal. If there are no other targets
left, the exploration is �nished as well.
To navigate to the next global target, the robot follows the global connection of the

failed target back to the local graph. Upon reaching the former target's �rst waypoint,
the global connection from the local graph to the new global target is pursued. If
another target fails, the procedure is repeated. When �ve consecutive targets fail, the
exploration is terminated as the robot is assumed stuck.

8.2.5. Homing

RNE has the option to return the robot to the starting position after the exploration
is �nished, similar to the approaches utilized in the DARPA SubT Challenge, e.g.,
GBPlanner2 and TARE.

8. RNE 4 - Local and Global Exploration 128

Fig. 8.5.: A combination of local and global exploration is shown in this screenshot taken in RViz
of the environment introduced in Figure 6.2a. The local graph, which is set to a small radius for
demonstration purposes, is placed around the robot in the top of the image. Green dots and lines
symbolize explored nodes and edges while blue dots are unexplored nodes. The node colored yellow
is the current goal of the robot.
The global graph's targets have numbers attached to them with curly braces for clustered targets. All
targets except for the origin, which is the second target from the bottom of the image, have other
targets merged into them. The global connections are shown in purple, orange and dark yellow and
link local graph and global targets with each other.

Therefore, the origin of the exploration is added as a global target at the start. A
global path with the local graph's root node as the connecting node is appended as
well. The origin is treated as a special global target because it must not be merged
with any other target. Therefore, it is simply ignored when applying the heuristic for
clustering global targets described in Section 8.2.2.
Also, when using the 2-opt swap TSP solver, the origin must always be the last

target in the route. To accomplish this, it is always inserted at the end of the route
and it cannot be swapped.

8. RNE 4 - Local and Global Exploration 129

When all other global targets have been explored, the origin is the last goal for the
robot. It references the maintained global connection from the local graph to it for
navigation.
Figure 8.5 shows an exemplary exploration with a local and global graph as well as

the origin.

8.3. Implementation

This section goes into detail about the �nal implementation of the RNE algorithm
described in this work. It elaborates where the di�erent parts of the algorithm are
located and how they interact while utilizing the ROS framework. Furthermore, the
interfaces to other package like the navigation stack, OctoMap and RSM which is
introduced in Chapter 4, are presented. In Figure 8.6, an overview of the packages,
nodes, plugins and classes can be seen.
The complete RNE is available as an open-source metapackage. A metapackage bun-

dles several other packages as described in Section 2.1. In the following, the description
of the implementation is structured by the di�erent packages.

8.3.1. rrg nbv exploration

This is the main package that contains all of the algorithms and heuristics introduced
before. By supplying parameters to the respective nodes, the user sets various settings
of the exploration. In addition to the user-de�ned settings mentioned in the previous
description of RNE, a user can turn the local sampling, NAI, node movement and

Fig. 8.6.: Class diagram showing all classes utilized in RNE grouped by the ROS nodes or plugins
using them. Furthermore, the associations between the classes in the rneNode are depicted as well as
the ROS packages containing the nodes, plugins and classes. Methods and attributes are omitted for
brevity.

8. RNE 4 - Local and Global Exploration 130

hybrid exploration on or o�.
The package includes three nodes which are the rneNode, gainCalcNode and rneVi-

sualizationNode that are described below.

rneNode

The rneNode accesses the GraphConstructor class which itself utilizes the majority
of classes in the package. The GraphConstructor's main method is called from the
rneNode using a timer with a user-de�ned frequency. These classes are listed in the
following. Shared pointers enable access to each class from every other class if necessary
while only one class object is instantiated.

GraphConstructor The class GraphConstructor is the main class of the rneNode and
runs the algorithm which builds the local graph. It manages and publishes the
local graph's current state, selects and supervises the current goal for the robot
and publishes the nodes to be updated in a ROS message topic. It subscribes to
the updated nodes' topic as well.

Furthermore, it controls the switch between local and global exploration while
also pruning the local graph based on its sliding area. It publishes the current
goal and if it should be aborted. The GraphConstructor also includes services
to start and stop the exploration.

CollisionChecker The CollisionChecker is responsible for all traversability checks
which determine node placement and connections. It includes the algorithms
introduced in Chapter 5.1.4 which check if a circular or rectangular area is
traversable. Also, NAI and node movement algorithms proposed in Chapter 7.1
are placed in this class. Therefore, it subscribes to a user-de�ned OccupancyGrid
map topic which holds the required information.

GraphPathCalculator When the robot moves from one node to the next, the Graph-
PathCalculator updates the path from each particular node to the robot. This
path is maintained in the node and can be retrieved for the RneGlobalPlanner.
Furthermore, the heading changes and the traversability along this path are cal-
culated and added up for each node's cost function as shown in Equation (7.4).
The path is based on Dijkstra's algorithm using the cost function for each node
explained in Section 7.5.

NodeComparator The NodeComparator stores a list of all nodes which can still be
explored. This list is used to determine the node with the best reward, which is
then proposed as the next goal to explore.

GraphSearcher The GraphSearcher is an interface to the nano�ann header-only li-
brary for building k-d trees. All of the RRG's nodes are stored in a k-d tree to
enable a fast nearest neighbor and radius search for constructing the graph and
updating nodes in a radius.

GlobalGraphHandler The class GlobalGraphHandler is responsible for adding and
merging global targets as well as their respective global connections as described
in Section 8.2. It includes the 2-opt TSP solver to determine the next global goal
and the global path towards it.

8. RNE 4 - Local and Global Exploration 131

GlobalGraphSearcher This class also employs the nano�ann header-only library to
store and access the global targets in a k-d tree for nearest neighbor and radius
searches.

GlobalGraphWaypointSearcher The GlobalGraphWaypointSearcher uses the nano-
�ann header-only library on global connection waypoints for pruning the connec-
tions and determining the closest waypoint to the robot.

gainCalcNode

The gainCalcNode uses the GainCalculator class to calculate each node's gain using
SRP which is introduced in Section 5.1.5. It also sets each node's height by obtain-
ing the ground's height from ray tracing in the OctoMap. Nodes to be updated are
subscribed to in the respective ROS topic and updated nodes, whose gains have been
calculated, are published in another topic.

rneVisualizationNode

The RneVisualizer is the only class in the rneVisualizationNode and subscribes to
the published local and global graph to visualize them in RViz. It shows local nodes
as spheres colored according to the particular node's state listed below. The edges are
shown as lines in between them which interpolate the nodes' colors they are connecting.

White The node's gain has not been calculated yet.

Blue The node's gain is calculated and the intensity of the color indicates its
reward function. Dark blue for a higher reward and light blue for a lower
reward.

Yellow This node is the robot's current goal node.

Light green This node has already been visited by the robot but is still not fully
explored.

Orange The node has already been visited and is the current goal node for the
robot.

Dark green This node is fully explored.

Red Navigation to this node failed previously.

It also publishes text visualization that shows the nodes' number and reward func-
tion. If activated by using parameters or rqt's recon�gure GUI1, all parts of the reward
and cost function can be shown individually as well.
Furthermore, the global targets are depicted as cubes with a unique, random color.

Their index is visualized above them with curly brackets around if the target has other
targets merged into it. Global connections are shown as lines and share the color of the
target with the highest index that they are connected to. For example, if the global
target with index 3 has connections to targets 1 and 2, the connections have the same
color as target 3.
1http://wiki.ros.org/rqt_reconfigure

http://wiki.ros.org/rqt_reconfigure

8. RNE 4 - Local and Global Exploration 132

8.3.2. rrg nbv exploration msgs

This package contains all ROS messages and services de�ned for the RNE algorithm
and makes them known to the ROS master.
This includes the messages that contain the local and the global graph. The former

uses a list of local nodes and edges that each have their own message. The local node
message stores its index, position, status and all required information for the cost and
reward function as well as the indices of its connecting edges and the indices of the
nodes in its path to the robot. It also includes references to all global targets which
have this node as their connecting node to the local graph. The edges contain their
own index as well as the indices of the connected nodes, orientation, length and the
traversability cost.
The global graph message is separated into a list of targets and connections similar

to the local graph message. In the global target message, index, position, indices of its
global connections and merged distance are included. The global connection message
holds its index, indices of the targets it connects, length in m and list of waypoints.
The indices of the targets can have special values for the origin and the local graph. If
a global path is connected to the local graph, the index of the connecting node in the
local graph is stored as well.
The package also contains the messages for updating nodes which are exchanged

between the rneNode and the gainCalcNode. Furthermore, it exposes services which
can request the position of the goal proposed by RNE and the path towards it as well
as update the current goal's status.

8.3.3. rrg nbv exploration plugins

This package is an auxiliary package that interfaces RSM and the ROS navigation
package. It implements a state for exploration called RnExplorationState which
retrieves the currently best goal from RNE and passes it on to RSM, that itself forwards
it to the navigation. A node called rneServiceProviderNode is used to communicate
between RSM and RNE by forwarding the status of the current goal navigation to
RNE and if it is obsolete to RSM.
The RneGlobalPlanner is the global navigation planner introduced in Section 5.1.7

and re�ned in Sections 6.1.2 and 7.5. It retrieves the path to the current goal from
RNE and uses it in the planning of the ROS navigation package.
The package also includes Uni�ed Robot Description Format (URDF) and ROS

launch �les that simplify starting a simulation to test RNE. The URDF �les describe
di�erent robot con�gurations to validate di�erent scenarios, e.g., with a depth camera
or a lidar scanner.
Alternatively, an interface to the AEDE's terrain analysis and local planner is pro-

vided. AEDE is introduced in Section 2.2. It forwards the path constructed for the
RneGlobalPlanner directly to AEDE's local planner which follows it waypoint by way-
point.
Compared to the ROS navigation stack, AEDE is considerably faster in reaching

new goals and switching between goals but sacri�ces the ability to target a desired
orientation at a goal. Therefore, it is only suited for sensor con�gurations with an
all-around FoV.

8. RNE 4 - Local and Global Exploration 133

Furthermore, it is less precise in reaching the goals exactly which leads to sub-optimal
coverage compared to the calculated, expected gain.

8.4. Comparison to Local-Only Exploration

To highlight the improvements to the previous iteration, hybrid RNE is compared to
plain RNE introduced in Chapter 7. The same evaluation setup as shown in Section
7.7.1 is used but the vehicle con�guration with the camera is discarded because it
cannot be utilized with the AEDE-based local planner. The number of runs for each
con�guration is increased from 10 to 15.
For the local-only exploration, which is referenced as R, and RNE with the global

exploration, all cost factors are set to 1. Topology-based NAI and re-updating nodes
are activated for all runs. For RNE, global exploration is active and the local graph
radius is set to rG = 20 m.
Furthermore, the AEDE-based planner mentioned in Section 8.3.3 is used in the

simulation as an alternative to the comparably slow ROS navigation stack. The cor-
responding interface for RNE enables utilizing the terrain analysis and local planner
which allows increased velocities and faster goal position changes. Its goal is to increase
the overall exploration speed.
The AEDE-based local planner does not allow to select the goal orientation of the

robot nor is it as �ne-grained as the navigation stack when using the default parameters
de�ned by its developers in the open-source examples. Therefore, the proposed interface
has a higher goal tolerance which means it must not be as close to the goals as the
Dynamic Window Approach (DWA) local planner.
Runs with this approach are referenced as RNEA and have a goal tolerance of 0.35

m from the robot's center compared to 0.2 m used by the navigation stack's DWA
planner.
Figure 8.7 and Table 8.1 show the results from the simulations. While the overall

duration and path length of RNE are slightly inferior to R, the goal to reduce the
computation is achieved. The mean algorithm run time is decreased by approximately
21% for L-ME and nearly 18% for L-CE.

Tab. 8.1.: Comparison between local-only RNE as R, hybrid RNE as RNE, RNE using the AEDE-
based local planner as RNEA and RNE with optimized parameters as RNE+. The table shows the
mean µ and SD σ of duration, traveled path length, observed volume and algorithm run time as
well as the amount of total and failed runs for the lidar con�guration as L on the medium and cave
environments as ME and CE respectively. The best mean values for each variant are printed in bold
letters.

Con�gu-
ration

Duration [s] Path [m] Volume [m3] Run time [%] Runs
µ σ µ σ µ σ µ σ Failed Total

L-ME R 765.00 79.37 191.82 34.47 1590.2 6.1 0.442 0.032 0 15
L-ME RNE 791.54 102.68 208.68 36.30 1586.4 5.7 0.349 0.038 2 15
L-ME RNEA 422.00 42.22 254.26 25.22 1616.8 11.4 0.698 0.026 1 15
L-ME RNE+ 211.00 34.70 223.84 38.00 1893.6 57.7 0.285 0.026 0 15
L-CE R 2838.00 236.71 637.90 52.49 8401.9 65.8 0.531 0.016 0 15
L-CE RNE 3257.14 230.72 754.19 73.69 8442.4 78.1 0.436 0.045 1 15
L-CE RNEA 2562.50 234.76 1222.00 146.51 8013.6 6.3 0.751 0.014 13 15
L-CE RNE+ 433.27 58.81 489.41 66.34 9699.9 386.4 0.317 0.024 0 15

8. RNE 4 - Local and Global Exploration 134

In Figure 8.7, it can also be seen that the global exploration's map coverage and
distance are similar to R during most of the run. Only at the end, the global exploration
adds some overhead, probably due to remaining global targets that only add marginal
map coverage.
Just switching to the AEDE-based local planner while all other parameters stay the

same, leads to a large amount of failed exploration attempts and a vastly increased
algorithm run time. This is caused by the faster planning and movement which does
not leave enough time to sample goals and calculate their gain before the exploration
�nished timer is triggered. This causes a switch to the global exploration and leads to
stopping the exploration prematurely.
Therefore, the parameters for RNE and some of the other ROS packages are changed

to make the exploration as e�ective as possible. This should also increase its perfor-
mance compared to the state-of-the-art approaches presented in the next section. The
parameters listed in the following are changed to optimize RNE:

� Timer duration texit = 5s

� Horizontal steps ∆ϕ = 20◦,

� Radius steps ∆r = 0.35m

� Sensor range for gain calculation rmax = 20m

� Minimum view score Gmin = 0.03 for ME and Gmin = 0.15 for CE

� OctoMap resolution eV = 0.35m

� Distance factor d = 0.15

� Local sampling radius rls = 10m

� Grid map resolution rm = 0.1m

With these parameters, RNE with the AEDE-based local planner, which is referenced
as RNE+, outperforms basic RNE and RNEA in nearly every category. Compared to
the basic RNE, the duration is decreased by 73% for L-ME and 87% for L-CE. The
algorithm run time is reduced by 18% and 27% respectively. The path length for
L-ME is increased by 7% because the exploration favors more rewarding nodes over
nearby nodes which leads to some back-and-forth motion. For L-CE, the path length
is decreased by 35%.
The mapped volume is more di�cult to compare because the OctoMap voxel edge

length is increased from 0.1 m for R, RNE and RNEA to 0.35 m for RNE+. Voxels
on the outer boundaries of the closed environments can extend the mapped volume
further for the larger edge length. For example, the box-shaped ME's dimensions are
25x25x2.5 m and its volume is 1562.5 m3. For a resolution of 0.1 m, the dimensions can
extend up to 25.2x25.2x2.7 m which results in a volume of 1714.61 m3. An edge length
of 0.35 m can result in dimensions of 25.7x25.7x3.2 m which equals a volume of 2113.57
m3. This is an increase in map volume of around 20% which roughly equals the increase
of the mapped volume from RNEA to RNE+ for L-ME and L-CE. It indicates that
the mapped volume remains approximately the same when considering the di�erent
resolutions.

8. RNE 4 - Local and Global Exploration 135

(a)

(b)

Fig. 8.7.: Mean mapped volume, path length and algorithm run time over the duration for local-only
RNE as R, hybrid RNE as RNE, RNE using the AEDE-based local planner as RNEA and RNE
with optimized parameters as RNE+. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the lidar
con�guration in the medium environment and (b) the lidar con�guration in the cave environment.

Figure 8.7 underlines the performance increase of RNE+ compared to RNEA and ba-
sic RNE. It shows that RNE+ is able to explore larger amounts of the map signi�cantly
faster than the previous attempts. Therefore, RNE+ is compared to the state-of-the-art
approaches introduced next.

8. RNE 4 - Local and Global Exploration 136

8.5. Comparison to State-of-the-Art Approaches

To demonstrate the e�ectiveness of the exploration approach introduced in this work, it
is compared to several state-of-the-art exploration algorithms for UGVs. The optimized
approach RNE+ shown in the previous section and the other algorithms are executed
in both environments shown before and referred to as ME and CE.
The other approaches are DSVP, TARE and GBPlanner2, which is abbreviated as

GBP2. RNE uses the arti�cial box robot shown in Figure 7.8b. While DSVP and
TARE simulations are based on the simulated robot they use in AEDE, which was
introduced by the same authors. GBP2 is executed using their own simulated robot as
well. Because their open-source approaches are closely intertwined with the particular
robot and planning approach, these are not changed for the comparison. The robot
dimensions are comparable to the robot depicted in Figure 7.8b. DSVP, TARE and
GBPlanner2 are detailed in Section 2.4.
Furthermore, the default parameters from the open-source repositories of the state-

of-the-art approaches are used during this comparison. For GBP2, the parameters
declaring a bounded exploration area are removed as the ME and CE environments
are enclosed. While DSVP and TARE publish their exploration run time, a timer to
calculate it for GBP2 is added to its source code.
The path length and mapped volume are evaluated, like in previous simulations, by

calculating the length between the connected positions of the robot in the map and
counting observed OctoMap voxels respectively. Therefore, an OctoMap node is added
to TARE and GBP2 runs with a resolution of 0.35 m for comparability. DSVP already
uses OctoMap with the same resolution for gain calculation.
Table 8.2 shows the results of the simulations. It can be seen, that DSVP and

TARE outperform RNE while it is still more e�cient than GBP2. DSVP and TARE
respectively take around half or one-third of the time to explore ME but are only twice
as fast for the larger CE. The path traversed by the robot during the exploration is
increased by 50% compared to DSVP for ME and 108% compared to TARE. For CE, it
is increased by 17% and 20% respectively. The explored map volume is approximately
the same for ME and compared to TARE in CE. But RNE explores 12% more map
volume in CE compared to DSVP.

Tab. 8.2.: Comparison between RNE, DSVP, TARE and GBPlanner2 as GBP2 which shows the mean
µ and SD σ of duration, traveled path length, observed volume and algorithm run time as well as
the amount of total and failed runs. The lidar con�guration as L is used in the medium and cave
environments as ME and CE respectively. The best mean values for each variant are printed in bold
letters.

Con�gu-
ration

Duration [s] Path [m] Volume [m3] Run time [%] Runs
µ σ µ σ µ σ µ σ Failed Total

L-ME RNE 211.00 34.70 223.84 38.00 1893.6 57.7 0.285 0.026 0 15
L-ME DSVP 102.67 21.79 149.55 28.11 1908.5 29.6 0.077 0.018 0 15
L-ME TARE 73.00 11.15 107.49 15.16 1912.4 6.8 0.229 0.019 0 15
L-ME GBP2 415.00 59.64 152.27 20.27 1799.4 94.6 0.028 0.003 0 15
L-CE RNE 433.27 58.81 489.41 66.34 9699.9 386.4 0.317 0.024 0 15
L-CE DSVP 288.00 26.71 417.94 37.54 8679.4 239.6 0.079 0.012 0 15
L-CE TARE 278.57 15.25 408.23 21.32 9568.6 89.5 0.303 0.011 1 15
L-CE GBP2 1136.79 50.33 465.84 21.49 10027.3 79.8 0.026 0.002 1 15

8. RNE 4 - Local and Global Exploration 137

(a)

(b)

Fig. 8.8.: Mean mapped volume, path length and algorithm run time over the duration for RNE,
DSVP, TARE and GBPlanner2 as GBP2. The tinted areas show the SD of the particular values. A
line ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the
lidar con�guration in the medium environment and (b) the lidar con�guration in the cave environment.

While RNE is 50% faster than GBP2 in ME and 62% in CE, its path length is
increased by 47% for the former and 5% for the latter. The explored map volume
di�ers only by 5% for ME and 3% for CE.
The algorithm run time of RNE is magnitudes larger than DSVP and very similar

to TARE while GBP2 has the lowest computation time. This contradicts the �ndings
in [12] and [18]. They measure a signi�cantly decreased run time of their approaches
DSVP and TARE compared to GBP2. On their website, the authors of DSVP and

8. RNE 4 - Local and Global Exploration 138

TARE also show that TARE's algorithm run time is lower than DSVP's in all of the
displayed tests [159]. Therefore, it seems di�cult to directly compare the algorithm
run times to each other as they heavily depend on the utilized processor and system.
In Figure 8.8, it can be seen that DSVP and TARE explore more volume earlier

while TARE slightly outperforms DSVP. RNE shows a similar early exploration rate
but �attens out a bit earlier and therefore takes more time to �nish the exploration.
The map coverage and distance curve of GBP2 is signi�cantly �atter which indicates
that it does not cover as much room as the other approaches. The algorithm run time
of RNE is large at the start but signi�cantly decreases over time as more areas become
explored and the gain calculation's larger load drops.
This comparison shows that RNE is able to compete with the current state-of-the-

art approaches while it is independent of the utilized robot, sensors and SLAM. This
makes it more �exible and easier to use in various applications.

8.6. Experiment

To verify that RNE also works under real circumstances and not solely in simulations,
an experiment is conducted in the rock-cut cellars in Lauf an der Pegnitz, Germany.
The robot Georg is used which was the �rst robot from the Nuremberg Institute of
Technology's AutonOHM team participating in the RoboCup RRL Competition, that
is introduced in Section 1.1.2. It was built in 2012 and is a skid-steer drive with roughly
the same dimensions as the Clearpath Robotics Husky and the simulated box robot
used in the simulations.
Georg is equipped with two Velodyne VLP-16 lidars as can be seen in Figure 8.9 but

has no IMU nor wheel odometry. Only the more elevated Velodyne in the back is used
during the experiment. The ROS package laser scan matcher2 is deployed to calculate
the odometry for GMapping which is the utilized SLAM approach. Therefore, the mean
ring from the Velodyne is used in the 2D scan matching as it is aligned horizontally.
Furthermore, the Velodyne points are required for a traversability analysis introduced

by Koch et al. [3] which is utilized to assess the uneven ground in the rock-cut cellars

2http://wiki.ros.org/laser_scan_matcher

Fig. 8.9.: Robot Georg in the rock-cut cellars in Lauf an der Pegnitz, Germany. The left image shows
a transition from rock-cut ground to cobblestones and the right image depicts the robot in front of
debris blocking a corner of the cellar.

http://wiki.ros.org/laser_scan_matcher

8. RNE 4 - Local and Global Exploration 139

Fig. 8.10.: Plan of the rock-cut cellars in Lauf an der Pegnitz, Germany [160] with a red square to
mark the area in which the experiment takes place.

featuring steps and holes. It publishes a grid map whose values correspond to the
traversability of the particular patch based on the points in this and neighboring grid
cells and the robot's kinematics. Further details about the traversability analysis can
be obtained from the publication.
Figure 8.10 shows the �oor plan of the rock-cut cellars with a red rectangle marking

the area that was explored in this experiment. Most of the cellars are connected via
stairs or steps which cannot be traversed by the robot. The marked cellar was selected
as it is one of the largest and also has electric lights.
In Figure 8.9, robot Georg can be seen in the rock-cut cellars during the experiment.

The experiment was conducted before the AEDE-based local planner interface has
been implemented. Therefore, the ROS navigation stack was used including the DWA
local planner. The robot was placed in the middle of the cellar at the start of the
experiment.
The goal of the experiment was to explore the complete cellar using RNE's �nal

iteration. Due to untraversable connections to neighboring cellars, the area was limited
to the cellar marked in Figure 8.10. Therefore, only a local exploration was conducted
as the area is not large enough for a transition between local and global exploration to
take place.
Figure 8.11 shows that RNE successfully explored the complete cellar, in which the

robot was deployed, in 7 minutes and 32 seconds. Due to the missing IMU, turning on
the spot sometimes caused a wrong localization which led to duplicated walls in the
grid map, e.g. in the top left corner. The approach proposed in this work is able to
thoroughly explore di�cult environments under real-life conditions.

8. RNE 4 - Local and Global Exploration 140

Fig. 8.11.: Explored map of the rock-cut cellars in Lauf an der Pegnitz, Germany. The grid map
shows obstacles in black, free cells in light gray and unknown cells in dark gray. Green dots and lines
show nodes and edges of the graph respectively and lighter green circles the areas of the particular
nodes whose indices are shown in brackets.

8.7. Conclusion

The fourth and �nal iteration of RNE enables e�cient exploration of larger areas
than previous iterations. While the total computation time can still grow because of
an increasing number of global targets, the largest part of RNE's computation time
relates to the maximum local graph size. It limits the number of nodes that can be
placed simultaneously and whose gains have to be calculated.
The e�cient clustering of global targets and the employed 2-opt TSP solver help in

reducing the total computation time as can be seen in the results of the simulations in
Table 8.1.
Due to the transitions between local and global exploration, the exploration duration

is increased as well as the overall path length. The hybrid RNE iteration is not as
e�cient regarding exploration duration and traveled path length but ful�lls the goal
of reducing the growing computation time.
When comparing RNE with the ROS navigation planner to the state-of-the-art ap-

proaches, it performs signi�cantly worse. However, the other approaches employ their
own planners which are tailored to the speci�c robot and therefore more e�cient. These
approaches are DSVP, TARE and GBPlanner2.
By utilizing the AEDE-based local planning approach and optimizing the parame-

ters, RNE's �nal iteration is able to perform on the same level as the state-of-the-art
approaches. These were utilized in the DARPA SubT Challenge and are tailored to
speci�c robots while RNE can be used with a variety of UGVs.
Finally, RNE's usage is demonstrated in a real-world experiment which veri�ed that

it can be utilized in di�cult, GPS-denied environments and successfully explore them.

141

9. Conclusion

In this work's �nal chapter, its research is recapitulated. The contributions are sum-
marized and possible directions for future research are presented, followed by a closing
remark.

9.1. Contributions

The research in this work focuses on autonomous exploration using UGVs for un-
derground, GPS-deprived environments. It was motivated by the EIT RawMaterial's
UNDROMEDA project and the exploration category of the RoboCup RRL. As both
intended applications of the research had di�erent robots and sensor con�gurations,
the exploration approach needed to be versatile and adaptable which ruled out all of
the existing open-source explorations available at the time.
To alleviate the development and application of an exploration approach, a state

machine for mobile robots was created. Furthermore, it should o�er the possibil-
ity to inspect and repeatedly patrol certain areas which was a requirement in the
UNDROMEDA project and the RoboCup RRL as well.
This state machine was developed for ROS and open-sourced as Robot Statemachine

(RSM). A paper about it was published in 2020 [1] and it was successfully utilized
by the AutonOHM team from the Nuremberg Institute of Technology in the RoboCup
GermanOpen RRL in 2019 and the RoboCup RRL in Sydney in 2019.
As sampling-based approaches for UGVs with an open-source ROS package were not

available after the RSM was �nished, a new approach had to be developed. Inspired by
RH-NBVP, which was introduced by Bircher et al. [6] for UAVs, an RRT-based explo-
ration algorithm was developed to gradually improve it compared to its inspirational
predecessor. Furthermore, the goal was to adapt it to UGVs.
The �rst iteration of this development features a traversability evaluation based on

a grid map and a sparse, decoupled gain calculation for each node in the RRT called
Sparse Ray Polling (SRP). SRP which is based on SRC introduced by Selin et al. [7],
uses an OctoMap and further reduces the number of required samples to decrease the
computation time. The decoupled calculation means that it is executed in a separate
thread from the remaining exploration algorithm. This allows to abandon the current
goal node if a better one becomes available and eliminates the need to wait until all
gains are calculated after reaching a goal. Furthermore, a persistent tree is utilized as
well as a global navigation planner that follows the tree's edges to the designated goal.
This goal is selected using a function that considers each particular node's gain and
the distance from the robot to the node along the tree's edges.
The second iteration replaces RRT with RRG which enables �nding optimal paths

through the graph between the robot and the goal. Combined with Dijkstra's algorithm
to �nd the shortest path in the graph, the goal selection and global navigation planner
are signi�cantly improved.

9. Conclusion 142

This research was published in 2021 [2]. The exploration approach was named
Random-Sampling-Based Next-Best View Exploration (RNE) and the algorithm was
made available as an open-source ROS package. A comparison to re-implementations of
RH-NBVP and AEP for ground-based robots, which demonstrates RNE's superiority,
was also conducted.
The third iteration introduces a topology-based graph construction method which

means that nodes are placed as central as possible according to the environment's
topology. To achieve this, the node areas are in�ated until they collide with an obstacle
or until a maximum radius is reached which is as large as the sensor's maximum range.
In case of a collision, the node is moved away from the obstacle and can continue to
grow in size to create a graph with larger node areas. This is advantageous because
the node centers, which can serve as goals for the robot or parts of the paths to the
goals, are further away from obstacles. This reduces the risk of collision and increases
the volume observable by the robot's sensors.
In addition to the topology-based graph, a more sophisticated reward function was

introduced that considers the traversability and heading change along the path to
each particular node in addition to the distance and node gain. Furthermore, the
node radius is included in the cost function which leads to favoring nodes with large
areas. This new cost function includes adjustable parameters that enable optimizing
the exploration focus for speci�c scenarios.
To analyze the impact of these parameters, an exhaustive experiment was conducted

in which di�erent combinations of them were run in simulations. A total of 1350
runs for 135 di�erent combinations were executed that revealed the in�uence of the
particular parameters on the exploration performance.
In the third iteration, re-updating node gains was also added to the algorithm. This

causes the re-calculation of node gains around the robot while it is moving from node
to node. This allows abandoning goals whose gains are signi�cantly reduced while the
robot navigates towards them. It increases the e�ciency of the exploration but also
increases the algorithm run time.
The �nal iteration of RNE was inspired by several approaches featuring a distinction

between local and global exploration [7, 9, 12, 14, 18, 19, 20]. Some of them were
utilized in the DARPA SubT Challenge. Based on them, the previously described
topology-based algorithm became the local part of the exploration while a global ap-
proach was added.
This requires the ability to remove nodes from the local graph as it is restricted to a

user-de�nable radius around the robot that moves with it. When a node falls outside
the radius due to the robot's movement, it is removed. New nodes are only sampled
inside the current area around the robot. Nodes, that are removed but still o�er enough
gain, are added to the global exploration as global targets.
These global targets are connected to the local graph using global paths that are

built from removed nodes and edges. These paths are always connected to one of the
local graph's nodes. If multiple paths are connected to the same node, connecting
paths between the two or more particular global targets are established.
As soon as the local graph does not o�er any more explorable nodes, the global

exploration is started. All global paths are continued to the robot's current position.
Global targets without a global path connecting them to each other are connected
through the shortest path in the local graph between their respective connecting nodes.

9. Conclusion 143

A 2-opt TSP solver is employed to �nd the most e�cient order to visit all existing
global targets regarding the overall distance. The �rst global target in this order is
selected as the next goal for the robot. When it is reached, a local exploration is
initialized at the target's position.
Global targets are e�ciently clustered using their Euclidean distance and distance

to each other via their connecting global paths. This reduces the required computation
time to �nd the optimal order using a TSP solver and to maintain the attached global
paths.
Furthermore, a homing option was proposed that adds the origin from which the

exploration is started as a global target. After all other global targets have been
explored, the robot follows the global path to the origin of the exploration.
Also, local and global exploration include sophisticated ways to handle navigation

failures to a particular goal to keep the exploration going and �nally return the robot
to the origin, even after one or more goals have been blocked.
The proposed RNE was compared to three state-of-the-art approaches which are

DSVP, TARE and GBPlanner2. These were deployed in the DARPA SubT Challenge
and team CERBERUS, that developed and utilized GBPlanner2, won the �nals. The
comparison showed that RNE is able to compete with the previously listed approaches
in the executed simulations.
In addition, RNE was deployed in an experiment to autonomously explore a rock-cut

cellar in Lauf an der Pegnitz, Germany. A traversability analysis was used with RNE
which was introduced by Koch et al. [3]. It was successfully demonstrated that the
proposed approach can be utilized in simulations and real-world scenarios to explore
and map an unknown underground environment.

9.2. Future Research

There are several directions in which this work could be extended in future research.
Recent publications in the �eld of exploration algorithms for mobile robotics revolved
heavily around the DARPA SubT Challenge and revealed that multi-robot and UAV-
based exploration approaches as well as approaches for legged robots, are the current
state of the art. Because RNE can already be applied to a variety of ground robots,
it can be utilized with legged robots. But extensions to enable UAVs to use RNE
and which allow a coordinated multi-robot approach, could be a possible direction for
future research.
As UAVs can move freely on the z-axis, the node sampling has to be extended in this

axis. The current traversability checks would require an additional metric to translate
volumetric collision checks into a 2D grid map. An ESDF-based mapping approach
like Voxblox introduced by Oleynikova et al. [149] could alleviate collision checking
as every voxel stores a distance to the nearest obstacle. This can also be utilized
to implement an e�cient topology-based graph construction as new nodes can move
towards positions with a larger distance to obstacles.
A transformation of a 3D ESDF map to a 2D grid could be used to implement this

e�cient topology-based graph construction for the ground-based exploration case. The
ESDF could additionally be used for sparse gain calculation and replace the OctoMap.
A multi-robot exploration could be realized with a global graph shared between the

robots while each of them runs its own local exploration. To e�ciently assign global

9. Conclusion 144

targets to each robot, a multi-robot TSP solver could be employed.
Di�erent approaches to include the node gain in the reward function would also be

an option for research. The current solution requires the user to set a minimum view
score which needs experience to select an e�cient value. Finding clusters of unexplored
voxels in the gain calculation could be a solution to avoid classifying nodes with widely
distributed unexplored voxels as worth exploring. But this would also require a user-
de�ned value to de�ne which cluster sizes are worth exploring.
A dynamic calculation of a threshold to rate nodes as worth exploring could be

another valuable research. This would also consider changing environments as the
number of unexplored voxels around a node is higher in large, open areas compared
to narrow tunnels. A Neural Network could be trained and applied to execute this
dynamic calculation.

9.3. Closing Remarks

The DARPA SubT Challenge signi�cantly ampli�ed the research e�ort on exploration
algorithms and birthed a multitude of sophisticated exploration approaches specialized
in underground environments. The massive funding led to large teams from universities
all over the world putting great e�ort into research and engineering developments.
Their �ndings were a great inspiration to improve the approach proposed in this work.
The increased availability of legged robots recently also shifted a lot of research to-

wards their use as they have signi�cant advantages over wheel- and track-driven UGVs
in di�cult underground environments. Future applications regarding autonomous ex-
ploration are probably going to revolve heavily around the use of legged robots in
combination with UAVs.
Unfortunately, RNE could only be tested on a real robot very late in the research

due to the Covid pandemic-related travel restrictions. When the restrictions were �-
nally lifted, the UNDROMEDA project's funding had ended and no experiment in
an underground mine with the robot could be conducted. Therefore, a low-budget
experiment in the rock-cut cellars had to su�ce as well as a heavy reliance on simula-
tions. Nonetheless, the e�ciency of the proposed exploration algorithm was successfully
demonstrated.

145

Bibliography

[1] Marco Steinbrink, Philipp Koch, Stefan May, Bernhard Jung, and Michael
Schmidpeter. �State Machine for Arbitrary Robots for Exploration and Inspec-
tion Tasks�. In: Proceedings of the 2020 4th International Conference on Vision,
Image and Signal Processing. New York, NY, USA: ACM, Dec. 2020, pp. 1�6.
doi: 10.1145/3448823.3448857.

[2] Marco Steinbrink, Philipp Koch, Bernhard Jung, and Stefan May. �Rapidly-
Exploring Random Graph Next-Best View Exploration for Ground Vehicles�.
In: 2021 European Conference on Mobile Robots (ECMR). IEEE, Aug. 2021,
pp. 1�7. doi: 10.1109/ECMR50962.2021.9568785.

[3] Philipp Koch, Marco Steinbrink, Stefan May, and Andreas Nuechter. �Traversabil-
ity Analysis for Wheeled Robots using Point-Region-Quad-Tree based Elevation
Maps�. In: 2022 IEEE International Conference on Autonomous Robot Sys-
tems and Competitions (ICARSC). IEEE, Apr. 2022, pp. 192�197. doi:
10.1109/icarsc55462.2022.9784803.

[4] Technology readiness levels (TRL); Extract from Part 19 - Commission Decision
C(2014)4995. 2014. url: https://ec.europa.eu/research/participants/
data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.

pdf (visited on 07/04/2022).

[5] League Overview � RoboCupRescue Robot League. url: https://rrl.robocup.
org/league-overview/ (visited on 06/30/2022).

[6] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland
Siegwart. �Receding horizon next-best-view planner for 3D exploration�. In:
Proceedings - IEEE International Conference on Robotics and Automation 2016-
June.January 2018 (2016), pp. 1462�1468. doi: 10.1109/ICRA.2016.7487281.

[7] Magnus Selin, Mattias Tiger, Daniel Duberg, Fredrik Heintz, and Patric Jensfelt.
�E�cient autonomous exploration planning of large-scale 3-d environments�. In:
IEEE Robotics and Automation Letters 4.2 (Apr. 2019), pp. 1699�1706. doi:
10.1109/LRA.2019.2897343.

[8] Zhefan Xu, Di Deng, and Kenji Shimada. �Autonomous UAV Exploration of
Dynamic Environments Via Incremental Sampling and Probabilistic Roadmap�.
In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 2729�2736. doi: 10.
1109/LRA.2021.3062008.

[9] Lukas Schmid, Victor Reijgwart, Lionel Ott, Juan Nieto, Roland Siegwart, and
Cesar Cadena. �A Uni�ed Approach for Autonomous Volumetric Exploration
of Large Scale Environments under Severe Odometry Drift�. In: IEEE Robotics
and Automation Letters 6.3 (2021), pp. 4504�4511. doi: 10.1109/LRA.2021.
3068954.

https://doi.org/10.1145/3448823.3448857
https://doi.org/10.1109/ECMR50962.2021.9568785
https://doi.org/10.1109/icarsc55462.2022.9784803
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://rrl.robocup.org/league-overview/
https://rrl.robocup.org/league-overview/
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1109/LRA.2019.2897343
https://doi.org/10.1109/LRA.2021.3062008
https://doi.org/10.1109/LRA.2021.3062008
https://doi.org/10.1109/LRA.2021.3068954
https://doi.org/10.1109/LRA.2021.3068954

Bibliography 146

[10] Tung Dang, Frank Mascarich, Shehryar Khattak, Christos Papachristos, and
Kostas Alexis. �Graph-based Path Planning for Autonomous Robotic Explo-
ration in Subterranean Environments�. In: IEEE International Conference on
Intelligent Robots and Systems November (2019), pp. 3105�3112. doi: 10.1109/
IROS40897.2019.8968151.

[11] DARPA subterranean (SubT) challenge. url: https : / / www . darpa . mil /

program/darpa-subterranean-challenge (visited on 06/29/2022).

[12] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang. �TARE: A Hierarchical
Framework for E�ciently Exploring Complex 3D Environments�. In: Robotics:
Science and Systems XVII. Robotics: Science and Systems Foundation, July
2021. doi: 10.15607/rss.2021.xvii.018.

[13] Fan Yang, Dung Han Lee, John Keller, and Sebastian Scherer. �Graph-based
Topological Exploration Planning in Large-scale 3D Environments�. In: Proceed-
ings - IEEE International Conference on Robotics and Automation 2021-May
(2021), pp. 6768�6774. doi: 10.1109/ICRA48506.2021.9561830.

[14] Mihir Kulkarni et al. Autonomous Teamed Exploration of Subterranean Environ-
ments using Legged and Aerial Robots. Tech. rep. 2021. doi: 10.48550/ARXIV.
2111.06482.

[15] Sung Kyun Kim, Amanda Bouman, Gautam Salhotra, David D. Fan, Kyohei
Otsu, Joel Burdick, and Ali Akbar Agha-Mohammadi. �PLGRIM: Hierarchical
Value Learning for Large-scale Autonomous Exploration in Unknown Environ-
ments�. In: (2021), pp. 652�662. doi: 10.48550/ARXIV.2102.05633.

[16] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Kono-
lige. �The o�ce marathon: Robust navigation in an indoor o�ce environment�.
In: Proceedings - IEEE International Conference on Robotics and Automation
(2010), pp. 300�307. doi: 10.1109/ROBOT.2010.5509725.

[17] Sertac Karaman and Emilio Frazzoli. �Incremental sampling-based algorithms
for optimal motion planning�. In: Robotics: Science and Systems. Vol. 6. 2011,
pp. 267�274. doi: 10.15607/rss.2010.vi.034.

[18] Hongbiao Zhu, Chao Cao, Yukun Xia, Sebastian Scherer, Ji Zhang, and Wei-
dong Wang. �DSVP: Dual-Stage Viewpoint Planner for Rapid Exploration by
Dynamic Expansion�. In: IEEE International Conference on Intelligent Robots
and Systems. 2021, pp. 7623�7630. doi: 10.1109/IROS51168.2021.9636473.

[19] Tung Dang, Shehryar Khattak, Frank Mascarich, and Kostas Alexis. �Explore
Locally, Plan Globally: A Path Planning Framework for Autonomous Robotic
Exploration in Subterranean Environments�. In: 2019 19th International Con-
ference on Advanced Robotics (ICAR). IEEE, Dec. 2019, pp. 9�16. doi: 10.
1109/ICAR46387.2019.8981594.

[20] Mihir Dharmadhikari, Tung Dang, and Kostas Alexis. �Appendix for the Motion
Primitives-based Path Planning for Fast and Agile Exploration Method�. In:
(2020). doi: 10.48550/ARXIV.2012.03228.

[21] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. �ROS: an open-source Robot Operating
System. � In: ICRA Workshop on Open Source Software. 2009, pp. 679�686.

https://doi.org/10.1109/IROS40897.2019.8968151
https://doi.org/10.1109/IROS40897.2019.8968151
https://www.darpa.mil/program/darpa-subterranean-challenge
https://www.darpa.mil/program/darpa-subterranean-challenge
https://doi.org/10.15607/rss.2021.xvii.018
https://doi.org/10.1109/ICRA48506.2021.9561830
https://doi.org/10.48550/ARXIV.2111.06482
https://doi.org/10.48550/ARXIV.2111.06482
https://doi.org/10.48550/ARXIV.2102.05633
https://doi.org/10.1109/ROBOT.2010.5509725
https://doi.org/10.15607/rss.2010.vi.034
https://doi.org/10.1109/IROS51168.2021.9636473
https://doi.org/10.1109/ICAR46387.2019.8981594
https://doi.org/10.1109/ICAR46387.2019.8981594
https://doi.org/10.48550/ARXIV.2012.03228

Bibliography 147

[22] Tully Foote and Katherine Scott. Community Metrics Report Contents. Tech.
rep. Open Source Robotics Foundation, 2020. url: http://download.ros.
org/downloads/metrics/metrics-report-2020-07.pdf.

[23] Nathan Koenig and Andrew Howard. �Design and use paradigms for Gazebo, an
open-source multi-robot simulator�. In: 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Vol. 3. IEEE, 2004, pp. 2149�
2154. doi: 10.1109/IROS.2004.1389727.

[24] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. �YARP: Yet another robot
platform�. In: 3.1 (2006), pp. 043�048. doi: 10.5772/5761.

[25] José-Luis Blanco. �Contributions to Localization, Mapping and Navigation in
Mobile Robotics�. PhD thesis. PhD. in Electrical Engineering, University of
Malaga, nov 2009. url: https://riuma.uma.es/xmlui/handle/10630/9841.

[26] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. �Robot Operating System 2: Design, architecture, and uses in the wild�.
In: Science Robotics 7.66 (May 2022). doi: 10.1126/scirobotics.abm6074.

[27] Tully Foote and Katherine Scott. Community Metrics Report Contents. Tech.
rep. 2021. url: http://download.ros.org/downloads/metrics/metrics-
report-2020-07.pdf.

[28] Tully Foote. �Tf: The transform library�. In: IEEE Conference on Technologies
for Practical Robot Applications, TePRA (2013). doi: 10.1109/TePRA.2013.
6556373.

[29] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. �Improving grid-based
SLAM with Rao-Blackwellized particle �lters by adaptive proposals and selec-
tive resampling�. In: Proceedings - IEEE International Conference on Robotics
and Automation. Vol. 2005. 2005, pp. 2432�2437. doi: 10.1109/ROBOT.2005.
1570477.

[30] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. �Improved techniques
for grid mapping with Rao-Blackwellized particle �lters�. In: IEEE Transactions
on Robotics 23.1 (2007), pp. 34�46. doi: 10.1109/TRO.2006.889486.

[31] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. �The dynamic window
approach to collision avoidance�. In: IEEE Robotics and Automation Magazine
4.1 (1997), pp. 23�33. doi: 10.1109/100.580977.

[32] Armin Hornung, Kai MWurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. �OctoMap: An e�cient probabilistic 3D mapping framework based
on octrees�. In: Autonomous Robots 34.3 (2013), pp. 189�206. doi: 10.1007/
s10514-012-9321-0.

[33] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. �Creational
Patterns�. In: Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995, pp. 305�313.

[34] David Harel. �Statecharts: a visual formalism for complex systems�. In: Sci-
ence of Computer Programming 8.3 (1987), pp. 231�274. doi: 10.1016/0167-
6423(87)90035-9.

http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.5772/5761
https://riuma.uma.es/xmlui/handle/10630/9841
https://doi.org/10.1126/scirobotics.abm6074
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
https://doi.org/10.1109/TePRA.2013.6556373
https://doi.org/10.1109/TePRA.2013.6556373
https://doi.org/10.1109/ROBOT.2005.1570477
https://doi.org/10.1109/ROBOT.2005.1570477
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/100.580977
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9

Bibliography 148

[35] Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic,
and Doug Tolbert. Uni�ed Modeling Language (UML) Version 2.5.1. Standard.
Object Management Group (OMG), Dec. 2017. url: https://www.omg.org/
spec/UML/2.5.1.

[36] Jonathan Boren and Steve Cousins. �The SMACH high-level executive�. In:
IEEE Robotics and Automation Magazine 17.4 (Dec. 2010), pp. 18�20. doi:
10.1109/MRA.2010.938836.

[37] Hai Nguyen, Matei Ciocarlie, Kaijen Hsiao, and Charles C Kemp. �ROS com-
mander (ROSCo): Behavior creation for home robots�. In: Proceedings - IEEE
International Conference on Robotics and Automation. 2013, pp. 467�474. doi:
10.1109/ICRA.2013.6630616.

[38] Michalis Foukarakis, Asterios Leonidis, Margherita Antona, and Constantine
Stephanidis. �Combining �nite state machine and decision-making tools for
adaptable robot behavior�. In: Universal Access in Human-Computer Inter-
action. Aging and Assistive Environments. Springer International Publishing,
2014, pp. 625�635. doi: 10.1007/978-3-319-07446-7_60.

[39] Barry Ridge, Timotej Gaspar, and Ales Ude. �Rapid state machine assembly for
modular robot control using meta-scripting, templating and code generation�.
In: IEEE-RAS International Conference on Humanoid Robots (2017), pp. 661�
668. doi: 10.1109/HUMANOIDS.2017.8246943.

[40] Philipp Schillinger, Stefan Kohlbrecher, and Oskar Von Stryk. �Human-robot
collaborative high-level control with application to rescue robotics�. In: Proceed-
ings - IEEE International Conference on Robotics and Automation. Vol. 2016-
June. IEEE, May 2016, pp. 2796�2802. doi: 10.1109/ICRA.2016.7487442.

[41] David C. Conner and Justin Willis. �Flexible Navigation: Finite state machine-
based integrated navigation and control for ROS enabled robots�. In: Southeast-
Con. IEEE, Mar. 2017, pp. 1�8. doi: 10.1109/SECON.2017.7925266.

[42] Sachin Chitta et al. �ros_control: A generic and simple control framework for
ROS�. In: The Journal of Open Source Software 2.20 (2017), p. 456. doi: 10.
21105/joss.00456.

[43] Brett W. Aldrich and Pablo I. Blasco. SMACC � State Machine Asynchronous
C++. 2020. url: https://smacc.dev/ (visited on 05/26/2021).

[44] Chao Cao, Hongbiao Zhu, Fan Yang, Yukun Xia, Howie Choset, Jean Oh, and Ji
Zhang. �Autonomous Exploration Development Environment and the Planning
Algorithms�. In: 2022 International Conference on Robotics and Automation
(ICRA). IEEE, May 2022, pp. 8921�8928. doi: 10.1109/ICRA46639.2022.
9812330.

[45] J Andrew Bagnell et al. �An integrated system for autonomous robotics manip-
ulation�. In: IEEE International Conference on Intelligent Robots and Systems.
2012, pp. 2955�2962. doi: 10.1109/IROS.2012.6385888.

[46] Michele Colledanchise and Petter Ögren. �How Behavior Trees modularize ro-
bustness and safety in hybrid systems�. In: IEEE International Conference on
Intelligent Robots and Systems. 2014, pp. 1482�1488. doi: 10.1109/IROS.2014.
6942752.

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1109/MRA.2010.938836
https://doi.org/10.1109/ICRA.2013.6630616
https://doi.org/10.1007/978-3-319-07446-7_60
https://doi.org/10.1109/HUMANOIDS.2017.8246943
https://doi.org/10.1109/ICRA.2016.7487442
https://doi.org/10.1109/SECON.2017.7925266
https://doi.org/10.21105/joss.00456
https://doi.org/10.21105/joss.00456
https://smacc.dev/
https://doi.org/10.1109/ICRA46639.2022.9812330
https://doi.org/10.1109/ICRA46639.2022.9812330
https://doi.org/10.1109/IROS.2012.6385888
https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2014.6942752

Bibliography 149

[47] Michele Colledanchise and Petter Ogren. �How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Compositions,
the Subsumption Architecture, and Decision Trees�. In: IEEE Transactions on
Robotics 33 (2017), pp. 372�389. doi: 10.1109/TRO.2016.2633567.

[48] Lydia E. Kavraki, Petr �vestka, Jean Claude Latombe, and Mark H. Overmars.
�Probabilistic roadmaps for path planning in high-dimensional con�guration
spaces�. In: IEEE Transactions on Robotics and Automation. Vol. 12. 4. 1996,
pp. 566�580. doi: 10.1109/70.508439.

[49] Lydia E. Kavraki, Mihail N. Kolountzakis, and Jean Claude Latombe. �Analysis
of probabilistic roadmaps for path planning�. In: IEEE Transactions on Robotics
and Automation 14.1 (Feb. 1998), pp. 166�171. doi: 10.1109/70.660866.

[50] Steven M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning. Tech. rep. 1998.

[51] James J Ku�ner and Steven M. La Valle. �RRT-connect: an e�cient approach
to single-query path planning�. In: Proceedings - IEEE International Conference
on Robotics and Automation. Vol. 2. 2000, pp. 995�1001. doi: 10.1109/robot.
2000.844730.

[52] S. M. LaValle and J. J. Ku�ner. �Randomized kinodynamic planning�. In: Inter-
national Journal of Robotics Research 20.5 (2001), pp. 378�400. doi: 10.1177/
02783640122067453.

[53] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. �Anytime motion planning using the RRT�. In: Proceedings - IEEE
International Conference on Robotics and Automation (2011), pp. 1478�1483.
doi: 10.1109/ICRA.2011.5980479.

[54] Oliver Brock and Lydia E. Kavraki. �Decomposition-based motion planning:
A framework for real-time motion planning in high-dimensional con�guration
spaces�. In: 2 (2001), pp. 1469�1474. doi: 10.1109/ROBOT.2001.932817.

[55] Markus Rickert, Oliver Brock, and Alois Knoll. �Balancing exploration and ex-
ploitation in motion planning�. In: Proceedings - IEEE International Conference
on Robotics and Automation (2008), pp. 2812�2817. doi: 10.1109/ROBOT.2008.
4543636.

[56] Alexander Shkolnik and Russ Tedrake. �Sample-Based Planning with Volumes in
Con�guration Space�. In: 1109.3145 (2011). doi: 10.48550/ARXIV.1109.3145.

[57] Fei Gao and Shaojie Shen. �Online quadrotor trajectory generation and au-
tonomous navigation on point clouds�. In: SSRR 2016 - International Sympo-
sium on Safety, Security and Rescue Robotics. 2016, pp. 139�146. doi: 10.1109/
SSRR.2016.7784290.

[58] Fei Gao, William Wu, Wenliang Gao, and Shaojie Shen. �Flying on point clouds:
Online trajectory generation and autonomous navigation for quadrotors in clut-
tered environments�. In: Journal of Field Robotics 36.4 (June 2019), pp. 710�
733. doi: 10.1002/rob.21842.

https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.660866
https://doi.org/10.1109/robot.2000.844730
https://doi.org/10.1109/robot.2000.844730
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1109/ROBOT.2001.932817
https://doi.org/10.1109/ROBOT.2008.4543636
https://doi.org/10.1109/ROBOT.2008.4543636
https://doi.org/10.48550/ARXIV.1109.3145
https://doi.org/10.1109/SSRR.2016.7784290
https://doi.org/10.1109/SSRR.2016.7784290
https://doi.org/10.1002/rob.21842

Bibliography 150

[59] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. In-
formed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. Iros. 2014, pp. 2997�3004. doi: 10.1109/
IROS.2014.6942976.

[60] Xinda Wang, Xiao Luo, Baoling Han, Yuhan Chen, Guanhao Liang, and Kailin
Zheng. �Collision-free path planning method for robots based on an improved
rapidly-exploring random tree algorithm�. In: Applied Sciences (Switzerland)
10.4 (2020). doi: 10.3390/app10041381.

[61] Jory Denny, Read Sandström, Andrew Bregger, and Nancy M. Amato. �Dy-
namic Region-biased Rapidly-exploring Random Trees�. In: Algorithmic Foun-
dations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorith-
mic Foundations of Robotics. Springer International Publishing, Cham, 2020,
pp. 640�655. doi: 10.1007/978-3-030-43089-4_41.

[62] Philipp Krüsi, Paul Furgale, Michael Bosse, and Roland Siegwart. �Driving on
Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assess-
ment in Generic Nonplanar Environments�. In: Journal of Field Robotics 34.5
(2017), pp. 940�984. doi: 10.1002/rob.21700.

[63] B Yamauchi. �A Frontier Based Approach for Autonomous Exploration�. In:
Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA (1997), pp. 146�151. doi: 10.1109/CIRA.
1997.613851.

[64] Phillip Quin, Alen Alempijevic, Gavin Paul, and Dikai Liu. �Expanding wave-
front frontier detection: An approach for e�ciently detecting frontier cells�. In:
Australasian Conference on Robotics and Automation, ACRA. Vol. 02-04-Dece.
2014.

[65] Phillip Quin, Dac Dang Khoa Nguyen, Thanh Long Vu, Alen Alempijevic, and
Gavin Paul. �Approaches for E�ciently Detecting Frontier Cells in Robotics
Exploration�. In: Frontiers in Robotics and AI 8 (Feb. 2021), p. 1. doi: 10.
3389/frobt.2021.616470.

[66] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven Behnke. �Evaluating
the e�ciency of frontier-based exploration strategies�. In: Joint 41st Interna-
tional Symposium on Robotics and 6th German Conference on Robotics 2010,
ISR/ROBOTIK 2010 1.June (2010), pp. 36�43.

[67] Miguel Juliá, Arturo Gil, and Oscar Reinoso. �A comparison of path planning
strategies for autonomous exploration and mapping of unknown environments�.
In: Autonomous Robots 33.4 (2012), pp. 427�444. doi: 10.1007/s10514-012-
9298-8.

[68] Kai MWurm, Cyrill Stachniss, and Wolfram Burgard. �Coordinated multi-robot
exploration using a segmentation of the environment�. In: 2008 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, IROS. 2008, pp. 1160�
1165. doi: 10.1109/IROS.2008.4650734.

[69] Stefan Obwald, Maren Bennewitz, Wolfram Burgard, and Cyrill Stachniss.
�Speeding-Up Robot Exploration by Exploiting Background Information�.
In: IEEE Robotics and Automation Letters 1.2 (2016), pp. 716�723. doi:
10.1109/LRA.2016.2520560.

https://doi.org/10.1109/IROS.2014.6942976
https://doi.org/10.1109/IROS.2014.6942976
https://doi.org/10.3390/app10041381
https://doi.org/10.1007/978-3-030-43089-4_41
https://doi.org/10.1002/rob.21700
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.3389/frobt.2021.616470
https://doi.org/10.3389/frobt.2021.616470
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1109/IROS.2008.4650734
https://doi.org/10.1109/LRA.2016.2520560

Bibliography 151

[70] Clara Gomez, Alejandra C Hernandez, and Ramon Barber. �Topological
frontier-based exploration and map-building using semantic information�. In:
Sensors (Switzerland) 19.20 (2019). doi: 10.3390/s19204595.

[71] Agusti Solanas and Miguel Angel Garcia. �Coordinated multi-robot exploration
through unsupervised clustering of unknown space�. In: 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). Vol. 1. 2004,
pp. 717�721. doi: 10.1109/iros.2004.1389437.

[72] Miroslav Kulich, Jan Faigl, and Libor Preucil. �On distance utility in the explo-
ration task�. In: Proceedings - IEEE International Conference on Robotics and
Automation. 2011, pp. 4455�4460. doi: 10.1109/ICRA.2011.5980221.

[73] Jan Faigl and Miroslav Kulich. �On determination of goal candidates in frontier-
based multi-robot exploration�. In: 2013 European Conference on Mobile Robots,
ECMR 2013 - Conference Proceedings. 2013, pp. 210�215. doi: 10.1109/ECMR.
2013.6698844.

[74] Miroslav Kulich, Ji°í Kubalík, and Libor P°eu£il. �An integrated approach
to goal selection in mobile robot exploration�. In: Sensors (Switzerland) 19.6
(2019). doi: 10.3390/s19061400.

[75] Francesco Amigoni, Alberto Quattrini Li, and Dirk Holz. �Evaluating the impact
of perception and decision timing on autonomous robotic exploration�. In: 2013
European Conference on Mobile Robots, ECMR 2013 - Conference Proceedings.
IEEE, Sept. 2013, pp. 68�73. doi: 10.1109/ECMR.2013.6698822.

[76] Dominik Joho, Cyrill Stachniss, Patrick Pfa�, and Wolfram Burgard. �Au-
tonomous exploration for 3D map learning�. In: Informatik aktuell (2007),
pp. 22�28. doi: 10.1007/978-3-540-74764-2_4.

[77] Jonathan Butzkey, Andrew Dornbushy, and Maxim Likhachevy. �3-D explo-
ration with an air-ground robotic system�. In: IEEE International Conference on
Intelligent Robots and Systems. Vol. 2015-Decem. IEEE, Sept. 2015, pp. 3241�
3248. doi: 10.1109/IROS.2015.7353827.

[78] Cheng Zhu, Rong Ding, Mengxiang Lin, and Yuanyuan Wu. �A 3D frontier-
based exploration tool for MAVs�. In: Proceedings - International Conference
on Tools with Arti�cial Intelligence, ICTAI. Vol. 2016-Janua. IEEE, Nov. 2016,
pp. 348�352. doi: 10.1109/ICTAI.2015.60.

[79] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang Liu, Ken Goldberg,
Pieter Abbeel, Nathan Michael, and Vijay Kumar. �Information-Theoretic Plan-
ning with Trajectory Optimization for Dense 3D Mapping�. In: Robotics: Science
and Systems XI (2015). doi: 10.15607/RSS.2015.XI.003.

[80] P. G.C.N. Senarathne and Danwei Wang. �Towards autonomous 3D exploration
using surface frontiers�. In: SSRR 2016 - International Symposium on Safety,
Security and Rescue Robotics. IEEE, Oct. 2016, pp. 34�41. doi: 10.1109/SSRR.
2016.7784274.

[81] Margarida Faria, António Sérgio Ferreira, Héctor Pérez-Leon, Ivan Maza, and
Antidio Viguria. �Autonomous 3D exploration of large structures using an UAV
equipped with a 2D LIDAR�. In: Sensors (Switzerland) 19.22 (2019). doi: 10.
3390/s19224849.

https://doi.org/10.3390/s19204595
https://doi.org/10.1109/iros.2004.1389437
https://doi.org/10.1109/ICRA.2011.5980221
https://doi.org/10.1109/ECMR.2013.6698844
https://doi.org/10.1109/ECMR.2013.6698844
https://doi.org/10.3390/s19061400
https://doi.org/10.1109/ECMR.2013.6698822
https://doi.org/10.1007/978-3-540-74764-2_4
https://doi.org/10.1109/IROS.2015.7353827
https://doi.org/10.1109/ICTAI.2015.60
https://doi.org/10.15607/RSS.2015.XI.003
https://doi.org/10.1109/SSRR.2016.7784274
https://doi.org/10.1109/SSRR.2016.7784274
https://doi.org/10.3390/s19224849
https://doi.org/10.3390/s19224849

Bibliography 152

[82] Margarida Faria, Ivan Maza, and Antidio Viguria. �Applying Frontier Cells
Based Exploration and Lazy Theta* Path Planning over Single Grid-Based
World Representation for Autonomous Inspection of Large 3D Structures with
an UAS�. In: Journal of Intelligent and Robotic Systems: Theory and Applica-
tions 93.1-2 (2019), pp. 113�133. doi: 10.1007/s10846-018-0798-4.

[83] David G. Vutetakis and Jing Xiao. �An Autonomous Loop-Closure Approach
for Simultaneous Exploration and Coverage of Unknown Infrastructure Using
MAVs�. In: 2019 International Conference on Robotics and Automation (ICRA).
Vol. 2019-May. IEEE, May 2019, pp. 2988�2994. doi: 10.1109/ICRA.2019.
8794110.

[84] Liang Lu, Carlos Redondo, and Pascual Campoy. �Optimal frontier-based au-
tonomous exploration in unconstructed environment using rgb-d sensor�. In:
Sensors (Switzerland) 20.22 (2020), pp. 1�16. doi: 10.3390/s20226507.

[85] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi Nardi, Paul H.J. Kelly,
and Stefan Leutenegger. �E�cient Octree-Based Volumetric SLAM Supporting
Signed-Distance and Occupancy Mapping�. In: IEEE Robotics and Automation
Letters 3.2 (2018), pp. 1144�1151. doi: 10.1109/LRA.2018.2792537.

[86] Anna Dai, Sotiris Papatheodorou, Nils Funk, Dimos Tzoumanikas, and Stefan
Leutenegger. �Fast Frontier-based Information-driven Autonomous Exploration
with an MAV�. In: Proceedings - IEEE International Conference on Robotics and
Automation. 2020, pp. 9570�9576. doi: 10.1109/ICRA40945.2020.9196707.

[87] Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto. �Safe Local
Exploration for Replanning in Cluttered Unknown Environments for Microaerial
Vehicles�. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 1474�1481.
doi: 10.1109/LRA.2018.2800109.

[88] Titus Cieslewski, Elia Kaufmann, and Davide Scaramuzza. �Rapid exploration
with multi-rotors: A frontier selection method for high speed �ight�. In: IEEE
International Conference on Intelligent Robots and Systems. 2017, pp. 2135�
2142. doi: 10.1109/IROS.2017.8206030.

[89] Giuseppe Oriolo, Marilena Vendittelli, Luigi Freda, and Giulio Troso. �The SRT
method: Randomized strategies for exploration�. In: Proceedings - IEEE Inter-
national Conference on Robotics and Automation 2004.5 (2004), pp. 4688�4694.
doi: 10.1109/robot.2004.1302457.

[90] Hassan Umari and Shayok Mukhopadhyay. �Autonomous robotic exploration
based on multiple rapidly-exploring randomized trees�. In: IEEE International
Conference on Intelligent Robots and Systems. Vol. 2017-Septe. IEEE, Sept.
2017, pp. 1396�1402. doi: 10.1109/IROS.2017.8202319.

[91] Wenchuan Qiao, Zheng Fang, and Bailu Si. �Sample-Based Frontier Detection
for Autonomous Robot Exploration�. In: 2018 IEEE International Conference
on Robotics and Biomimetics (ROBIO). IEEE, Dec. 2018, pp. 1165�1170. doi:
10.1109/ROBIO.2018.8665066.

[92] Baofu Fang, Jianfeng Ding, and Zaijun Wang. �Autonomous Robotic Explo-
ration Based on Frontier Point Optimization and Multistep Path Planning�. In:
IEEE Access 7 (2019), pp. 46104�46113. doi: 10.1109/ACCESS.2019.2909307.

https://doi.org/10.1007/s10846-018-0798-4
https://doi.org/10.1109/ICRA.2019.8794110
https://doi.org/10.1109/ICRA.2019.8794110
https://doi.org/10.3390/s20226507
https://doi.org/10.1109/LRA.2018.2792537
https://doi.org/10.1109/ICRA40945.2020.9196707
https://doi.org/10.1109/LRA.2018.2800109
https://doi.org/10.1109/IROS.2017.8206030
https://doi.org/10.1109/robot.2004.1302457
https://doi.org/10.1109/IROS.2017.8202319
https://doi.org/10.1109/ROBIO.2018.8665066
https://doi.org/10.1109/ACCESS.2019.2909307

Bibliography 153

[93] Zeyu Tian, Chen Guo, Yi Liu, and Tianxiao Cui. �Autonomous exploration of
RRT robot based on seeded region growing�. In: Chinese Control Conference,
CCC. Vol. 2020-July. IEEE Computer Society, July 2020, pp. 3936�3941. doi:
10.23919/CCC50068.2020.9188916.

[94] Di Deng, Runlin Duan, Jiahong Liu, Kuangjie Sheng, and Kenji Shimada.
�Robotic exploration of unknown 2d environment using a frontier-based
automatic-di�erentiable information gain measure�. In: IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics, AIM. Vol. 2020-July.
2020, pp. 1497�1503. doi: 10.1109/AIM43001.2020.9158881.

[95] Chaoqun Wang, Delong Zhu, Teng Li, Max Q.H. Meng, and Clarence W. De
Silva. �E�cient Autonomous Robotic Exploration with Semantic Road Map
in Indoor Environments�. In: IEEE Robotics and Automation Letters 4.3 (July
2019), pp. 2989�2996. doi: 10.1109/LRA.2019.2923368.

[96] Chaoqun Wang, Wenzheng Chi, Yuxiang Sun, and Max Q.H. Meng. �Au-
tonomous Robotic Exploration by Incremental Road Map Construction�. In:
IEEE Transactions on Automation Science and Engineering 16.4 (Oct. 2019),
pp. 1720�1731. doi: 10.1109/TASE.2019.2894748.

[97] Christos Papachristos, Shehryar Khattak, and Kostas Alexis. �Uncertainty-
aware receding horizon exploration and mapping using aerial robots�. In:
Proceedings - IEEE International Conference on Robotics and Automation.
IEEE, May 2017, pp. 4568�4575. doi: 10.1109/ICRA.2017.7989531.

[98] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland
Siegwart. �Receding horizon path planning for 3D exploration and surface in-
spection�. In: Autonomous Robots 42.2 (2018), pp. 291�306. doi: 10.1007/
s10514-016-9610-0.

[99] Christos Papachristos, Mina Kamel, Marija Popovi¢, Shehryar Khattak, An-
dreas Bircher, Helen Oleynikova, Tung Dang, Frank Mascarich, Kostas Alexis,
and Roland Siegwart. �Autonomous Exploration and Inspection Path Planning
for Aerial Robots Using the Robot Operating System�. In: Studies in Computa-
tional Intelligence. Vol. 778. Springer Verlag, 2019, pp. 67�111. doi: 10.1007/
978-3-319-91590-6_3.

[100] Bing Jui Ho, Paloma Sodhi, Pedro Teixeira, Ming Hsiao, Tushar Kusnur, and
Michael Kaess. �Virtual Occupancy Grid Map for Submap-based Pose Graph
SLAM and Planning in 3D Environments�. In: IEEE International Conference
on Intelligent Robots and Systems. 2018, pp. 2175�2182. doi: 10.1109/IROS.
2018.8594234.

[101] Tung Dang, Christos Papachristos, and Kostas Alexis. �Autonomous exploration
and simultaneous object search using aerial robots�. In: IEEE Aerospace Con-
ference Proceedings. Vol. 2018-March. IEEE, Mar. 2018, pp. 1�7. doi: 10.1109/
AERO.2018.8396632.

[102] Christian Witting, Marius Fehr, Rik Bähnemann, Helen Oleynikova, and Roland
Siegwart. �History-Aware Autonomous Exploration in Con�ned Environments
Using MAVs�. In: IEEE International Conference on Intelligent Robots and Sys-
tems. 2018, pp. 5208�5215. doi: 10.1109/IROS.2018.8594502.

https://doi.org/10.23919/CCC50068.2020.9188916
https://doi.org/10.1109/AIM43001.2020.9158881
https://doi.org/10.1109/LRA.2019.2923368
https://doi.org/10.1109/TASE.2019.2894748
https://doi.org/10.1109/ICRA.2017.7989531
https://doi.org/10.1007/s10514-016-9610-0
https://doi.org/10.1007/s10514-016-9610-0
https://doi.org/10.1007/978-3-319-91590-6_3
https://doi.org/10.1007/978-3-319-91590-6_3
https://doi.org/10.1109/IROS.2018.8594234
https://doi.org/10.1109/IROS.2018.8594234
https://doi.org/10.1109/AERO.2018.8396632
https://doi.org/10.1109/AERO.2018.8396632
https://doi.org/10.1109/IROS.2018.8594502

Bibliography 154

[103] Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart,
and Juan Nieto. �An E�cient Sampling-Based Method for Online Informative
Path Planning in Unknown Environments�. In: IEEE Robotics and Automation
Letters 5.2 (2020), pp. 1500�1507. doi: 10.1109/LRA.2020.2969191.

[104] Menaka Naazare, Francisco Garcia Rosas, and Dirk Schulz. �Online Next-Best-
View Planner for 3D-Exploration and Inspection with a Mobile Manipulator
Robot�. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 3779�3786.
doi: 10.1109/LRA.2022.3146558.

[105] Mihir Dharmadhikari, Tung Dang, Lukas Solanka, Johannes Loje, Huan Nguyen,
Nikhil Khedekar, and Kostas Alexis. �Motion Primitives-based Path Planning
for Fast and Agile Exploration using Aerial Robots�. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, May 2020, pp. 179�185.
doi: 10.1109/ICRA40945.2020.9196964.

[106] Eungchang Mason Lee, Junho Choi, Hyungtae Lim, and Hyun Myung.
�REAL: Rapid Exploration with Active Loop-Closing toward Large-Scale 3D
Mapping using UAVs�. In: 2021 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE, Sept. 2021, pp. 4194�4198. doi:
10.1109/IROS51168.2021.9636611.

[107] Victor Reijgwart, Alexander Millane, Helen Oleynikova, Roland Siegwart, Cesar
Cadena, and Juan Nieto. �Voxgraph: Globally Consistent, Volumetric Mapping
Using Signed Distance Function Submaps�. In: IEEE Robotics and Automation
Letters 5.1 (2020), pp. 227�234. doi: 10.1109/LRA.2019.2953859.

[108] Mihir Dharmadhikari, Harshal Deshpande, Tung Dang, and Kostas Alexis.
�Hypergame-based Adaptive Behavior Path Planning for Combined Explo-
ration and Visual Search�. In: Proceedings - IEEE International Conference on
Robotics and Automation. Vol. 2021-May. IEEE, May 2021, pp. 269�275. doi:
10.1109/ICRA48506.2021.9561451.

[109] Soohwan Song and Sungho Jo. �Surface-Based Exploration for Autonomous 3D
Modeling�. In: Proceedings - IEEE International Conference on Robotics and Au-
tomation. IEEE, May 2018, pp. 4319�4326. doi: 10.1109/ICRA.2018.8460862.

[110] Soohwan Song, Daekyum Kim, and Sungho Jo. �Online coverage and inspection
planning for 3D modeling�. In: Autonomous Robots 44.8 (2020), pp. 1431�1450.
doi: 10.1007/s10514-020-09936-7.

[111] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang. �Exploring Large and
Complex Environments Fast and E�ciently�. In: Proceedings - IEEE Interna-
tional Conference on Robotics and Automation. Vol. 2021-May. 2021, pp. 7781�
7787. doi: 10.1109/ICRA48506.2021.9561916.

[112] Zehui Meng, Hailong Qin, Ziyue Chen, Xudong Chen, Hao Sun, Feng Lin, and
Marcelo H. Ang. �A two-stage optimized next-view planning framework for 3-
D unknown environment exploration, and structural reconstruction�. In: IEEE
Robotics and Automation Letters 2.3 (July 2017), pp. 1680�1687. doi: 10.1109/
LRA.2017.2655144.

https://doi.org/10.1109/LRA.2020.2969191
https://doi.org/10.1109/LRA.2022.3146558
https://doi.org/10.1109/ICRA40945.2020.9196964
https://doi.org/10.1109/IROS51168.2021.9636611
https://doi.org/10.1109/LRA.2019.2953859
https://doi.org/10.1109/ICRA48506.2021.9561451
https://doi.org/10.1109/ICRA.2018.8460862
https://doi.org/10.1007/s10514-020-09936-7
https://doi.org/10.1109/ICRA48506.2021.9561916
https://doi.org/10.1109/LRA.2017.2655144
https://doi.org/10.1109/LRA.2017.2655144

Bibliography 155

[113] Hailong Qin, Zehui Meng, Wei Meng, Xudong Chen, Hao Sun, Feng Lin, and
Marcelo H. Ang. �Autonomous Exploration and Mapping System Using Hetero-
geneous UAVs and UGVs in GPS-Denied Environments�. In: IEEE Transactions
on Vehicular Technology 68.2 (Feb. 2019), pp. 1339�1350. doi: 10.1109/TVT.
2018.2890416.

[114] Noé Pérez-Higueras, Alberto Jardón, Ángel Rodríguez, and Carlos Balaguer.
�3D exploration and navigation with optimal-RRT planners for ground robots
in indoor incidents�. In: Sensors (Switzerland) 20.1 (2020). doi: 10 . 3390 /
s20010220.

[115] Bjorn Lindqvist, Ali Akbar Agha-Mohammadi, and George Nikolakopoulos.
�Exploration-RRT: A multi-objective Path Planning and Exploration Frame-
work for Unknown and Unstructured Environments�. In: IEEE International
Conference on Intelligent Robots and Systems (2021), pp. 3429�3435. doi: 10.
1109/IROS51168.2021.9636243.

[116] Robbie Shade and Paul Newman. �Choosing where to go: Complete 3D explo-
ration with Stereo�. In: Proceedings - IEEE International Conference on Robotics
and Automation (2011), pp. 2806�2811. doi: 10.1109/ICRA.2011.5980121.

[117] Brian J Julian, Sertac Karaman, and Daniela Rus. �On mutual information-
based control of range sensing robots for mapping applications�. In: intelligent
Robots and Systems (2013), pp. 5156�5163. doi: 10.1109/IROS.2013.6697102.

[118] Brian J. Julian, Sertac Karaman, and Daniela Rus. �On mutual information-
based control of range sensing robots for mapping applications�. In: International
Journal of Robotics Research 33.10 (Sept. 2014), pp. 1375�1392. doi: 10.1177/
0278364914526288.

[119] Renan Ma�ei, Vitor A.M. Jorge, Edson Prestes, and Mariana Kolberg. �Inte-
grated exploration using time-based potential rails�. In: Proceedings - IEEE In-
ternational Conference on Robotics and Automation. IEEE, May 2014, pp. 3694�
3699. doi: 10.1109/ICRA.2014.6907394.

[120] Joan Vallvé and Juan Andrade-Cetto. �Potential information �elds for mobile
robot exploration�. In: Robotics and Autonomous Systems 69.1 (July 2015),
pp. 68�79. doi: 10.1016/j.robot.2014.08.009.

[121] Chaoqun Wang, Lili Meng, Teng Li, Clarence W. De Silva, and Max Q.H. Meng.
�Towards autonomous exploration with information potential �eld in 3D envi-
ronments�. In: 2017 18th International Conference on Advanced Robotics, ICAR
2017. IEEE, July 2017, pp. 340�345. doi: 10.1109/ICAR.2017.8023630.

[122] Evan Kaufman, Kuya Takami, Zhuming Ai, and Taeyoung Lee. �Autonomous
quadrotor 3D mapping and exploration using exact occupancy probabilities�. In:
Proceedings - 2nd IEEE International Conference on Robotic Computing, IRC
2018. Vol. 2018-Janua. Institute of Electrical and Electronics Engineers Inc.,
Apr. 2018, pp. 49�55. doi: 10.1109/IRC.2018.00016.

[123] Jhielson M. Pimentel, Mário S. Alvim, Mario F.M. Campos, and Douglas G.
Macharet. �Information-Driven Rapidly-Exploring Random Tree for E�cient
Environment Exploration�. In: Journal of Intelligent and Robotic Systems: The-
ory and Applications 91.2 (2018), pp. 313�331. doi: 10.1007/s10846-017-
0709-0.

https://doi.org/10.1109/TVT.2018.2890416
https://doi.org/10.1109/TVT.2018.2890416
https://doi.org/10.3390/s20010220
https://doi.org/10.3390/s20010220
https://doi.org/10.1109/IROS51168.2021.9636243
https://doi.org/10.1109/IROS51168.2021.9636243
https://doi.org/10.1109/ICRA.2011.5980121
https://doi.org/10.1109/IROS.2013.6697102
https://doi.org/10.1177/0278364914526288
https://doi.org/10.1177/0278364914526288
https://doi.org/10.1109/ICRA.2014.6907394
https://doi.org/10.1016/j.robot.2014.08.009
https://doi.org/10.1109/ICAR.2017.8023630
https://doi.org/10.1109/IRC.2018.00016
https://doi.org/10.1007/s10846-017-0709-0
https://doi.org/10.1007/s10846-017-0709-0

Bibliography 156

[124] Henry Carrillo, Philip Dames, Vijay Kumar, and José A. Castellanos. �Au-
tonomous robotic exploration using a utility function based on Rényi's general
theory of entropy�. In: Autonomous Robots 42.2 (Feb. 2018), pp. 235�256. doi:
10.1007/s10514-017-9662-9.

[125] Shaojie Shen, Nathan Michael, and Vijay Kumar. �Stochastic di�erential
equation-based exploration algorithm for autonomous indoor 3D exploration
with a micro-aerial vehicle�. In: International Journal of Robotics Research
31.12 (Oct. 2012), pp. 1431�1444. doi: 10.1177/0278364912461676.

[126] Shaojie Shen, Nathan Michael, and Vijay Kumar. �Autonomous indoor 3D ex-
ploration with a micro-aerial vehicle�. In: Proceedings - IEEE International Con-
ference on Robotics and Automation (2012), pp. 9�15. doi: 10.1109/ICRA.
2012.6225146.

[127] Shi Bai, Fanfei Chen, and Brendan Englot. �Toward autonomous mapping and
exploration for mobile robots through deep supervised learning�. In: IEEE In-
ternational Conference on Intelligent Robots and Systems 2017-Septe (2017),
pp. 2379�2384. doi: 10.1109/IROS.2017.8206050.

[128] Amir Ramezani Dooraki and Deok Jin Lee. �An end-to-end deep reinforce-
ment learning-based intelligent agent capable of autonomous exploration in un-
known environments�. In: Sensors (Switzerland) 18.10 (2018). doi: 10.3390/
s18103575.

[129] Tao Chen, Saurabh Gupta, and Abhinav Gupta. �Learning exploration policies
for navigation�. In: 7th International Conference on Learning Representations,
ICLR 2019. 2019. eprint: 1903.01959. url: https://sites.google.com/
view/exploration-for-nav.

[130] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. �Deep Re-
inforcement Learning Robot for Search and Rescue Applications: Exploration in
Unknown Cluttered Environments�. In: IEEE Robotics and Automation Letters
4.2 (2019), pp. 610�617. doi: 10.1109/LRA.2019.2891991.

[131] Rakesh Shrestha, Fei Peng Tian, Wei Feng, Ping Tan, and Richard Vaughan.
�Learned map prediction for enhanced mobile robot exploration�. In: Proceedings
- IEEE International Conference on Robotics and Automation. Vol. 2019-May.
Institute of Electrical and Electronics Engineers Inc., May 2019, pp. 1197�1204.
doi: 10.1109/ICRA.2019.8793769.

[132] Louis Ly and Yen Hsi Richard Tsai. �Autonomous exploration, reconstruction,
and surveillance of 3d environments aided by deep learning�. In: Proceed-
ings - IEEE International Conference on Robotics and Automation 2019-
May.September 2018 (2019), pp. 5467�5473. doi: 10 . 1109 / ICRA . 2019 .

8794426.

[133] Russell Reinhart, Tung Dang, Emily Hand, Christos Papachristos, and Kostas
Alexis. �Learning-based Path Planning for Autonomous Exploration of Sub-
terranean Environments�. In: Proceedings - IEEE International Conference on
Robotics and Automation. 2020, pp. 1215�1221. doi: 10.1109/ICRA40945.
2020.9196662.

https://doi.org/10.1007/s10514-017-9662-9
https://doi.org/10.1177/0278364912461676
https://doi.org/10.1109/ICRA.2012.6225146
https://doi.org/10.1109/ICRA.2012.6225146
https://doi.org/10.1109/IROS.2017.8206050
https://doi.org/10.3390/s18103575
https://doi.org/10.3390/s18103575
1903.01959
https://sites.google.com/view/exploration-for-nav
https://sites.google.com/view/exploration-for-nav
https://doi.org/10.1109/LRA.2019.2891991
https://doi.org/10.1109/ICRA.2019.8793769
https://doi.org/10.1109/ICRA.2019.8794426
https://doi.org/10.1109/ICRA.2019.8794426
https://doi.org/10.1109/ICRA40945.2020.9196662
https://doi.org/10.1109/ICRA40945.2020.9196662

Bibliography 157

[134] C. Connolly. �The determination of next best views�. In: Proceedings. 1985 IEEE
International Conference on Robotics and Automation. Vol. 2. Institute of Elec-
trical and Electronics Engineers, 1985, pp. 432�435. doi: 10.1109/ROBOT.1985.
1087372.

[135] Marcus Strand and Rüdiger Dillmann. �Using an attributed 2D-grid for next-
best-view planning on 3D environment data for an autonomous robot�. In: Pro-
ceedings of the 2008 IEEE International Conference on Information and Au-
tomation, ICIA 2008 July (2008), pp. 314�319. doi: 10.1109/ICINFA.2008.
4608017.

[136] Christian Dornhege and Alexander Kleiner. �A frontier-void-based approach
for autonomous exploration in 3d�. In: 9th IEEE International Symposium on
Safety, Security, and Rescue Robotics, SSRR 2011 27.6 (Apr. 2011), pp. 351�
356. doi: 10.1109/SSRR.2011.6106778.

[137] J. Irving Vasquez-Gomez, L. Enrique Sucar, and Rafael Murrieta-Cid. �Hierar-
chical ray tracing for fast volumetric next-best-view planning�. In: Proceedings
- 2013 International Conference on Computer and Robot Vision, CRV 2013
(2013), pp. 181�187. doi: 10.1109/CRV.2013.42.

[138] J. Irving Vasquez-Gomez, L. Enrique Sucar, Rafael Murrieta-Cid, and Efrain
Lopez-Damian. �Volumetric next-best-view planning for 3D object reconstruc-
tion with positioning error�. In: International Journal of Advanced Robotic Sys-
tems 11 (2014). doi: 10.5772/58759.

[139] J. Irving Vasquez-Gomez, L. Enrique Sucar, Rafael Murrieta-Cid, and Juan
Carlos Herrera-Lozada. �Tree-based search of the next best view/state for
three-dimensional object reconstruction�. In: International Journal of Advanced
Robotic Systems 15.1 (2018), pp. 1�11. doi: 10.1177/1729881418754575.

[140] Ivan Maurovi¢, Marija Dakulovi¢, and Ivan Petrovi¢. Autonomous exploration
of large unknown indoor environments for dense 3D model building. Vol. 19. 3.
IFAC, 2014, pp. 10188�10193. doi: 10.3182/20140824-6-ZA-1003.01275.

[141] Christian Potthast and Gaurav S. Sukhatme. �A probabilistic framework for
next best view estimation in a cluttered environment�. In: Journal of Visual
Communication and Image Representation 25.1 (2014), pp. 148�164. doi: 10.
1016/j.jvcir.2013.07.006.

[142] Jonathan Daudelin and Mark Campbell. �An Adaptable, Probabilistic, Next-
Best View Algorithm for Reconstruction of Unknown 3-D Objects�. In: IEEE
Robotics and Automation Letters 2.3 (2017), pp. 1540�1547. doi: 10.1109/LRA.
2017.2660769.

[143] E. W. Dijkstra. �A note on two problems in connexion with graphs�. In: Nu-
merische Mathematik 1.1 (1959), pp. 269�271. doi: 10.1007/BF01386390.

[144] Jon Louis Bentley. �Multidimensional Binary Search Trees Used for Associative
Searching�. In: Communications of the ACM 18.9 (1975), pp. 509�517. doi:
10.1145/361002.361007.

[145] Hugh Durrant-Whyte and Tim Bailey. �Simultaneous localization and mapping:
Part I�. In: IEEE Robotics and Automation Magazine 13.2 (2006), pp. 99�108.
doi: 10.1109/MRA.2006.1638022.

https://doi.org/10.1109/ROBOT.1985.1087372
https://doi.org/10.1109/ROBOT.1985.1087372
https://doi.org/10.1109/ICINFA.2008.4608017
https://doi.org/10.1109/ICINFA.2008.4608017
https://doi.org/10.1109/SSRR.2011.6106778
https://doi.org/10.1109/CRV.2013.42
https://doi.org/10.5772/58759
https://doi.org/10.1177/1729881418754575
https://doi.org/10.3182/20140824-6-ZA-1003.01275
https://doi.org/10.1016/j.jvcir.2013.07.006
https://doi.org/10.1016/j.jvcir.2013.07.006
https://doi.org/10.1109/LRA.2017.2660769
https://doi.org/10.1109/LRA.2017.2660769
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/MRA.2006.1638022

Bibliography 158

[146] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. isbn:
9780262201629.

[147] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. �A
tutorial on graph-based SLAM�. In: IEEE Intelligent Transportation Systems
Magazine 2.4 (2010), pp. 31�43. doi: 10.1109/MITS.2010.939925.

[148] Brian Curless and Marc Levoy. �A volumetric method for building complex
models from range images�. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques - SIGGRAPH '96 (1996), pp. 303�
312. doi: 10.1145/237170.237269.

[149] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan
Nieto. �Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board
MAV planning�. In: IEEE International Conference on Intelligent Robots and
Systems. Vol. 2017-Septe. IEEE, Sept. 2017, pp. 1366�1373. doi: 10.1109/
IROS.2017.8202315.

[150] Boris Lau, Christoph Sprunk, and Wolfram Burgard. �Improved updating of
Euclidean distance maps and Voronoi diagrams�. In: IEEE/RSJ 2010 Interna-
tional Conference on Intelligent Robots and Systems, IROS 2010 - Conference
Proceedings. 2010, pp. 281�286. doi: 10.1109/IROS.2010.5650794.

[151] Robinson Julia. �On the Hamiltonian Game (A Traveling Salesman Problem)�.
In: Project Rand (1949), pp. 1�10. url: https : / / apps . dtic . mil / sti /
citations/AD0204961.

[152] Michael Held and Richard M. Karp. �The Traveling-Salesman Problem and Min-
imum Spanning Trees�. In: Operations Research 18.6 (Dec. 1970), pp. 1138�1162.
doi: 10.1287/opre.18.6.1138.

[153] Mary E. Kurz. �Heuristics for the Traveling Salesman Problem�. In:Wiley Ency-
clopedia of Operations Research and Management Science. Hoboken, NJ, USA:
John Wiley & Sons, Inc., Feb. 2011. doi: 10.1002/9780470400531.eorms0929.

[154] G. A. Croes. �A Method for Solving Traveling-Salesman Problems�. In: Opera-
tions Research 6.6 (Dec. 1958), pp. 791�812. doi: 10.1287/opre.6.6.791.

[155] S. Lin and B. W. Kernighan. �E�ective Heuristic Algorithm for the Traveling-
Salesman Problem.� In: Operations Research 21.2 (Apr. 1973), pp. 498�516. doi:
10.1287/opre.21.2.498.

[156] Charles E. Noon and James C. Bean. �An E�cient Transformation Of The
Generalized Traveling Salesman Problem�. In: INFOR: Information Systems and
Operational Research 31.1 (Feb. 1993), pp. 39�44. doi: 10.1080/03155986.
1993.11732212.

[157] Jose Luis Blanco and Pranjal Kumar Rai. nano�ann: a C++ header-only fork of
FLANN, a library for Nearest Neighbor (NN) with KD-trees. 2014. url: https:
//github.com/jlblancoc/nanoflann.

[158] Anton Koval, Christoforos Kanellakis, Emil Vidmark, Jakub Haluska, and
George Nikolakopoulos. �A subterranean virtual cave world for gazebo based
on the DARPA SubT challenge�. In: (2020), pp. 5�6. doi: 10.48550/ARXIV.
2004.08452.

https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1145/237170.237269
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS.2010.5650794
https://apps.dtic.mil/sti/citations/AD0204961
https://apps.dtic.mil/sti/citations/AD0204961
https://doi.org/10.1287/opre.18.6.1138
https://doi.org/10.1002/9780470400531.eorms0929
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1080/03155986.1993.11732212
https://doi.org/10.1080/03155986.1993.11732212
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://doi.org/10.48550/ARXIV.2004.08452
https://doi.org/10.48550/ARXIV.2004.08452

Bibliography 159

[159] Chao Cao, Hongbiao Zhu, Choset, Howie, and Ji Zhang. TARE Planner. url:
https://www.cmu-exploration.com/tare-planner (visited on 10/08/2022).

[160] Altstadtfreunde Lauf an der Pegnitz. url: https://altstadtfreunde-lauf.
de/de/2-sehenswuerdigkeiten/2c-felsenkeller (visited on 10/03/2022).

https://www.cmu-exploration.com/tare-planner
https://altstadtfreunde-lauf.de/de/2-sehenswuerdigkeiten/2c-felsenkeller
https://altstadtfreunde-lauf.de/de/2-sehenswuerdigkeiten/2c-felsenkeller

160

A. Appendix

Sparse Raycasting and Sparse Ray Polling

Comparison

Tab. A.1.: This table shows the mean duration t, the perceived voxels v, the maximum perceived
voxels vmax and the view score vs for each con�guration of the comparison between SRP and SRC
and the di�erent step sizes ∆ = (∆r,∆ϑ,∆ϕ). These values are depicted for the Husky robot with
a depth camera as RS, the Husky robot with a lidar as VL and the Turtlebot3 robot with a depth
camera as T3.

Sensor
setup

∆ϕ

[deg]
∆ϑ

[deg]
∆r

[deg]
Variant t [ns] v vmax vs

RS 5 5 2 SRP 142448275.9 68373.9 193860.0 0.35270
RS 5 5 2 SRC 962175697.9 92704.1 282185.0 0.32852
RS 5 5 5 SRP 64944852.9 16066.6 77220.0 0.20806
RS 5 5 5 SRC 861540441.2 22827.3 114632.0 0.19914
RS 5 5 10 SRP 44528037.4 8262.2 38340.0 0.21550
RS 5 5 10 SRC 837630841.1 11666.6 55885.0 0.20876
RS 5 5 15 SRP 38441295.5 5089.3 25380.0 0.20052
RS 5 5 15 SRC 824170040.5 7323.0 37260.0 0.19654
RS 10 10 2 SRP 56283704.6 19850.5 49542.0 0.40068
RS 10 10 2 SRC 260569753.8 27352.8 72322.0 0.37821
RS 10 10 5 SRP 35642857.1 6674.2 19734.0 0.33821
RS 10 10 5 SRC 233755760.4 9522.9 29151.0 0.32668
RS 10 10 10 SRP 31061624.6 3022.2 9798.0 0.30845
RS 10 10 10 SRC 228700280.1 4353.4 14613.0 0.29791
RS 10 10 15 SRP 28831325.3 2211.3 6486.0 0.34093
RS 10 10 15 SRC 225597590.4 3165.4 9535.0 0.33198
RS 15 15 2 SRP 38267233.2 8205.9 21540.0 0.38096
RS 15 15 2 SRC 128436260.6 11085.2 31767.0 0.34895
RS 15 15 5 SRP 29484330.5 2820.4 8580.0 0.32872
RS 15 15 5 SRC 117532763.5 4023.7 12679.0 0.31735
RS 15 15 10 SRP 28602240.9 1487.4 4260.0 0.34915
RS 15 15 10 SRC 116512605.0 2145.4 6300.0 0.34054
RS 15 15 15 SRP 26767883.2 941.6 2820.0 0.33389
RS 15 15 15 SRC 112905109.5 1358.7 4182.0 0.32490
VL 5 5 3 SRP 523696774.2 962459.6 4381574.0 0.21966
VL 5 5 3 SRC 2086571428.6 912591.7 5790461.0 0.15760
VL 5 5 5 SRP 214385756.7 344764.0 2372112.0 0.14534
VL 5 5 5 SRC 1701626112.8 271964.0 3152436.0 0.08627
VL 5 5 10 SRP 70000000.0 68031.5 795853.0 0.08548
VL 5 5 10 SRC 1510267379.7 72309.0 993902.0 0.07275
VL 5 5 15 SRP 113895765.5 148065.5 800714.0 0.18492
VL 5 5 15 SRC 1548107491.9 159408.9 1080118.0 0.14758
VL 10 10 3 SRP 264289682.5 478400.2 1196929.0 0.39969
VL 10 10 3 SRC 671507936.5 541583.3 1578183.0 0.34317

A. Appendix 161

Scanner ∆ϕ

[deg]
∆ϑ

[deg]
∆r

[m]
Variant t [ns] v vmax vs

VL 10 10 5 SRP 110100182.1 179401.8 648703.0 0.27655
VL 10 10 5 SRC 471730418.9 181010.3 826899.0 0.21890
VL 10 10 10 SRP 45932270.9 43580.0 325005.0 0.13409
VL 10 10 10 SRC 405095617.5 44569.5 416672.0 0.10697
VL 10 10 15 SRP 45383275.3 43538.7 192701.0 0.22594
VL 10 10 15 SRC 395167247.4 45869.6 250549.0 0.18308
VL 15 15 3 SRP 106254417.0 178915.0 572730.0 0.31239
VL 15 15 3 SRC 294551236.7 178834.3 733893.0 0.24368
VL 15 15 5 SRP 51147991.5 65804.6 344680.0 0.19091
VL 15 15 5 SRC 228756871.0 64047.8 446109.0 0.14357
VL 15 15 10 SRP 34750853.2 27448.3 136919.0 0.20047
VL 15 15 10 SRC 200703071.7 30375.7 163543.0 0.18574
VL 15 15 15 SRP 32213864.3 22358.9 92766.0 0.24102
VL 15 15 15 SRC 200535398.2 23431.5 112036.0 0.20914
T3 5 5 2 SRP 96195945.9 18874.1 64620.0 0.29208
T3 5 5 2 SRC 938545045.0 23142.3 97494.0 0.23737
T3 5 5 5 SRP 31452950.6 4057.5 25740.0 0.15763
T3 5 5 5 SRC 847347687.4 5501.1 38902.0 0.14141
T3 5 5 10 SRP 18875939.8 1973.6 12780.0 0.15443
T3 5 5 10 SRC 833399436.1 2687.2 19333.0 0.13900
T3 5 5 15 SRP 15200413.2 1549.9 8460.0 0.18321
T3 5 5 15 SRC 827203512.4 2102.9 12893.0 0.16310
T3 10 10 2 SRP 37296774.2 6740.7 17232.0 0.39117
T3 10 10 2 SRC 250104218.4 8518.4 25758.0 0.33071
T3 10 10 5 SRP 16467377.7 1630.4 6864.0 0.23754
T3 10 10 5 SRC 223143663.7 2239.2 10314.0 0.21711
T3 10 10 10 SRP 11903790.1 627.6 3408.0 0.18415
T3 10 10 10 SRC 216446064.1 873.0 5122.0 0.17043
T3 10 10 15 SRP 11090057.3 559.0 2256.0 0.24781
T3 10 10 15 SRC 214048932.8 760.6 3408.0 0.22317
T3 15 15 2 SRP 18677212.5 2560.6 7180.0 0.35663
T3 15 15 2 SRC 112202650.7 3413.9 10859.0 0.31438
T3 15 15 5 SRP 12243988.7 725.0 2860.0 0.25349
T3 15 15 5 SRC 102924328.1 958.5 4345.0 0.22060
T3 15 15 10 SRP 10625102.5 321.8 1420.0 0.22665
T3 15 15 10 SRC 101314192.0 447.0 2166.0 0.20639
T3 15 15 15 SRP 10308108.1 262.9 940.0 0.27967
T3 15 15 15 SRC 100090090.1 362.0 1438.0 0.25176

A. Appendix 162

Tab. A.2.: The duration λt, voxels λv and maximum number of voxels factor λvmax comparing SRP
with SRC as well as the mean µ and SD σ for the yaw ϕdif and view score di�erence vsdif for the
respective con�guration can be seen in this table. These values are depicted for the Husky robot with
a depth camera as RS, the Husky robot with a lidar as VL and the Turtlebot3 robot with a depth
camera as T3.

Sensor
setup

∆ϕ

[deg]
∆ϑ

[deg]
∆r

[deg]
λt λv λvmax ϕdif [deg] vsdif

µ σ µ σ
RS 5 5 2 6.75456 1.35584 1.45561 8.40722 20.04333 -0.01624 0.02649
RS 5 5 5 13.26572 1.42079 1.48449 5.45956 22.34149 -0.00893 0.00883
RS 5 5 10 18.81131 1.41204 1.45762 4.85981 20.86687 -0.00674 0.00652
RS 5 5 15 21.43971 1.43892 1.46809 4.95951 20.74816 -0.00398 0.00809
RS 10 10 2 4.62958 1.37794 1.45981 7.70223 21.76745 -0.00804 0.03088
RS 10 10 5 6.55828 1.42681 1.47720 2.25806 12.92965 -0.01154 0.01063
RS 10 10 10 7.36279 1.44048 1.49143 2.46499 11.22182 -0.01054 0.00912
RS 10 10 15 7.82474 1.43149 1.47009 2.50602 11.29252 -0.01154 0.01063
RS 15 15 2 3.35630 1.35088 1.47479 12.49292 30.48085 -0.01054 0.00912
RS 15 15 5 3.98628 1.42665 1.47774 2.80627 14.33386 -0.00895 0.01310
RS 15 15 10 4.07355 1.44241 1.47887 1.55462 10.19641 -0.00861 0.01099
RS 15 15 15 4.21793 1.44303 1.48298 2.97810 14.78030 -0.00444 0.01504
VL 5 5 3 3.98431 0.94819 1.32155 13.63871 22.75416 -0.06307 0.06840
VL 5 5 5 7.93722 0.78884 1.32896 19.94065 32.73208 -0.05907 0.03747
VL 5 5 10 21.57525 1.06288 1.24885 13.86096 31.39570 -0.01273 0.02127
VL 5 5 15 13.59232 1.07661 1.34894 15.40065 34.20334 -0.03733 0.03808
VL 10 10 3 2.54080 1.13207 1.31853 31.34127 40.99396 -0.05652 0.03915
VL 10 10 5 4.28456 1.00897 1.27470 29.00911 43.69630 -0.05058 0.05681
VL 10 10 10 8.81941 1.02271 1.28205 20.15936 37.80167 -0.02712 0.03119
VL 10 10 15 8.70733 1.05354 1.30020 18.18815 36.99186 -0.04286 0.04900
VL 15 15 3 2.77213 0.99955 1.28139 30.63251 43.93837 -0.06871 0.03850
VL 15 15 5 4.47245 0.97330 1.29427 35.18816 50.68176 -0.04735 0.04377
VL 15 15 10 5.77549 1.10665 1.19445 18.60410 39.57064 -0.01474 0.04589
VL 15 15 15 6.22513 1.04797 1.20773 17.82596 38.11987 -0.01478 0.06124
T3 5 5 2 9.75660 1.22614 1.50873 20.54842 36.98974 -0.01004 0.05982
T3 5 5 5 26.94017 1.35578 1.51134 10.04785 29.24515 -0.00981 0.02483
T3 5 5 10 44.15141 1.36156 1.51275 5.04699 20.62640 0.00131 0.02919
T3 5 5 15 54.41980 1.35677 1.52400 6.36880 23.68990 -0.00258 0.03618
T3 10 10 2 6.70579 1.26372 1.49478 16.01787 34.54139 0.03618 0.06126
T3 10 10 5 13.55065 1.37339 1.50262 4.42158 19.01974 0.00585 0.02961
T3 10 10 10 18.18295 1.39099 1.50293 3.93586 19.00152 0.00233 0.02177
T3 10 10 15 19.30098 1.36046 1.51064 9.04321 28.00236 0.01420 0.03900
T3 15 15 2 6.00746 1.33323 1.51240 16.37366 35.58846 0.02948 0.04977
T3 15 15 5 8.40611 1.32211 1.51923 8.86209 27.10630 0.01185 0.05113
T3 15 15 10 9.53536 1.38901 1.52535 5.37982 19.46499 0.00348 0.03424
T3 15 15 15 9.70984 1.37712 1.52979 7.06486 20.44221 -0.02306 0.04095

A. Appendix 163

Revised Cost Function Factor Comparison

Basic RNE

(a)

(b)

A. Appendix 164

(c)

Fig. A.1.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying distance factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

(a)

A. Appendix 165

(b)

(c)

Fig. A.2.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying heading factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

A. Appendix 166

(a)

(b)

A. Appendix 167

(c)

Fig. A.3.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying traversability factor. The tinted areas show the SD of the particular values.
A line ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows
the camera con�guration in the medium environment, (b) the lidar con�guration in the medium
environment and (c) the lidar con�guration in the cave environment.

Tab. A.3.: The impact of a varying distance factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 1020.00 57.01 159.36 20.24 1604.2 15.4 0.232 0.014 0 10
C-ME D0.5 967.50 54.87 183.80 19.36 1609.0 3.1 0.246 0.030 0 10
C-ME D0 754.50 39.17 202.28 10.94 1602.4 16.0 0.237 0.018 0 10
C-ME ND0.5 1054.50 77.57 168.13 25.06 1611.8 2.1 0.228 0.024 0 10
C-ME ND0 1014.00 36.88 147.52 8.34 1610.9 2.0 0.250 0.034 0 10
L-ME 1 1236.00 79.44 207.70 21.71 1597.9 8.4 0.327 0.032 0 10
L-ME D0.5 1128.00 70.99 211.65 22.89 1597.8 6.2 0.306 0.022 0 10
L-ME D0 895.50 84.72 227.91 30.40 1598.3 5.8 0.302 0.038 0 10
L-ME ND0.5 1314.00 233.15 186.85 17.80 1595.4 7.1 0.290 0.045 0 10
L-ME ND0 1182.00 59.92 193.65 19.79 1596.7 7.0 0.286 0.015 0 10
L-CE 1 3594.00 7.75 499.02 39.87 8327.6 157.8 0.534 0.032 0 10
L-CE D0.5 3593.33 7.91 561.88 39.68 8482.0 189.1 0.526 0.025 1 10
L-CE D0 2868.00 308.85 670.89 48.90 8564.5 73.7 0.484 0.039 0 10
L-CE ND0.5 3595.00 7.75 474.47 21.36 8328.5 156.4 0.553 0.035 4 10
L-CE ND0 3594.00 8.22 487.48 51.55 8601.1 195.3 0.558 0.029 5 10

A. Appendix 168

Tab. A.4.: The impact of a varying heading factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 1020.00 57.01 159.36 20.24 1604.2 15.4 0.232 0.014 0 10
C-ME H0.5 1057.50 59.74 163.84 14.49 1610.2 3.8 0.230 0.030 0 10
C-ME H0 1096.50 51.17 166.18 17.20 1613.3 2.9 0.217 0.013 0 10
C-ME NH0.5 973.50 44.29 182.83 8.65 1608.1 3.2 0.235 0.015 0 10
C-ME NH0 795.00 38.73 216.54 15.50 1608.3 2.9 0.247 0.019 0 10
L-ME 1 1236.00 79.44 207.70 21.71 1597.9 8.4 0.327 0.032 0 10
L-ME H0.5 1173.00 91.87 193.47 17.80 1597.5 3.3 0.290 0.017 0 10
L-ME H0 1224.10 75.82 207.56 22.11 1602.4 5.6 0.307 0.036 0 10
L-ME NH0.5 1135.50 125.58 208.37 37.26 1598.0 8.3 0.313 0.043 0 10
L-ME NH0 790.50 93.73 214.28 30.17 1600.0 4.7 0.289 0.030 0 10
L-CE 1 3594.00 7.75 499.02 39.87 8327.6 157.8 0.534 0.032 0 10
L-CE H0.5 3576.00 48.06 495.57 27.88 8361.6 146.2 0.552 0.029 0 10
L-CE H0 3596.25 6.95 506.76 35.38 8331.2 179.2 0.526 0.040 2 10
L-CE NH0.5 3595.00 7.50 581.56 25.73 8526.9 146.6 0.525 0.042 1 10
L-CE NH0 2753.33 316.97 658.23 36.30 8635.3 109.8 0.508 0.024 1 10

Tab. A.5.: The impact of a varying traversability factor on the exploration performance can be
seen. The table shows the mean µ and SD σ of duration, traveled path length, observed volume and
algorithm run time as well as the amount of total and failed runs for the camera and lidar con�gurations
as C and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 1020.00 57.01 159.36 20.24 1604.2 15.4 0.232 0.014 0 10
C-ME T0.5 1066.50 70.98 163.36 20.63 1608.9 2.8 0.240 0.022 0 10
C-ME T0 1012.50 25.16 156.88 6.79 1598.6 19.6 0.236 0.010 0 10
C-ME NT0.5 933.00 39.87 157.91 16.11 1611.5 3.8 0.243 0.020 0 10
C-ME NT0 1225.50 189.02 394.99 57.67 1612.3 2.7 0.216 0.019 0 10
L-ME 1 1236.00 79.44 207.70 21.71 1597.9 8.4 0.327 0.032 0 10
L-ME T0.5 1180.50 125.54 204.21 30.69 1596.8 6.8 0.303 0.029 0 10
L-ME T0 1201.50 102.31 198.76 29.15 1596.9 9.2 0.318 0.033 0 10
L-ME NT0.5 1174.50 115.27 227.86 41.25 1598.6 7.2 0.309 0.022 0 10
L-ME NT0 1195.50 296.39 368.98 67.48 1594.4 6.0 0.229 0.033 0 10
L-CE 1 3594.00 7.75 499.02 39.87 8327.6 157.8 0.534 0.032 0 10
L-CE T0.5 3589.29 7.33 500.96 36.30 8345.2 236.1 0.505 0.030 3 10
L-CE T0 3592.50 8.76 527.48 28.40 8572.5 147.1 0.523 0.045 4 10
L-CE NT0.5 3564.00 48.58 582.06 35.19 8522.7 137.7 0.492 0.042 0 10
L-CE NT0 3133.50 295.44 961.35 115.54 8488.3 45.6 0.409 0.036 0 10

A. Appendix 169

Node Area In�ation RNE

(a)

(b)

A. Appendix 170

(c)

Fig. A.4.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying distance factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

(a)

A. Appendix 171

(b)

(c)

Fig. A.5.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying heading factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

A. Appendix 172

(a)

(b)

A. Appendix 173

(c)

Fig. A.6.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying traversability factor. The tinted areas show the SD of the particular values.
A line ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows
the camera con�guration in the medium environment, (b) the lidar con�guration in the medium
environment and (c) the lidar con�guration in the cave environment.

(a)

A. Appendix 174

(b)

(c)

Fig. A.7.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying radius factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

A. Appendix 175

Tab. A.6.: The impact of a varying distance factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 883.50 58.52 184.10 21.64 1594.6 31.1 0.288 0.023 0 10
C-ME D0.5 837.00 108.58 198.52 18.68 1607.6 2.4 0.275 0.025 0 10
C-ME D0 789.00 71.83 224.14 23.73 1606.7 3.3 0.278 0.018 0 10
C-ME ND0.5 957.00 74.09 169.74 17.98 1610.8 4.2 0.263 0.013 0 10
C-ME ND0 1087.50 58.42 162.53 14.66 1610.6 3.1 0.256 0.005 0 10
L-ME 1 945.00 72.11 199.69 24.65 1595.6 7.4 0.349 0.029 0 10
L-ME D0.5 835.50 100.67 211.00 33.63 1592.8 7.5 0.314 0.027 0 10
L-ME D0 834.00 142.16 260.20 49.57 1593.5 7.7 0.321 0.037 0 10
L-ME ND0.5 1140.00 108.86 211.81 21.81 1594.9 6.9 0.319 0.016 0 10
L-ME ND0 1204.50 69.71 188.75 8.41 1596.5 6.0 0.326 0.012 0 10
L-CE 1 3399.00 143.04 654.21 28.63 8424.2 74.8 0.488 0.017 0 10
L-CE D0.5 3038.33 214.00 686.26 33.13 8428.0 43.9 0.473 0.032 1 10
L-CE D0 2997.50 463.37 811.75 115.15 8366.3 44.1 0.457 0.043 4 10
L-CE ND0.5 3573.75 48.61 562.85 24.31 8442.2 70.9 0.479 0.009 2 10
L-CE ND0 3588.00 6.71 438.54 12.90 8095.0 106.4 0.504 0.010 5 10

Tab. A.7.: The impact of a varying heading factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 883.50 58.52 184.10 21.64 1594.6 31.1 0.288 0.023 0 10
C-ME H0.5 862.50 35.25 181.41 15.18 1609.6 2.8 0.279 0.042 0 10
C-ME H0 873.00 37.28 180.07 11.16 1604.4 17.1 0.308 0.023 0 10
C-ME NH0.5 790.50 81.06 170.11 27.18 1607.8 1.7 0.269 0.012 0 10
C-ME NH0 795.00 101.49 217.08 23.91 1608.5 2.7 0.267 0.008 0 10
L-ME 1 945.00 72.11 199.69 24.65 1595.6 7.4 0.349 0.029 0 10
L-ME H0.5 912.00 86.54 190.23 20.74 1592.2 7.8 0.361 0.035 0 10
L-ME H0 979.50 234.19 200.89 27.41 1594.6 8.9 0.328 0.041 0 10
L-ME NH0.5 790.50 64.48 177.85 19.83 1592.4 8.2 0.328 0.012 0 10
L-ME NH0 793.50 72.00 225.09 23.20 1597.4 9.0 0.305 0.013 0 10
L-CE 1 3399.00 143.04 654.21 28.63 8424.2 74.8 0.488 0.017 0 10
L-CE H0.5 3478.33 146.48 652.60 81.18 8447.9 114.5 0.472 0.026 1 10
L-CE H0 3333.00 207.58 628.93 39.52 8449.9 57.0 0.460 0.023 0 10
L-CE NH0.5 3225.00 127.48 653.80 31.43 8454.1 41.0 0.470 0.017 0 10
L-CE NH0 2424.00 161.43 642.98 46.89 8450.2 67.4 0.469 0.010 0 10

A. Appendix 176

Tab. A.8.: The impact of a varying traversability factor on the exploration performance can be
seen. The table shows the mean µ and SD σ of duration, traveled path length, observed volume and
algorithm run time as well as the amount of total and failed runs for the camera and lidar con�gurations
as C and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 883.50 58.52 184.10 21.64 1594.6 31.1 0.288 0.023 0 10
C-ME T0.5 858.33 36.57 179.83 16.35 1603.7 17.5 0.263 0.007 1 10
C-ME T0 831.67 59.58 167.21 20.35 1608.9 2.3 0.308 0.032 1 10
C-ME NT0.5 831.00 88.37 184.94 23.03 1608.9 4.0 0.260 0.011 0 10
C-ME NT0 945.00 70.00 270.15 22.97 1610.8 3.1 0.250 0.007 0 10
L-ME 1 945.00 72.11 199.69 24.65 1595.6 7.4 0.349 0.029 0 10
L-ME T0.5 906.67 199.15 187.63 26.82 1591.8 19.2 0.330 0.025 1 10
L-ME T0 952.50 75.97 198.74 29.15 1598.2 6.3 0.364 0.037 0 10
L-ME NT0.5 876.00 121.08 195.77 34.61 1589.8 6.6 0.314 0.022 0 10
L-ME NT0 856.50 140.18 266.36 49.68 1585.0 29.5 0.285 0.018 0 10
L-CE 1 3399.00 143.04 654.21 28.63 8424.2 74.8 0.488 0.017 0 10
L-CE T0.5 3427.50 233.15 682.53 77.10 8487.5 96.9 0.446 0.016 0 10
L-CE T0 3457.50 185.48 657.12 89.56 8461.8 135.1 0.448 0.012 2 10
L-CE NT0.5 3258.33 186.56 652.52 39.15 8423.9 30.8 0.471 0.012 1 10
L-CE NT0 2896.67 326.70 798.29 99.12 8447.2 65.2 0.433 0.011 1 10

Tab. A.9.: The impact of a varying radius factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 883.50 58.52 184.10 21.64 1594.6 31.1 0.288 0.023 0 10
C-ME R0.5 952.50 56.18 168.62 14.25 1609.5 3.9 0.275 0.022 0 10
C-ME R0 1101.00 77.20 172.62 19.90 1612.1 3.4 0.291 0.026 0 10
C-ME NR0.5 798.00 65.88 187.60 17.79 1607.9 3.1 0.260 0.014 0 10
C-ME NR0 0.00 0.00 0.00 0.00 0.0 0.0 0.000 0.000 10 10
L-ME 1 945.00 72.11 199.69 24.65 1595.6 7.4 0.349 0.029 0 10
L-ME R0.5 1072.50 99.53 200.53 20.57 1596.9 8.3 0.337 0.020 0 10
L-ME R0 1240.50 81.12 204.59 25.82 1600.0 9.9 0.358 0.015 0 10
L-ME NR0.5 810.00 89.72 205.46 27.27 1598.2 7.8 0.301 0.011 0 10
L-ME NR0 1581.00 324.43 628.28 128.65 1588.9 5.3 0.241 0.023 5 10
L-CE 1 3399.00 143.04 654.21 28.63 8424.2 74.8 0.488 0.017 0 10
L-CE R0.5 3598.12 5.30 558.90 35.71 8373.2 66.0 0.504 0.023 2 10
L-CE R0 3595.00 8.66 470.60 35.47 8101.2 72.0 0.525 0.023 7 10
L-CE NR0.5 2922.00 201.84 663.56 76.07 8402.2 53.9 0.467 0.011 0 10
L-CE NR0 0.00 0.00 0.00 0.00 0.0 0.0 0.000 0.000 10 10

A. Appendix 177

Topology-Based Node Area In�ation RNE

(a)

(b)

A. Appendix 178

(c)

Fig. A.8.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying distance factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

(a)

A. Appendix 179

(b)

(c)

Fig. A.9.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying heading factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

A. Appendix 180

(a)

(b)

A. Appendix 181

(c)

Fig. A.10.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying traversability factor. The tinted areas show the SD of the particular values.
A line ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows
the camera con�guration in the medium environment, (b) the lidar con�guration in the medium
environment and (c) the lidar con�guration in the cave environment.

(a)

A. Appendix 182

(b)

(c)

Fig. A.11.: Mean mapped volume, path length and algorithm run time over the duration for di�erent
variants with a varying radius factor. The tinted areas show the SD of the particular values. A line
ends at the �nal duration of the longest run of the particular variant. Sub-�gure (a) shows the camera
con�guration in the medium environment, (b) the lidar con�guration in the medium environment and
(c) the lidar con�guration in the cave environment.

A. Appendix 183

Tab. A.10.: The impact of a varying distance factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 856.50 52.55 180.18 14.88 1605.5 16.3 0.276 0.009 0 10
C-ME D0.5 810.00 63.64 198.71 20.51 1608.0 3.5 0.267 0.012 0 10
C-ME D0 816.00 79.12 240.37 17.77 1607.8 4.2 0.268 0.011 0 10
C-ME ND0.5 954.00 53.94 180.88 15.36 1609.6 1.8 0.276 0.016 0 10
C-ME ND0 1098.00 54.68 166.35 12.27 1610.4 3.6 0.271 0.011 0 10
L-ME 1 963.33 165.64 216.64 33.34 1598.0 6.9 0.318 0.023 1 10
L-ME D0.5 863.33 133.35 210.62 38.81 1590.6 9.7 0.316 0.024 1 10
L-ME D0 841.50 344.52 235.82 39.60 1587.2 13.1 0.304 0.034 0 10
L-ME ND0.5 1084.50 134.04 203.41 34.12 1595.3 6.6 0.324 0.019 0 10
L-ME ND0 1192.50 74.28 187.75 20.92 1598.8 4.9 0.354 0.018 0 10
L-CE 1 3337.50 126.54 649.15 38.90 8394.5 54.3 0.473 0.020 0 10
L-CE D0.5 2782.50 334.24 633.35 75.62 8373.8 58.3 0.454 0.019 0 10
L-CE D0 2630.62 314.94 759.08 112.93 8403.0 56.7 0.442 0.012 2 10
L-CE ND0.5 3573.00 69.93 598.13 52.03 8360.6 149.3 0.478 0.017 0 10
L-CE ND0 3576.43 49.64 427.14 36.53 8234.8 168.8 0.526 0.024 3 10

Tab. A.11.: The impact of a varying heading factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 856.50 52.55 180.18 14.88 1605.5 16.3 0.276 0.009 0 10
C-ME H0.5 862.50 55.78 176.14 19.22 1610.4 2.8 0.273 0.015 0 10
C-ME H0 864.00 45.39 180.35 13.31 1608.3 3.2 0.275 0.007 0 10
C-ME NH0.5 862.50 47.97 189.48 16.43 1609.4 3.4 0.306 0.036 0 10
C-ME NH0 835.00 79.73 234.50 23.64 1602.1 15.3 0.302 0.022 1 10
L-ME 1 963.33 165.64 216.64 33.34 1598.0 6.9 0.318 0.023 1 10
L-ME H0.5 1035.00 273.50 208.73 21.82 1595.8 5.7 0.310 0.029 0 10
L-ME H0 928.33 126.71 203.11 45.79 1597.7 8.1 0.327 0.017 1 10
L-ME NH0.5 922.50 164.30 201.70 33.47 1595.6 10.2 0.356 0.040 0 10
L-ME NH0 741.00 55.32 208.85 19.74 1593.3 5.3 0.352 0.021 0 10
L-CE 1 3337.50 126.54 649.15 38.90 8394.5 54.3 0.473 0.020 0 10
L-CE H0.5 3330.00 267.02 600.97 63.74 8372.7 105.0 0.459 0.024 0 10
L-CE H0 3262.50 233.67 660.08 35.63 8431.7 40.3 0.454 0.008 0 10
L-CE NH0.5 3045.00 161.38 607.97 45.24 8380.2 55.9 0.498 0.030 1 10
L-CE NH0 2287.50 211.26 612.91 64.13 8376.6 62.2 0.495 0.015 0 10

A. Appendix 184

Tab. A.12.: The impact of a varying traversability factor on the exploration performance can be
seen. The table shows the mean µ and SD σ of duration, traveled path length, observed volume and
algorithm run time as well as the amount of total and failed runs for the camera and lidar con�gurations
as C and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 856.50 52.55 180.18 14.88 1605.5 16.3 0.276 0.009 0 10
C-ME T0.5 810.00 56.12 167.72 15.91 1607.1 3.0 0.277 0.007 0 10
C-ME T0 831.00 52.54 170.91 13.76 1609.9 3.6 0.280 0.008 0 10
C-ME NT0.5 825.00 86.60 179.85 26.62 1607.4 2.8 0.313 0.016 0 10
C-ME NT0 957.00 61.56 270.76 29.66 1605.1 14.6 0.278 0.024 0 10
L-ME 1 963.33 165.64 216.64 33.34 1598.0 6.9 0.318 0.023 1 10
L-ME T0.5 952.50 130.06 219.18 49.81 1600.1 6.9 0.324 0.023 0 10
L-ME T0 900.00 129.03 192.78 25.97 1594.2 8.2 0.323 0.021 0 10
L-ME NT0.5 817.50 53.94 185.86 19.22 1593.2 4.5 0.358 0.030 0 10
L-ME NT0 921.67 89.41 281.77 38.01 1594.1 8.0 0.329 0.028 1 10
L-CE 1 3337.50 126.54 649.15 38.90 8394.5 54.3 0.473 0.020 0 10
L-CE T0.5 3320.62 179.63 625.75 58.45 8422.4 77.2 0.453 0.028 2 10
L-CE T0 3126.00 280.55 616.02 47.69 8464.5 49.6 0.457 0.019 0 10
L-CE NT0.5 3069.00 191.21 639.52 54.38 8439.4 58.1 0.482 0.029 0 10
L-CE NT0 2743.50 335.95 728.44 54.09 8370.2 103.9 0.452 0.024 0 10

Tab. A.13.: The impact of a varying radius factor on the exploration performance can be seen. The
table shows the mean µ and SD σ of duration, traveled path length, observed volume and algorithm
run time as well as the amount of total and failed runs for the camera and lidar con�gurations as C
and L respectively in the medium and cave environments as ME and CE respectively.

Con�guration
Duration [s] Path [m] Volume [m3] Run time [%] Runs

µ σ µ σ µ σ µ σ Failed Total
C-ME 1 856.50 52.55 180.18 14.88 1605.5 16.3 0.276 0.009 0 10
C-ME R0.5 898.50 53.11 162.95 16.51 1609.6 2.6 0.273 0.014 0 10
C-ME R0 1044.00 49.09 171.24 22.06 1607.0 16.0 0.272 0.009 0 10
C-ME NR0.5 801.00 32.56 190.51 15.19 1607.9 2.2 0.294 0.019 0 10
C-ME NR0 0.00 0.00 0.00 0.00 0.0 0.0 0.000 0.000 10 10
L-ME 1 963.33 165.64 216.64 33.34 1598.0 6.9 0.318 0.023 1 10
L-ME R0.5 1104.00 173.23 199.96 36.05 1592.8 9.4 0.323 0.023 0 10
L-ME R0 1197.00 87.12 208.00 24.74 1600.9 7.4 0.323 0.015 0 10
L-ME NR0.5 735.00 73.48 185.48 20.50 1594.5 8.7 0.345 0.025 1 10
L-ME NR0 1620.00 338.25 646.76 133.60 1586.1 15.6 0.259 0.023 5 10
L-CE 1 3337.50 126.54 649.15 38.90 8394.5 54.3 0.473 0.020 0 10
L-CE R0.5 3518.33 173.33 572.71 41.29 8313.9 148.7 0.478 0.016 1 10
L-CE R0 3597.00 6.71 482.16 26.35 8312.3 71.0 0.489 0.033 5 10
L-CE NR0.5 2874.00 447.95 669.14 130.08 8394.6 67.8 0.450 0.032 0 10
L-CE NR0 0.00 0.00 0.00 0.00 0.0 0.0 0.000 0.000 10 10

	Previous Publications
	Nomenclature
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Methodology
	Contributions
	Outline

	Related Work
	Robotics Frameworks
	State Machines for Mobile Robots
	Sampling-Based Path Planning
	Autonomous Exploration and Inspection Planning
	Next-Best View Calculation
	Conclusion

	Mathematical Foundations
	Sampling-Based Algorithms
	SLAM
	Exploration of Unknown Environments
	Shortest Possible Route through a Graph
	Conclusion

	Robot Statemachine
	Design
	Applications
	Conclusion

	RNE 1 - RRT-Based Exploration
	Design
	Sparse Ray Casting and Sparse Ray Polling
	Coupled and Decoupled Gain Calculation
	Conclusion

	RNE 2 - RRG-Based Exploration
	Graph-Based Design
	Comparison to Tree-Based Exploration
	Comparison to State-of-the-Art Approaches
	Conclusion

	RNE 3 - Topology-Based Exploration
	Node Area Inflation
	Topology-Based Node Area Inflation
	Topology-Based Node Area Inflation Conclusion
	Revised Reward Function
	Cost-Based Path Planning
	Re-Updating Nodes
	Comparison to RRG-Based Exploration
	Conclusion

	RNE 4 - Local and Global Exploration
	Local Exploration
	Global Exploration
	Implementation
	Comparison to Local-Only Exploration
	Comparison to State-of-the-Art Approaches
	Experiment
	Conclusion

	Conclusion
	Contributions
	Future Research
	Closing Remarks

	Bibliography
	Appendix

