294 research outputs found

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy

    Deep Learning for Automated Medical Image Analysis

    Get PDF
    Medical imaging is an essential tool in many areas of medical applications, used for both diagnosis and treatment. However, reading medical images and making diagnosis or treatment recommendations require specially trained medical specialists. The current practice of reading medical images is labor-intensive, time-consuming, costly, and error-prone. It would be more desirable to have a computer-aided system that can automatically make diagnosis and treatment recommendations. Recent advances in deep learning enable us to rethink the ways of clinician diagnosis based on medical images. In this thesis, we will introduce 1) mammograms for detecting breast cancers, the most frequently diagnosed solid cancer for U.S. women, 2) lung CT images for detecting lung cancers, the most frequently diagnosed malignant cancer, and 3) head and neck CT images for automated delineation of organs at risk in radiotherapy. First, we will show how to employ the adversarial concept to generate the hard examples improving mammogram mass segmentation. Second, we will demonstrate how to use the weakly labeled data for the mammogram breast cancer diagnosis by efficiently design deep learning for multi-instance learning. Third, the thesis will walk through DeepLung system which combines deep 3D ConvNets and GBM for automated lung nodule detection and classification. Fourth, we will show how to use weakly labeled data to improve existing lung nodule detection system by integrating deep learning with a probabilistic graphic model. Lastly, we will demonstrate the AnatomyNet which is thousands of times faster and more accurate than previous methods on automated anatomy segmentation.Comment: PhD Thesi

    Atlas-Based Methods in Radiotherapy Treatment of Head and Neck Cancer

    Get PDF
    Radiotherapy is one of the principal methods for treating head and neck cancer (HNC). It plays an important role in the curative and palliative treatment of HNC. It uses high-energy radiation beams to kill cancer cells by damaging their DNA. Radiotherapy planning depends upon complex algorithms to determine the best trajectories and intensities of those beams by simulating their effects passing through designated areas. This requires accurate segmentation of anatomical structures and knowledge of the relative electron density within a patient body. Computed tomography (CT) has been the modality of choice in radiotherapy planning. It offers a wealth of anatomical information and is critical in providing information about the relative electron density of tissues required to calculate radiation deposited at any one site. Manual segmentation is time-consuming and is becoming impractical with the increasing demand in image acquisition for planning. Recently, planning solely based on magnetic resonance (MR) imaging has gained popularity as it provides superior soft tissue contrast compared to CT imaging and can better facilitate the process of segmentation. However, MR imaging does not provide electron density information for dose calculation. With the growing volumes of data and data repositories, algorithms based on atlases have gained popularity as they provide prior information for structure segmentation and tissue classification. In this PhD thesis, I demonstrate that atlas-based methods can be used for segmenting head and neck structures giving results as comparable as manual segmentation. In addition, I demonstrate that those methods can be used to support radiotherapy treatment solely based on MR imaging by generating synthetic CT images. The radiation doses calculated from a synthetic and real CT image agreed well, showing the clinical feasibility of methods based on atlases. In conclusion, I show that atlas-based methods are clinically relevant in radiotherapy treatment

    Advances in Groupwise Image Registration

    Get PDF

    Advances in Groupwise Image Registration

    Get PDF
    • …
    corecore