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Abstract

Radiotherapy is one of the principal methods for treating head and neck cancer (HNC). It plays an

important role in the curative and palliative treatment of HNC. It uses high-energy radiation beams to

kill cancer cells by damaging their DNA. Radiotherapy planning depends upon complex algorithms to

determine the best trajectories and intensities of those beams by simulating their effects passing through

designated areas. This requires accurate segmentation of anatomical structures and knowledge of the

relative electron density within a patient body.

Computed tomography (CT) has been the modality of choice in radiotherapy planning. It offers

a wealth of anatomical information and is critical in providing information about the relative electron

density of tissues required to calculate radiation deposited at any one site. Manual segmentation is

time-consuming and is becoming impractical with the increasing demand in image acquisition for plan-

ning. Recently, planning solely based on magnetic resonance (MR) imaging has gained popularity as

it provides superior soft tissue contrast compared to CT imaging and can better facilitate the process of

segmentation. However, MR imaging does not provide electron density information for dose calculation.

With the growing volumes of data and data repositories, algorithms based on atlases have gained

popularity as they provide prior information for structure segmentation and tissue classification. In this

PhD thesis, I demonstrate that atlas-based methods can be used for segmenting head and neck structures

giving results as comparable as manual segmentation. In addition, I demonstrate that those methods

can be used to support radiotherapy treatment solely based on MR imaging by generating synthetic CT

images. The radiation doses calculated from a synthetic and real CT image agreed well, showing the

clinical feasibility of methods based on atlases. In conclusion, I show that atlas-based methods are

clinically relevant in radiotherapy treatment.
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Chapter 1

Introduction

According to figures from Cancer Research UK 1, more than 331,000 people in the UK were diagnosed

with cancer in 2011, and around 159,000 people died from cancer that same year. It is predicted that

30 to 40% of the population will develop some form of cancer during their lifetime. Head and neck

cancer (HNC) is one type of cancer that has increased by 7% in the last 15 years making it an increased

social and economic burden. The incidence among the population of HNC is 11.2 per 100,000 people.

The main aetological factors of HNC are alcohol and tobacco consumption and infection with human

papilloma virus. With the improvement in medical care and advances in medical technologies, half of

people diagnosed with HNC now survive their disease for at least ten years and death rate has fallen by

10% over the last decade.

Radiotherapy (RT), also called radiation therapy, is one of the 3 principal methods for treating HNC

alongside surgery and chemotherapy. Approximately 40% of patients will undergo radiotherapy at some

time during the course of their illness. Among those patients, around 60% will be treated curatively

often in combination with surgery and chemotherapy. In addition, radiotherapy plays an important role

in the palliation of symptoms from HNC. It is the most suitable method for the radical treatment of

localized HNC in their early stages with high-success rates where there had been no metastatic spread.

Radiotherapy treatment involves the use of radiation beams of high-energy X-rays to destroy cancer cells.

The effectiveness of radiotherapy ultimately depends upon the ability of complex computer algorithms

to simulate the effect of those beams passing through a designated area and the amount of radiation

deposited at any one site (Fraass et al., 1998). The best trajectories and intensities of the radiation

beams are determined by numerous factors among which accurate segmentation of anatomical structures

(Stapleford et al., 2010; Teguh et al., 2011) and the knowledge of the relative electron density within a

patient body are crucial (Skrzyński et al., 2010). Indeed, volumes to be treated need to be accurately

segmented in order to deliver maximum radiation dose to tumour cells while minimizing dose to critical

structures. In turn, the relative electron density determines the amount of radiation absorbed by tissues

and subsequently the optimal beam set up.

In radiotherapy planning, computed tomography (CT) is currently the modality of choice for clin-

ical assessment, treatment and follow up. CT images offer a wealth of information about normal and

diseased anatomy, and is critical at several stages of the radiotherapy treatment process. It also provide

1www.cancerresearchuk.org
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information to determine the relative electron density required to calculate dose distribution. The acqui-

sition of ever-increasing quantities of data has rendered manual segmentation of anatomical structures

by a trained human operator impractical in a clinical routine. Manual segmentation is widely considered

the gold standard but is time consuming and is subject to inter- and intra-observer variability. Recently,

radiotherapy planning solely based on magnetic resonance (MR) imaging has gained popularity. MR

imaging provides superior soft tissue contrast in the head and neck region (Evans, 2008) compared to

CT imaging and can facilitate the process of segmentation. However, MR imaging does not provide

electron-density information for dose calculation. Simple strategies consist for instance in assigning a

single density value for a whole anatomical region segmented on the MR image (Karotki et al., 2011).

Such method enables one to obtain a synthetic CT that can be used for dose calculation.

The result of growing volumes of data and data repositories have lead to the development of various

automatic algorithms. Algorithm based on atlases have gained popularity in medical imaging as they

provide prior information for structure segmentation and tissue classification. They have been mainly

developed for segmenting brain structures on MR images (Artaechevarria et al., 2009; Sabuncu et al.,

2010; Warfield et al., 2004). They have shown promising results, however, little work has been done

in translating those algorithms to be applied in head and neck radiotherapy. As a result, the aim of this

thesis is to tackle the problem of segmenting head and neck structures and estimating the relative electron

density of tissues from MR images for radiotherapy planning using atlas-based algorithms.

1.1 Radiotherapy: an overview
Radiotherapy is an efficient method for treating HNC where ionizing radiation is used to eradicate ma-

lignant tumour cells or to slow down their growth. There are two ways of delivering ionizing radiation to

tumour cells. First, brachytherapy or internal radiotherapy makes use of medication containing radioac-

tive materials which are injected, either temporarily or permanently, into a vein or a body cavity near the

treatment area. Second, teletherapy or external beam radiotherapy uses radiation beams of high-energy

X-rays produced by sources located outside the patient. It is the most common form of radiotherapy for

treating head and neck cancer. In this thesis only external beam radiotherapy will be considered.

1.1.1 Mechanism of action

Radiotherapy is based on the principle of damaging the deoxyribonucleic acid (DNA) of the malignant

cells by the delivery of ionizing radiation. There are various types of DNA lesions that are inflicted

either by direct ionization or via charged particles (free radicals) generated in the cells as a result of

the irradiation. Cell death is best achieved by breaking the double strand of the DNA. In general, DNA

lesions are rapidly repaired by cellular enzymatic pathways. However in some cases, the cells are unable

to completely repair the DNA damage leading to a mutation or apoptosis after a variable number of

cellular cycles. This mode of cell death is called mitotic and is the major mechanism of tumour response

in radiotherapy. Not only does radiation destroy cancer cells, but it also affects dividing cells of normal

tissues. Each time a dose of X-ray is delivered, there is a need for balance between destroying cancer

cells and minimizing damage to normal cells. Most normal cells are able to recover from the effect of
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radiation and repair themselves to proper functioning after some time. For this reason, the total amount

of radiation delivered (i.e. dose prescription) is spread out over time (i.e. fractionated). Fractionation

gives time for normal cells to recover, while cancer cells are generally less efficient in repair between

fractions.

1.1.2 Dose prescriptions

There is no consensus on dose prescription for a given tumour. Indeed, there might be 3 or 4 different

recommendations in dose prescriptions with similar variations in fractions but differing in delivery time.

For instance, most clinical centers use conventional fractionation with treatment administered on a week

day basis for 30 to 40 fractions. In accelerated fractionation, overall total dose is given in a shorter time

than in conventional fractionation. This result in greater toxicity and therefore only limited acceleration

is possible without altering fraction size. Hyperfractionation refers to the practice of reducing the fraction

size of the conventional regime. Treatment is delivered twice or even three times a day in smaller fraction

size to enable a higher dose overall to be delivered. Hypofractionation refers to giving a treatment in a

shorter time than in the conventional regime, but using bigger doses per day. The total dose administered

is also reduced to minimize toxicity.

1.1.3 External radiotherapy

Current radiotherapy is largely based on principles established in the 1940s (Meredith, 1984) when

treatments became consistently reported and more quantitative. These principles state that it is necessary

to determine the size, shape and position of the volume to be treated, and that this volume should receive

a dose distribution as uniform as possible. Conversely, the dose to healthy tissues outside the treatment

volume should be minimized, and it is important to give consistent treatments for patients with similar

disease type in order to gather information about proper dose levels. External beam radiotherapy tries

to meet those principles as closely as possible. With this method, it is impossible to deliver zero dose

to healthy tissue through which the beams pass through to the tumour. Therefore, multiple beams are

employed from several directions to deliver a cumulative dose to the tumour volume whilst minimising

the dose to normal tissue.

In the 1930s, patients were treated with orthovoltage and superficial X-ray units (up to 300 kV).

These units deliver high dose to the surface whilst still contributing dose at depth. Cobalt 60 machines

were then developed in the 1950s and deliver a higher dose at depth with energy photons in excess of 1

MV. Nowadays, linear accelerators (linacs) are the most common source of high-energy X-ray beams.

Modern linacs offer a choice of photon and electron energies. They produce megavoltage photons of

4 to 20 MV in energy which are able to penetrate to the deepest seated tumours in the largest patients.

Clinically, 4-8 MV beams are the most useful, providing balance between penetration and adequate

surface dose. Figure 1.1 shows the main components of a linear accelerator.

Methods for delivering radiation dose have seen dramatic changes over the past decade. These

changes were driven in large by advances in computer technology that led to the development of sophis-

ticated 3D computer-controlled radiation treatment planning systems. The evolution in radiation therapy

techniques began with 3D conventional radiation therapy where the shape of the beam was simply square
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Figure 1.1: Block diagram showing the main components of a linear accelerator1.

or rectangular. Subsequently, 3D conformal radiation therapy was developed (Dearnaley et al., 1999).

In this scheme, the aim of conformality is to design radiation beams that follow the shape of the tumour

more closely and conform the spatial dose distribution to the 3D volume to be treated. This allowed bet-

ter precision of radiation delivery to the volume and improvements in sparing healthy tissues. Another

step forward was the development of intensity modulated radiation therapy (IMRT) (Webb, 2001). A

uniform dose distribution can be created around the tumour while preventing the surrounding structures

from being subject to high doses. This can be achieved by either modulating the intensity of the beam

through the linear accelerator using wedges or by use of multi-leaf collimators. Both of these methods

alter the fluence of radiation exiting the accelerator. IMRT has now become the standard in treating

many cancers, including head and neck cancer. More recently, imaging-guided radiotherapy (IGRT)

(Xing et al., 2006) has emerged and enables the tracking of tumour regression and anatomical changes

in the surrounding tissue during the whole course of radiotherapy. It is a broad term for radiotherapy

techniques which incorporates multi-dimensional imaging modalities into the process of radiotherapy

planning. Finally, stereotactic radiotherapy (also called radiosurgery) (Grosu, 2006; Leksell, 1983) is

another radiation technique. The radiation delivered has a sharp dose fall-off between the volume to be

treated and the surrounding normal tissue, thus allowing very precise delivery of radiation to the tumour

while minimizing the radiation dose delivered to the surrounding organs. Stereotactic radiation therapy

can be achieved with modified linear accelerators or by using the GammaKnife device (Wu et al., 1990).

1source: External Beam Therapy Second Edition. Hoskin, 2012.
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1.1.4 Treatment planning

Treatment planning is the process of developing a treatment which produces a dose distribution as uni-

form as possible to the volume to treat, and as small as possible to surrounding region. Traditionally, it

begins with imaging the patient in order to acquire tumour position, size, and shape within the patient

and the location of critical structures. Computed tomography (CT) is the most commonly used modality,

however magnetic resonance (MR) imaging and positron emission tomography (PET) can also be used

as they can provide additional anatomical details such as the extent of the tumour. Various structures

are then manually delineated on a series of axial slices to produce 3D volumes. Once the delineation

has been obtained, a radiotherapy plan can be designed for each individual patient to meet the treatment

goal. Computer models are used to simulate total delivery dose and dose distribution within the patient

anatomy, including radiation delivered to normal structures and prescribed dose delivered to tumour

cells. This process is called dosimetry and the dose level absorbed by tissue is reported in gray (Gy).

To obtain accurate dose calculations from the patient image, the knowledge of the relative electron

or physical density of each voxel of the patient image is needed. This is usually achieved by the use of

a look-up table within the treatment planning system (TPS) that converts the CT numbers expressed in

Hounsfield Unit (HU) in the CT images to electron or physical density relative to water. TPS are able

to correct for density on a voxel-by-voxel basis although correction for large areas of tissue using a bulk

density correction (where a single density value is chosen for a whole anatomical region) can also be

applied. In low density materials, the radiation will travel further before depositing dose, whereas in

high-density materials it will be attenuated more rapidly.

Plans are often assessed with the aid of dose-volume histograms (DVH), allowing the clinician to

evaluate the uniformity of the dose applied to the tumour and the sparing of healthy structures. The

therapeutic success of a radiation treatment is determined by the balance between tumor control and nor-

mal tissue complication probability (refered to as the TCP-NTCP balance). Indeed, in a high proportion

of patients the biological dose necessary for tumor eradication can not be delivered because of a high

probability of complications due to collateral damage to surrounding tissues.

Finally, planning process can be differentiated between forward and inverse planning. In forward

planning, the planner starts the process by choosing the appropriate number and directions for the treat-

ment beams to be used. The planner then goes through an iterative process to alter the available treatment

parameters to produce a plan that meets the dose coverage for the tumour and the dose constraint for crit-

ical structures. In inverse planning, the planner describe the dose distribution that they want to have at

the end of the planning process. This is often described as a series of minimum and maximum dose,

mean dose, or dose-volume limit. Computer optimization is then used to develop the most appropriate

plan.

1.1.5 Definition of target volumes and organs at risk

The International Commission on Radiation Units and Measurement describes recommendations on how

to report treatment volumes in external beam radiotherapy (ICRU, 1999). There are three main volumes

to be considered in radiotherapy planning. The first volume is the gross tumour volume (GTV). The GTV
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Figure 1.2: Illustration of the main radiotherapy planning volumes.

is essentially the gross demonstrable location and extent of a tumour. It is what can be seen, palpated or

imaged. Typically, it is considered that the GTV corresponds to the part of the tumour where the tumour

cell density is the highest. Although conceptually the GTV is usually the easiest to define, in practice

the edges of the GTV are not necessarily always clear.

The second volume is the clinical target volume (CTV), which contains the GTV plus a margin

for sub-clinical disease spread. It is the most difficult volume to define as its definition requires clinical

assessment of risk and extent of spread, normally based on historical series rather than the extent of

tumour quantified in a specific patient. This volume must be adequately treated if cure is to be achieved.

The third volume is the planning target volume (PTV). It allows for uncertainties in planning or

treatment delivery. It is a geometric concept designed to ensure that the radiotherapy dose is actually

delivered to the CTV. It is defined to account for all uncertainties in treatment such as organ and patient

motions and variations in the position of the GTV or CTV relative to the treatment beam and set up

errors. The PTV is function of treatment geometry, because the number of beams and their orientations

may impose limitations on the PTV’s shape or scope. Figure 1.2 illustrates the 3 different volumes.

Radiotherapy planning must always consider critical normal tissue structures, known as organs at

risk (OARs). OARs are normal tissues whose radiation sensitivity influences treatment planning or the

prescribed radiation dose. A margin is added to the OAR, which is analogous to the PTV margin around

the CTV, and generates the planning organ at risk volume (PRV). It is helpful to create a PRV around an

OAR since the loss of normal tissue from radiation damage can result in severe clinical manifestations.

1.1.6 Head and neck cancer

Most HNCs begin in the squamous cells that form the lining of the moist surfaces inside the mouth, the

nose, and the throat (Vokes et al., 1993). These squamous cell cancers are often referred to as squamous

cell carcinomas of the head and neck. HNCs are categorized by the areas in which they begin: oral

cavity, pharynx, larynx, sinuses and nasal cavity, or salivary glands. These areas are labelled in Figure

1.3.

HNCs often spread to the cervical lymph nodes of the neck. This spread is often the first sign of

the disease at the time of diagnosis. Lymph node involvement is the most important prognostic factor

regarding the survival of patients with head and neck cancer (Snow et al., 1982). Lymph nodes can be
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Figure 1.3: Head and neck cancer regions1.

Figure 1.4: Lymph node levels in the neck2. IA/IB: submental/submandibular nodes, IIA/IIB: Upper ante-
rior/posterior jugular nodes, III: middle jugular nodes, IV: lower jugular nodes, VA/VB: upper/lower
posterior node, VI: central compartment nodes.

classified by level based on anatomic landmarks that can be consistently identified on cross-sectional

imaging (Som et al., 2000). Figure 1.4 illustrates this classification .

Determining the extent to which a cancer has spread is mandatory in order to plan effective treat-

ments and remove all tumour tissues. The tumour-node-metastasis (TNM) staging system was developed

1source: www.cancer.gov
2source: External Beam Therapy. Second Edition. Hoskin, 2012.
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Tumour How much normal tissue tumor has gone into
Tis or (T0) Carcinoma in situ
T1 Tumour < 2 cm
T2 Tumour > 2-4 cm
T3 Tumour > 4 cm
T4 Tumour involves adjacent structures
T4a Operable disease
T4b Inoperable disease
Nodes Spread of cancer to lymph nodes
N0 No regional nodes metastasis
N1 Single ipsilateral node metastasis < 3 cm
N2a Single ipsilateral node metastasis > 3-6 cm
N2b Multiple ipsilateral node metastasis < 6 cm
N2c Bilateral or contralateral < 6 cm
N3 Lymph node metastatis > 6 cm
Metastasis Spread of tumor beyond lymph nodes to other parts of body
M0 No distant metastasis
M1 Metastasis to distant organs

Table 1.1: Generic staging for head and neck cancer.

to achieve consensus on one globally recognised standard for classifying the extent of spread of a cancer

(Edge and Compton, 2010). Generic staging for head and neck cancer is presented in Table 1.1.

1.2 Thesis contributions
The aim of this thesis was to clinically evaluate the feasibility of using atlas-based methods in the context

of radiotherapy planning. The contributions of this thesis include the following:

• I propose a new atlas-based segmentation method based on manifold learning. The method is com-

putationally fast and scalable, making it suitable for segmenting large datasets of images acquired

during radiotherapy planning. I demonstrate that this method produces segmentation accuracy

close to or significantly higher than state-of-the-art methods.

• I demonstrate that atlas-based methods can produce segmentations as comparable as manual con-

touring in the context of radiotherapy planning and decrease manual labor. Automatic segmen-

tations obtained with my method were graded for clinical acceptability as well as or better than

manual contours with a rate of 83%. In addition, I show that overlap measures don’t reliably reflect

clinical acceptability of a segmentation.

• I demonstrate the feasibility and accuracy of MR imaging-based treatment planning. Synthetic

CT images can be generated from MR images using atlas-based methods to support the workflow

of radiotherapy planning. My method generated synthetic CT images that showed high similarity

with real CT images. The dose distributions calculated on the synthetic CT images were also in

good agreement with the original doses used during planning.

1.3 Thesis organization
The next chapter is a review of current methods designed to obtain automatic segmentations using a large

dataset of atlases. The concepts of image registration, atlas-based segmentation and feature extraction

in a large dataset using manifold learning are presented as well as some of their applications in medical

imaging. Inter- and intra-observer variability is an important obstacle in the assessment of automatic
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algorithms. Variations in OARs delineation on CT images may unintentionally influence the develop-

ment and optimization process of those algorithms. In addition, differences in segmentation protocol for

radiotherapy planning could be one of the reasons explaining variations in accuracy between algorithms.

As a result, to reduce the uncertainty related to the delineation of OARs on CT images, experiments

in Chapter 3 are performed on a dataset of MR atlases of the hippocampus, a structure that has been

extensively studied in the litterature. MR imaging provides several advantages over CT imaging includ-

ing improved soft tissue visualisation and hence better target delineation. The inter- and intra-observer

variability in the delineation of anatomical structures on MR imaging is reduced compared to delineation

on CT images, making the assessment of automatic algorithms more accurate. The findings in Chapter

3 are then applied in Chapter 4 for the segmentation of OARs on CT images for radiotherapy planning.

In that chapter, a novel approach for the evaluation of segmentation is proposed and it is demonstrated

that atlas-based segmentation can automatically produce clinically acceptable segmentation of OARs,

with results as relevant as manual contouring. Chapter 5 demonstrates how atlas-based methods can be

used to synthesize an electron density map from MR images. The findings in that chapter show that

radiotherapy planning based on MR imaging with synthetic CT images generated through atlas-based

method is feasible for head and neck cancer treatment. The doses calculated from synthetic CT images

agreed well with those from real CT scans. Finally, Chapter 6 concludes this thesis and outlines some

future research directions.
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Chapter 2

Atlas-based methods for radiotherapy

Quantitative analysis and volumetric measurements in radiotherapy require the segmentation of anatom-

ical structures. In practice, contouring is often performed by a human operator which is time consuming

and labor intensive. It is also subject to inter- and intra-operator variability despite universally accepted

delineation guidelines (Fiorino et al., 1998; Scheltens et al., 1997). In addition, the increase in size and

availability of imaging databases renders manual segmentation an impractical task to perform, espe-

cially for large-scale clinical studies. As a result, much effort has been devoted to developing automatic

segmentation methods.

Several automatic segmentation methods have been proposed in the literature such as deformation

models (Chupin et al., 2007; Shen et al., 2002), appearance-based models (Duchesne et al., 2002; Hu

and Collins, 2007), and atlas-based methods (Aljabar et al., 2009; Rohlfing et al., 2004a). In recent

years, atlas-based segmentation methods have been the subject of intensive interest for their accuracy

and robustness in segmenting anatomical structures. Those methods make use of image registration and

a priori anatomical information provided in the form of an atlas. An atlas in this context is a pair of image

volumes: one intensity image (referred to as a template) and its associated segmented image (referred

to as a label). Atlas-based methods benefit from large dataset to cover the wide range of anatomical

variation within a population of images. However with dataset becoming larger and larger, it is crucial

to find a compact representation of a population of images. Recently manifold learning methods have

been used to model and extract the features of large dataset and used in combination with atlas-based

methods to improve their performances. The aim of my thesis is to use atlas-based methods to obtain

segmentation of OARs in radiotherapy and to construct a synthetic CT image from a dataset of CT

atlases. In this chapter, the concept of image registration, atlas-based method, manifold learning and

some of their applications in medical imaging are presented.

2.1 Image registration
An image R can be segmented by establishing spatial correspondences with an atlas in a pairwise

anatomically correct way, a process referred to as image registration (Rueckert and Schnabel, 2011).

Given an accurate coordinate mapping from R to the atlas, the label for each voxel in R can be de-

termined by looking up the anatomical structure at the corresponding location in the atlas under that

mapping. Labelling an image by mapping it to an atlas is known as atlas-based segmentation. Comput-
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ing the coordinate mapping between the image and atlas is a critical step in such a method. This section

details the fundamental of image registration.

The aim of image registration is to find the optimal geometric transformation which maximizes the

correspondence between two images. Image registration can be applied to images from the same subject

acquired with different imaging modalities, or at different time points (intra-subject registration). It can

also be used to align images obtained from different subjects (inter-subject registration). This process

involves 3 main components: a transformation model, an objective function and an optimization method.

2.1.1 Transformation model

The transformation model defines a geometric transformation between the images. There are 3 types

of transformation. Each type is characterised by a number of parameters that describes the degree of

freedom of the transformation. The first type of transformations is called rigid transformation. It consists

of moving an image in space while preserving its original shape. The image can only be translated or

rotated. For 3 dimensional images, a rigid transformation is parametrised by 6 degrees of freedom: 3

rotations and 3 translations.

The second type of transformations is called affine transformation. An affine transformation is

parametrized by 12 degrees of freedom: 3 translation and 3 rotation parameters as in rigid transforma-

tion in addition to 3 scaling and 3 shearing parameters. This transformation is global, meaning that

every parameter will affect the whole image. Some affine registration algorithms have been specifically

developed for medical imaging (Jenkinson and Smith, 2001; Ourselin et al., 2001).

The third type of transformations model is called non-rigid transformation. In this case, localized

transformations are applied to the image. These localized transformations can be defined by a set of

displacement vectors (parametric transformations), or by a displacement vector associated with every

voxel in the image (non-parametric transformations). As a result, for images containing 256×256×256

voxels, non-rigid transformations can involve millions of degrees of freedom. Non-rigid parametric

transformations developed for medical imaging include the Hierarchical Attribute Matching Mechanism

for Elastic Registration algorithm (HAMMER) (Shen and Davatzikos, 2002), and the free-form defor-

mation based on cubic B-splines (Rueckert et al., 1999). Non-parametric transformations include the

Demons algorithm (Thirion, 1998), fluid-based algorithms (Christensen et al., 1996; Freeborough and

Fox, 1998) and velocity field-based algorithms (Beg et al., 2005). Figure 2.1 illustrates the different

classes of transformation.

Once a transformation model T is chosen, it is used to deform a floating image F into a warped

image F (T) that is in the space of a reference image R. For each voxel ~x in R, its transformed position

in F is given by T(~x). The intensity for each voxel in F (T) is then resampled from the original image

F . Figure 2.2 illustrates image resampling.

2.1.2 Objective function

An objective function is used to assess the similarity betweenR and F (T) by mean of a measure of sim-

ilarity. Various measures have been proposed and they can be classified into feature-based or intensity-

based. Feature-based measures require the extraction of points, lines or surfaces and aim to minimize
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Figure 2.1: Different transformation models applied to a cube1. Top: rigid transformation parameters. Middle:
affine transformation parameters applied to the x-axis only. Bottom: two non-linear deformations ap-
plied to the initial shape.

the distance between the corresponding features in the images. In contrast, intensity-based measure do

not require feature extraction and rely on optimizing a voxel-based similarity metric. Popular similarity

metrics used in medical imaging are the sum of squared differences (SSD) (Gee et al., 1993) and the

normalized cross-correlation (NCC) (Collins et al., 1995; Dong and Boyer, 1995) for mono-modality

registrations, and the normalized mutual information (NMI) (Maes et al., 1997; Wells III et al., 1996)

for multi-modal registrations. A regularization term might be added to the objective function. This term

constrains a transformation model, for example to produce one to one correspondences. A deformation

1source: Efficient Dense Non-Rigid Registration using the Free-Form Deformation Framework. Modat, 2012.
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Figure 2.4: Registration example. A floating image (e) is registered to a reference image (a) using 3
different approaches: rigid (d), affine (c) and non-rigid (b). The bottom row shows the difference images
between each image and the reference. Note that only 2 dimensional axial views are presented but the
registrations have been performed using volumes.
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Figure 2.5: Image resampling. The intensities in the floating image are use to compute the warped image
intensities.

2.1.3 Optimiser

An optimiser is finally used to maximise the value of the similarity measure by changing the transforma-

tion model degrees of freedom. The optimiser schemes that are used in medical image registration are

common to other computer science fields. Algorithms can use schemes that do not require any derivative

of the objective function such as the simplex algorithm or methods which depend on derivatives of the

first or second order.

Figure 2.2: Illustration of image resampling1. The intensities in the floating image are used to compute the intensi-
ties in the warped image.

is deemed realistic when the deformation field is continuous and the topology of the anatomy represented

in the image is not broken.

2.1.3 Optimization method

Image registration can be formulated as an optimization problem whose aim is to maximise an associated

objective function. Many optimization methods, such as Newton’s method (Vercauteren et al., 2009) or

the gradient descent (Rueckert et al., 1999), require the estimation of the similarity metric’s gradient with

respect to the parameters. Other second-order methods may also require an estimate of its Hessian.

This section detailed the fundamentals of image registration. The next section explains how it can

be used to obtain the segmentation of an image.

2.2 Atlas-based methods for segmentation

In its simple form, atlas-based segmentation involves performing image registration between a template

and an image to be segmented (referred to as a target image). Image registration yields a transformation

which allows the label image to be warped and treated as a segmentation estimate for the target. It

is then said that the atlas has been propagated to the target. When multiple atlases are propagated to

the target, the warped labels need to be combined using a label fusion method to yield a consensus

segmentation. The term multi-atlas segmentation is commonly used in the literature (Aljabar et al.,

2009; Artaechevarria et al., 2009; Leung et al., 2010) when multiple atlases and a label fusion algorithm

are employed for segmentation purposes. Figure 2.3 illustrates the concept of multi-atlas segmentation.

1source: Efficient Dense Non-Rigid Registration using the Free-Form Deformation Framework. Modat, 2012.
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2.2.1 Atlas propagation

An atlas is defined as a pair of images: a template image A and a corresponding label image L. Let’s

T be the transformation that maps the coordinates of the target image R onto those of the template A.

For each voxel (x, y, z) in R, the corresponding location in the domain of A is given by T(x, y, z). The

correct label for any voxel (x, y, z) in R can then be calculated through the mapping L(T(x, y, z)).

When a dataset of N atlases {(A1, L1), (A2, L2), ..., (AN , LN )} is available, multiple segmenta-

tion Li(T(x, y, z)) of the target can be generated. A label fusion method is then used to combined them

into a single segmentation.

Deforming an atlas substantially different from a target requires the usage of non-rigid registration.

As a consequence, the potential for registration errors increases with larger deformations. In addition,

propagating atlases that are not representative of the anatomical structure of the target or misclassification

in the label image will result in an inaccurate segmentation. In the remaining of this section, I detail two

fundamental aspects of atlas-based segmentation: atlas selection and label fusion.

2.2.2 Atlas selection

The accuracy of atlas-based segmentation depends on the ability of the image registration to find optimal

correspondences between the templates and the target image, which inherently depends on the anatomi-

cal similarity between the images. As seen in clinical studies, the range of anatomical variability within

Target	  

Templates	   Labels	  

Figure 2.3: Illustration of multi-atlas segmentation. A dataset of templates are registered to a target image (red ar-
row). The resulting transformations are used to map the corresponding labels onto the target space (blue
arrows). The transformed labels are then combined (green arrow) to create an estimate segmentation of
the target.
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and between subjects can be large. Propagating the atlases that closely match the target reduces registra-

tion errors and increases segmentation accuracy. Several atlas selection methods developed for the study

of brain structures using MR imaging and radiotherapy using CT imaging are presented in this section.

2.2.2.1 Single atlas selection

In principle, a single atlas can be used to segment a given target image or several different targets (Barnes

et al., 2007). This single atlas is often a volume that has been selected from a dataset according to some

criteria. In MR based studies, selection has been done in different manners: randomly (Carmichael

et al., 2005), based on visual assessment (Rohlfing et al., 2004a), using a standard atlas (Carmichael

et al., 2005) such as the MNI 305 atlas (Collins et al., 1994), or based on quantitative analysis such as

volumetric measures (Barnes et al., 2007). In Barnes et al. (2008a), the best match from all other subjects

in the study was selected based on image similarity in the hippocampal area after affine registration using

cross-correlation.

However, an atlas based on a single subject does not represent the wide range of anatomical variation

of the human anatomy. For the study of the brain using MR images, several methods have been proposed

to build a probabilistic atlas from a set of images to better characterize the variability of anatomical

structures within a given population. In this case, information from several images are combined into

an average probabilistic atlas using an iterative generation scheme (Brandt et al., 2005; Guimond et al.,

2000; Jongen et al., 2004; Rohlfing et al., 2004a). All those methods follow the same framework to

construct an unbiased probabilistic atlas. From a given set of images, one is chosen to be a reference

image. After all images are registered to that reference, averaging can be performed on voxel intensities

(Rohlfing et al., 2004a) or by computing an average transformation (Guimond et al., 2000) to obtain a

groupwise image. To obtain a stable atlas, all images are registered to that groupwise image and are

subsequently averaged again. The process is repeated until a convergence criteria is reached or after a

determined number of iterations. This probabilistic atlas approach has been used for lung segmentation

(Li et al., 2003; Sluimer et al., 2005; Zhang et al., 2006a).

Extensive work have been done by Commowick et al. (2006) in developing a single atlas from CT

images for radiotherapy planning. In Commowick and Malandain (2007), the atlas in a dataset of im-

ages that requires the least amount of deformation was selected for each target image to segment. This

selection strategy was based on the fact that small variations between an atlas and a patient to segment im-

prove the quality of registration and the accuracy of the segmentation subsequently. A population-based

average atlas was used in Commowick et al. (2008) to segment head and neck anatomical structures.

However this resulted in over-segmented structures. A novel framework was introduced in Commowick

et al. (2009), where a piece-wise most similar atlas was built from a set of images selected on predefined

local regions. This compared favourably to the population-based average atlas. This framework was later

improved by Ramus et al. (2010) by combining several selected images for each local region in order to

enhance robustness and accuracy. Each image was assigned a set of weights that reflected its similarity

to the target within each region.
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2.2.2.2 Multiple atlases selection

Propagating multiple atlases and fusing them has recently been shown to be more effective than using a

single atlas approach, in particular for segmenting structures in the human brain on MR images (Gousias

et al., 2008; Heckemann et al., 2006b; Klein and Hirsch, 2005). By using multiple atlases, the errors

due to misclassification or mis-registration can be reduced when the individual labels are fused together.

As in the case of a single atlas, multi-atlas methods benefit from selecting atlases similar to the target.

Indeed, when using a dataset of atlases that covers a wide range of morphology and pathology, some

atlases may be more suitable as candidates for propagation than others. Fusing a large number of atlases

with high anatomical structure variability might not yield a valid biological structure. It has been shown

that propagating and fusing only suitable atlases produces a better segmentation estimate than using the

full dataset (Leung et al., 2010), or a random subset (Aljabar et al., 2009).

Different atlas selection strategies have been proposed in the framework of multi-atlas segmenta-

tion in MR based studies. (Aljabar et al., 2009; Klein et al., 2008; Rohlfing et al., 2004a; Wu et al.,

2007). A popular approach is to define a similarity metric between the atlases and the target image after

registration. This measure is subsequently used to rank the atlases. Segmentation can then be performed

using a fixed (Aljabar et al., 2009) or variable (Klein et al., 2008) number of the top-ranked atlases. The

similarity metric can be expressed using a variety of metrics, including voxel intensities such as NMI

(Aljabar et al., 2009; Klein et al., 2008; Rohlfing et al., 2004a; Wu et al., 2007) or meta-information

related to the target (Aljabar et al., 2009). The accuracy achieved by the fusion of different numbers

of ranked atlases rises quickly to a maximum and then gradually decline as more and more atlases are

added into the fusion process (Aljabar et al., 2009; Leung et al., 2010). This maximum was found to be-

tween 7 (Leung et al., 2010) and 25 (Aljabar et al., 2009) depending on the anatomical structure. Leung

et al. (2010) developed a multi-atlas propagation and segmentation (MAPS) algorithm for segmenting

the hippocampus where the top ranked atlases for a given target were selected based on cross-correlation.

Atlas selection can also be done prior to registration by assigning atlases to clusters and registering only

some of them (Langerak et al., 2013). These clusters are formed on the basis of the results of pairwise

registrations between the atlases. This cluster approach was also used by Blezek and Miller (2007) and

Sabuncu et al. (2008). As presented, image similarity has been traditionally used as a direct measure for

atlas selection. However, this heuristic criterion might not be able to detect meaningful features for atlas

selection within the images.

A framework was presented by Wolz et al. (2010a) in which all the atlases are embedded in a

low-dimensional coordinate system using manifold learning to segment to hippocampus on MR images.

Only the meaning features of the atlases are encoded in the low-dimensional space. The low-dimensional

coordinates provides then a distance metric between images which can be used for atlas selection. The

assumption behind using manifold learning is that the intrinsic similarity between images may not be

accurately reflected in the high-dimensional space in which the images are represented.

Several studies have employed multi-atlas based segmentation for segmenting anatomical structure

in the head and neck region for radiotherapy treatment (Daisne and Blumhofer, 2013; Sjöberg et al.,
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2013; Stapleford et al., 2010; Teguh et al., 2011). However, due to the small size of their dataset (5

atlases in Stapleford et al. (2010), 10 in Teguh et al. (2011), 10 in Daisne and Blumhofer (2013), 11 in

Sjöberg et al. (2013)), the process of atlas selection was not performed and all atlases were used. Similar

to Wolz et al. (2010a), Yang et al. (2010) performs atlas selection within a transformed low-dimensional

space, which is more robust to the noises introduced by dental artifacts and registration errors. They

also performed atlas selection by visual assessment, where voxel intensities, contrast and head tilt were

considered as major factors. The results from the two selection processes were similar. The downside

was that the size of their dataset was limited to 10 atlases. Acosta et al. (2011) evaluated different

atlas selection strategies for mapping organs (prostate, bladder and rectum) in pelvic CT for prostate

cancer radiotherapy planning. The dataset used in their study was significantly larger and included 24

atlases. The cross-correlation (CC), sum of squared differences (SSD) and mutual information (MI)

were used to rank a set of atlases according to their similarity with a target image after rigid registration.

Results suggested that SSD is a better predictor for mapping than MI and CC. They also found that using

the top 20% ranked atlases was a good compromise between accurate segmentation and computational

complexity.

2.2.3 Label fusion

When multiple atlases are selected, the choice of a label fusion strategy is required. It is the process of

combining multiple label images into a single consensus. It is used to improve segmentation accuracy by

averaging out the segmentation errors associated with the mis-registration of some atlases. This process

takes place at the voxel level and can be achieved using different strategies. Various fusion methods have

been developed specifically for medical imaging.

2.2.3.1 Voting methods

The most widely used fusion method in medical imaging is the majority voting rule (Xu et al., 1992). In

this approach, each label image assigns a class at each voxel of the target. The class that received the

highest number of agreements is assigned to that voxel.

Individual weights can also be assigned to the label images. Each weight represents the contri-

bution of a given label during the fusion process. The use of weights is based on the assumption that

some atlases might be better registered to the target than others and that poor registration will result in

inaccurate segmentation. In this case, it is reasonable to give more weight to those well registered atlases

during the fusion process. An estimation of the accuracy of the registration between an atlas and a target

can be used to assess the influence to be given to that atlas. Weight assignment can be either global (i.e.

same weight to every voxel in the image) or local (i.e. one weight per voxel) (Artaechevarria et al., 2009;

Isgum et al., 2009; Sdika, 2010). For instance, majority voting is a specific case of weighted atlases in

which the weights are global and equal across all label images.

The use of local weights is supported by the fact that global fusion strategy cannot select the locally

good regions within different inputs. Local weights take advantage of the fact that registration may

be good in some areas while bad in others. An extensive review of voting methods has been done by

Artaechevarria et al. (2009). Global and local weights based on normalised cross-correlation, mean
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squared difference, mutual information were compared. It was concluded that local methods should be

favoured.

However, those methods do not take into account the fact that different atlases may produce similar

segmentation errors. Wang et al. (2013) develop a novel voting method that take into account the depen-

dency between atlases and attempts to directly reduce the expected segmentation error in the combined

solution. The dependencies were explicitly modelled as the joint probability of two atlases making a

classification error at a given voxel.

2.2.3.2 Probabilistic methods

More sophisticated methods than voting for the fusion of the segmentations are also available. Warfield

et al. (2004) presented the simultaneous truth and performance level estimation (STAPLE) algorithm for

the segmentation of brain images. It has been extensively used in medical imaging studies (Artaechevar-

ria et al., 2009; Klein et al., 2008; Leung et al., 2010). The mathematical framework of this algorithm is

presented below.

The STAPLE algorithm

An image to segment is denoted by Y . It contains N voxels and each voxel is denoted Yi. Let T be

an image of size N representing the hidden binary true segmentation of the structure under analysis in

Y . Each voxel Ti is assigned a value of 1 if the structure of interest is present, or a value of 0 is the

structure is absent at location i. Let D be an N ×R binary matrix describing R candidate segmentations

of the structure, obtained either by manual segmentation or an automatic algorithm. This matrix D is

similar to T and contains 1 and 0 representing the presence and absence of the structure at each location

i. Let p = (p1, p2, ..., pR)
T and q = (q1, q2, ..., qR)

T be the sensitivity and specificity of each one of the

candidate segmentations R, indexed by j. These parameters p and q are only depend of R and represent

a global degree of agreement or disagreement between a candidate segmentation Rj and a segmentation

consensus. In order to estimate T , one needs to maximise the log likelihood of the complete data of this

problem (D,T ) given the set of parameters (p, q). This maximisation can be described as:

(p̂, q̂) = argmax
p,q

logf(D,T|p,q) (2.1)

Using the definition of sensitivity and specificity, p and q can be described as the ”true positive

fraction” and ”true negative fraction”. Thus, pj and qj can be represented by:

pj = Pr(Dij = 1|Ti = 1)

qj = Pr(Dij = 0|Ti = 0)
(2.2)

The parameters pj , qj ∈ [0, 1] are assumed to be characteristic of the rater. This model assumes that the

candidate segmentations are independent from each other and that the quality of the result of the seg-

mentation is captured by the sensitivity and specificity parameters. Equation 2.1 can then be maximised

by an Expectation-Maximization algorithm. The weight variable w(k)
i denotes the expected probability
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of the true segmentation at voxel i being equal to 1 at iteration k and is defined as:

w
(k)
i ≡ f(ti = 1|di,p(k),q(k))
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In the expectation step (Equation 2.3), weights are calculated at each location i and the estimate of

the true segmentation is improved based on the sensitivity and specificity of each candidate segmentation.

In the maximization step (Equation 2.4), given the new estimate of the true segmentation, the sensitivity

and specificity of each candidate segmentation are optimized.

The original STAPLE algorithm was developed for label images containing a single class. A multi-

class STAPLE was subsquently proposed by Rohlfing et al. (2004b). Other segmentation methods that

build upon the STAPLE algorithm where proposed which take into account the similarity between the

atlases and the target. A non-local STAPLE algorithm was developed by Asman and Landman (2012)

where atlas intensities were integrated into the expectation process using non-local correspondence

model. Cardoso et al. (2013) developed the similarity and truth estimation for propagated segmentations

(STEPS) algorithm in which a local ranking strategy for atlas selection based on the locally normalized

cross-correlation was added to the STAPLE algorithm.

2.2.4 Evaluation metrics

Overlap measures are often used to quantify the agreement between two segmentations. The Dice sim-

ilarity coefficient (Dice, 1945) is the most popular measure reported in the literature. It is defined as:

C = 2(|A ∩ B|)/(|A| + |B|), where |A| (respectively |B|) is the number of voxels in the segmented

region A (respectively B) and ∩ is the intersection between region A and B. The overlap measure can

also be reported as a Jaccard index (Jaccard, 1912) defined as: J = |A ∩ B|/|A ∪ B|, where ∩ and ∪

are the intersection and union between region A and B. Their values range from 0 to 1, where 0 means

no overlap, and 1 signifies a perfect match.

Another metric based on distances can also be used. It is referred to as the ”Hausdorff distance”,

dH , and it measures the maximum distance d of a point in a set X to the nearest point in another set Y .

Distances are usually measured from structure boundaries for each axial slice in the image.
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2.7.2 Mouse-click-counter 
Another method of estimating the workload for the radiation oncologist is to register 

the number of mouse-clicks done during the manual segmentation and editing. The 
manual segmentation is expected to require more drawing and dragging with the mouse 
since the radiation oncologist has to create all the lines and edges of the ROIs from scratch. 
In the editing phase it is expected that more time will be spent studying the ROIs from the 
proposals thereby decreasing the mouse clicking.  Together with the time scoring this will 
give information on how the segmentation work routines change with atlas-based 
segmentation. 

2.7.3 Volume 
Determination of the volume is a straightforward and comprehensible method of 

evaluation. Both the RS and the TPS have tools for estimating the volume of a VOI and for 
consistency all volumes were taken from the RS because there was a slight systematic 
difference in estimated volume between the two systems. 

2.7.4 The Dice similarity coefficient 
An X-ray-image, just as all other digital images, consists of a number of pixels. Each 

pixel represents a small part of the image. When the radiation oncologist is delineating the 
different structures in a patient before treatment, the task is to decide which pixels are 
representing a certain organ or structure. This process is dependent on many subjective 
factors, which will result in a different outcome each time. The Dice Similarity Coefficient 
(DSC) gives a mathematical measure this difference. In Figure 4 a simple ROI illustrates 
the principle of the DSC.  
 

 
Figure 4. An illustration of the Dice Similarity Coefficient. The leftmost picture shows the segmented ROI 
A, in the middle a different segmentation of the same tissue, ROI B, and in the rightmost picture the two 
ROIs is put together in the same frame, showing the overlapping area, C. 

Figure 4 shows two separate segmentations of the same structure (ROI), A and B. In 
this example the two ROIs have identical shape and size and only differ in location. To the 
right the two ROIs have been put together in the same frame and the overlapping area, C, 
is indicated. The DSC is calculated according to Equation 2. 
 

DSC = 2 !
A"B
A + B

 (2) 

 
where !  denotes the cross-section between A and B. 

 
 
 
 
 

Atlas-based segmentation 
M. Lundmark 2011 

13 

It is the relation between the overlapping area of the two regions, or ROIs, divided by 
the total area of the two regions A and B. DSC is a number between 0 and 1, where 1 is total 
agreement and 0 means no overlap at all. 

DSC can similarly be applied to 3D-structures in CT-sets. Instead of measuring the 
area in number of pixels the volume is measured in number of voxels. 

To incorporate the algorithm used for fusion of atlases another script for MATLAB was 
written to calculate the DSC for all segmentations. The key element in the calculation of 
the DSC is the Euclidian distance maps that are constructed from the DICOM structure-
files. To make sure each distance map only contains one VOI, a separate map is created for 
each individual VOI. In such a distance map each voxel in the image is assigned a value 
that corresponds to its distance from the edge of the VOI. All voxels outside of the VOI 
have positive values and all voxels inside the VOI have negative values. The pixels that 
make up the edge of the VOI are set to zero. The number of voxels belonging to each VOI in 
both the compared distance maps is found by calculating all zero and negative voxels. The 
overlapping volume consists of the number of voxels found in both VOIs. 

2.7.5 Hausdorff distance 
A 3D-structure is not drawn directly in 3D but as contours in consecutive slices. Since 

the CT-slices have a finite thickness the TPS interpolates between the slices. When 
evaluating the similarities between structures, the Hausdorff distance is a method 
designed to compare 2D objects where the distance between the structures is the defining 
parameter. 
 

 
Figure 5. A schematic figure explaining the concept of Hausdorff distance with two segmentation proposals, 
A and B, for a certain structure. The maximum distance from the point a on the edge of A to edge B is marked 
with the line l2, and l1 is the maximum distance from the point b on the edge of B to A. These are the largest 
minimum distances between the two edges and the Hausdorff distance would in this case be equal to l1 since 
l1 > l2. 

The Hausdorff distance is the maximum of the minimum distances from any point on 
the edge of one segment to the other. This means that for every point that makes up a part 
of the edge on one of the ROIs the shortest distance to a point on the edge of the other ROI 
is determined and the largest of these values is the Hausdorff distance. 

Using Figure 5 as an example: ROI A and ROI B are two different segmentation 
proposals in a single slice of the CT-study. Somewhere on the edge of ROI A there is a 
point, a, that is further away from any point on B than all other points on A’s edge. This 
point has a minimum distance, l2, to ROI B. This is the Hausdorff distance from A to B. 

Figure 2.4: Top: illustration of the Dice similarity coefficient. The leftmost picture shows the segmented ROI A,
in the middle a different segmentation of the same tissue, ROI B, and in the rightmost picture the two
ROIs is put together in the same frame, showing the overlapping area, C. Bottom: schematic figure
explaining the concept of Hausdorff distance with two segmentation proposals, A and B, for a certain
structure. The maximum distance from the point a on the edge of A to edge B is marked with the line l2,
and l1 is the maximum distance from the point b on the edge of B to A. These are the largest minimum
distances between the two edges and the Hausdorff distance would in this case be equal to l1 since l1 >
l2

.

These metrics are quantittive, however they might not reflect the clinical utility of a segmentation.

Those different metrics complement each other but are not necessary correlated. Figure 2.4 illustrates

the concept of Dice similarity coefficient and Hausdorff distance.

2.3 Atlas-based methods for image synthesis

In recent years, the concept of atlas-based propagation has been used for image synthesis. For instance,

it has been used in Burgos et al. (2013) and Marshall et al. (2013) to generate a synthetic CT image to

improve attenuation correction for PET/MR scanners. In PET/CT acquisition systems, attenuation maps

are derived from CT images. However, in hybrid PET/MR scanners, MR images do not directly provide

a patient-specific attenuation map. In Marshall et al. (2013), MR images of patients are compared to

a database of CT scans using weighted similarity metrics. Then, a CT scan that closely resembles the

patients body type is selected and non-rigidly registered to the MR image. Bones from the registered

CT image are then added to the MR image previously segmented into four tissue classes (air, lung, fat

and lean tissue) to produce an attenuation map. As presented in the previous section, a set of segmented

anatomical atlases from several subjects can be registered to a target image and subsequently fused
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according to morphological similarity. This idea was exploited in Burgos et al. (2013) for the propagation

and fusion of continuous image intensities. In their method, a dataset of CT/MR paired images from

multiple subjects was used to propagate the CT intensities onto an MR target image. A local image

similarity measure was used between the target image and the set of registered MR atlases to model

the underlying morphological similarity. It was assumed that if two MR images are similar at a certain

spatial location, the two corresponding CT images are also similar at this location. This resulted in the

synthesis of a patient-specific CT image from which an attenuation map was then generated.

A similar framework was used by Uh et al. (2014) to produce a synthetic CT image for dose cal-

culation in MR imaging based radiotherapy treatment. A dataset of CT/MR atlas image pairs was first

constructed by aligning planning CT and MR images of the same patient. The deformation of each CT

atlas to the MR target image was then determined by the transformation between the corresponding MR

atlas and the MR target image. The multiple deformed CT atlases were subsequently combined to pro-

duce a synthetic CT image using a simple arithmetic mean process. This study showed that synthetic CT

images generated from multiple deformed atlases are more suitable for treatment planning than those

from a single atlas or assigning density values to some segmented areas of the patient volume. The syn-

thetic CT images based showed a high similarity to the real CT images and the corresponding calculated

doses agreed well with those based on real CT images.

2.4 Manifold learning

Manifold learning methods have been used to model and extract the features of large dataset and com-

bined with atlas-based methods to improve their performances. Manifold learning has been successfully

used in multiple medical imaging applications including segmentation (Zhang et al., 2006b), registration

(Hamm et al., 2010; Wachinger and Navab, 2010), classification (Aljabar et al., 2008) and statistical pop-

ulation analysis (Aljabar et al., 2010; Gerber et al., 2010). This section will present the most important

manifold learning techniques and how they can be combined with atlas-based segmentation.

2.4.1 Concept

Medical images can be seen as points in a high dimensional space. For instance, a 3D head and neck CT

image of size 512 × 512 × 256 voxels may be viewed as vector with more that 67 million dimensions.

Each head and neck image has a unique combination of voxel intensities. However, head and neck im-

ages share a large degree of anatomical similarity in their appearance. Each individual image may be

viewed as a single point in a high dimensional space, but a set of those images may only span over a

small region in this space. In other words, medical image sets can be seen as samples of low-dimensional

manifolds in the space of all possible images. A number of machine learning techniques called dimen-

sionality reduction techniques have been developed for discovering those manifolds. In recent years,

those techniques have been successfully applied in multiple medical applications. In this section, the

most common of those algorithms are detailed along with their applications in medical imaging.
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2.4.2 Dimensionality reduction

Given a n × D matrix X where each row represents a set of n vectors (images in this case) xi, i ∈

{1, 2, ..., n}, of dimensionality D, manifold learning aims to discover the intrinsic lower dimensionality

d of the dataset X . When using those techniques, images in dataset X are assumed to lie on or near a

manifold with dimensionality d embedded in the ambient space of dimension D. d is called the intrinsic

dimension of the manifold. Manifold learning transforms a dataset X with dimensionality D into a new

dataset Y with dimensionality d (where d < D, and often d << D), while retaining the geometry of the

dataset as much as possible. In the following, a high-dimensional image is denoted by xi, i ∈ {1, ..., n},

where xi is a ith row of the n × D matrix X . It is assumed that dataset X is zero-mean.The low-

dimensional counterpart of xi is denoted by yi, where yi is the ith row of the n × d matrix Y . In this

section, the most common dimensionality reduction techniques used in medical imaging are presented.

They can be classified into linear and non-linear dimensionality reductions techniques. In the literature,

the non-linear dimensionality reduction techniques are often referred to manifold learning.

2.4.2.1 Linear methods

Principal Component Analysis

Principal Component Analysis (PCA) (Jolliffe, 2005) is one of the most popular techniques for dimen-

sionality reduction. It constructs a low-dimensional representation of the data that describes as much of

the variance in the data as possible using only d principal components. This is achieved by finding the

linear mapping function M of size D × d that maximizes the cost function:

trace(MT cov(X)M) (2.5)

where cov(X) is the covariance of the zero-mean matrix X . The principal components of the linear

mapping are defined by the first d eigenvectors of the eigenproblem:

cov(X)M = λM (2.6)

The low-dimensional representation Y of dataset X is then defined as Y = XM . The dataset Y can

be viewed as a projection of the original data set X onto a new coordinate system constructed by a set

of d orthogonal axis (principal components) such that the variance of the data along the first principal

component is the greatest. The variance of the data along the second principal component is the second

greatest. The subsequent principal components are defined in a similar manner.

Multidimensional scaling

Multidimensional scaling (MDS) (Cox and Cox, 2010) is another classical linear approach that maps

the original high-dimensional space to a lower dimensional space by preserving pairwise Euclidean dis-

tances. It is based on a pairwise Euclidean distance matrix with elements dij representing the Euclidean

distance between high-dimensional data xi and xj . MDS seeks to find the low-dimensional represen-

tation that best preserves the pairwise distances in the high-dimensional space. This is achieved by
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Figure 2.5: Geodesic distance. The geodesic distance between the two red points is the length of the geodesic path,
which is the shortest path between the points, that lies on the surface.

minimizing the cost function:

φ(Y ) =
∑
ij

(d2ij − ‖yi − yj‖2L2) (2.7)

where ‖yi − yj‖L2 is the Euclidean distance between two data points in the low-dimensional space.

The solution is given by Y = λ1/2V T , where V are the eigenvectors of XTX corresponding to the d

eigenvalues, and λ is the top d eigenvalues of XTX . The pairwise distance in MDS does not need to be

based on Euclidean distance and can represent various similarity measure between data points.

2.4.2.2 Manifold learning methods

Isomap

In the case where the high-dimensional data lie on or near a curved manifold, MDS might consider two

data points as neighbour points, although they might not be on the true underlying manifold. This is

because MDS seeks to retain pairwise Euclidean distances only and does not take into account the local

distribution of the neighbouring data points. Isomap (Tenenbaum et al., 2000) is a nonlinear embedding

technique that tries to solve this problem by preserving pairwise geodesic distances between data points

as much as possible. The geodesic distance is the shortest path between two points measured over the

curved surface of the manifold. Figure 2.5 illustrates the concept of geodesic distance. Isomap estimates

the geodesic distances between data points via a neighborhood graphG connecting all n data points. This

graph is defined by either connecting every data point xi to its k nearest neighbours xij , j ∈ {1, 2, ..., k}

or to all data points within some fixed radius ρ. The shortest path between two points in the graph

forms an estimate of the geodesic distance between these two points, and can easily be computed using

Dijkstra’s (Dijkstra, 1959) or Floyd’s (Floyd, 1962) shortest-path algorithm. The geodesic distances

between all data points X are computed, which result in a pairwise geodesic distance matrix DG. The

low-dimensional representations yi of data points xi are computed by applying MDS on the resulting

geodesic distance matrix DG.

Locally linear embedding

Locally linear embedding (LLE) (Roweis and Saul, 2000) is another approach which addresses the prob-

lem of high dimensionality by preserving the local properties of the high-dimensional data in the low-

dimensional space. The method assumes a locally linear relationship between neighbouring data points.

In LLE, each high-dimensional data point xi is represented as a weighted linear combination of its k
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nearest neighbours in the high-dimensional space. This defines a set of weights wij for the k neighbours

of xi. The aim is to find a low-dimensional representation yi that respects this weighting. The assump-

tion is that if the low-dimensional data representation preserves the local geometry of the manifold, the

reconstruction weights wij that reconstruct data point xi from its neighbours in the high-dimensional

data representation also reconstruct data point yi from its neighbours in the low-dimensional data rep-

resentation. As a consequence, finding the d-dimensional data representation Y with LLE results in

minimizing the cost function:

φ(Y ) =

n∑
i=1

‖yi −
k∑
j=1

wijyij‖2L2 (2.8)

where
∑k
j=1 wij = 1,∀i ∈ {1, ..., n} and subject to

∑n
i=1 yi = 0 and Y TY = Id with Id being the

d× d identity matrix. The coordinates of the low-dimensional representations yi that minimize this cost

function are found by computing the eigenvectors corresponding to the smallest d non-zero eigenvalues

of (In −W )T (In −W ), where W is a sparse n× n matrix whose entries are set to 0 if i and j are not

connected in the neighborhood graph, and equal to the corresponding reconstruction weight otherwise

and In is the n× n identity matrix.

Laplacian Eigenmaps

A closely related approach to LLE is Laplacian eigenmaps (LEM) (Belkin and Niyogi, 2003) which seeks

a low-dimensional data representation by preserving local properties of the manifold. LEM computes a

low-dimensional representation of the data in which the distances between a data point and its k nearest

neighbours are minimized. In the low-dimensional space, the distance between a data point and its first

nearest neighbour contributes more to the cost function than the distance between the data point and

its second nearest neighbour. The algorithm first constructs a neighbourhood graph G in which every

data point xi is connected to its k nearest neighbours. Weights wij are then defined as the similarities

between points within a local neighbourhood. For all points xi and xj connected in graph G by an edge,

the weight of the edge can be computed using a Gaussian kernel function:

wij = e
−
‖xi−xj‖

2

2ρ2 (2.9)

where ρ is the variance of the Gaussian. When xi and xj are not connected in the graph G, wij is set to

zero which result in a sparse adjacency matrix W. The Laplacian eigenmaps embedding is then obtained

by minimizing the cost function:

φ(Y ) =
∑
ij

wij‖yi − yj‖2L2 = 2Y TLY (2.10)

where L = D −W is the graph Laplacian matrix which is derived from the weight matrix W and the

diagonal degree matrix D where Dii =
∑k
j=1 wij . The Laplacian eigenmaps cost function is optimized

under the constraint that Y TDY = In, where In is the identity matrix. The low-dimensional data

representation Y can then be found by solving the generalized eigenvalue problem:

Lv = λDv. (2.11)
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for the d smallest non-zero eigenvalues. The d eigenvectors vi corresponding to the smallest non-zero

eigenvalues form the low-dimensional data representation Y .

2.4.2.3 Out-of-Sample Extension

An important feature of dimensionality reduction techniques is the ability to embed new high-

dimensional data points into an existing low-dimensional data embedding. Indeed, considering a data set

X , it would be a computational burden to solve its associated eigenproblem every time new data points

are added to it. So-called out-of-sample extensions have been developed for a number of techniques to

allow for the embedding of such new data points (Bengio et al., 2004). In PCA, the linear mapping M

provides all parameters that are necessary in order to transform new data point from the high-dimensional

to the low-dimensional space. In this case, a new high dimensional data point xnew and its counterpart

point ynew in the manifold are related by ynew = xnewM .

For non-linear dimensionality reduction techniques, a direct parametrization of the out-of-sample

extension is not available, and therefore, a non-parametric out-of-sample extension is required. Non-

parametric out-of-sample extensions perform an estimation of the transformation from the high-

dimensional to the low-dimensional space. For Isomap, LLE and LEM, the out-of-sample extension

is performed using the Nyström approximation, which approximates the eigenvectors of a large m×m

matrix based on the eigendecomposition of a smaller n × n submatrix of the large matrix (n < m).

Experiments on real high-dimensional data have demonstrated the accuracy of out-of-sample extension

in positioning an out-of-sample point on a low-dimensional manifold Bengio et al. (2004). For Isomap,

the extension is computed with:

yk(xnew) =
1

2
√
λk

n∑
i=1

vki(Exj [D
2
x(xi, xj)]−D2

xnew(xnew, xi))

where yk(xnew) denotes the embedding associated with xnew, λk and vk are the kth eigenvalues and

eigenvectors of a symmetric matrix derived during the computation of the manifold, Dxnew denotes the

column vector of distances between xnew and existing points x, Dx is the matrix of distances between

existing points and Exj represents the column mean of D2
x.

The extension of LLE is given by:

yk(xnew) =

n∑
i=1

yk(xi)w(xnew, xi)

where w(xnew, xi) is the weight of point xi in the reconstruction of xnew by its k nearest neighbours

from the existing points.

LEM is extended with:

yk(xnew) =
1

λk

n∑
i=1

1

n
yk(xi)

K(xnew, xi)√
Exi [K(xnew, xi)]Exj [K(xi, xj)]

where K(u, v) = e
− ‖u−v‖

2

2ρ2 is a Gaussian kernel and E is the mean.
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2.4.3 Applications in medical imaging

Isomap, Locally linear embedding, and Laplacian eigenmaps are the most commonly used techniques in

medical imaging. As an example, Figure 2.6 shows the results of applying different manifold learning

algorithms on the same dataset. Some recent findings are presented in the following section.

2.4.3.1 Image registration

Wachinger and Navab (2010) used Laplacian eigenmaps to reduce the computational complexity in

multi-modal registration. Aligning images that contain significant intensity variations requires sophisti-

cated similarity metrics such as normalized mutual information that model intensity variation. In their

study, Laplacian eigenmaps were used to extract a set of features from MR images which allows the use

of the standard L1 or L2 as similarity measures during the registration, effectively decreasing registration

time.

When the anatomies of two brain images show large variations in shape and appearance, the regis-

tration task turns out to be extremely challenging. Manifold learning was used in Hamm et al. (2010) to

tackle the problem of performing large deformation registration. In this case, the underlying manifold

of the dataset is approximated by a k nearest neighbours graph based on a pairwise measure between

images. Given two images in the k nearest neighbours graph, a transformation between them can be

estimated by using the shortest path that connects them on the graph. Each edge in the path represents

a transformation between a pair of similar images. An estimated transformation between two images on

the graph can be obtained by composing all successive transformations. Since two images connected

by an edge on the graph are likely to be very similar, a simple registration algorithm should be enough

to accurately register them. Composing those simple registrations should yield a good transformation

estimate, even though the two original images are very different. However, the composition of several

registrations may lead to the accumulation of small registration errors into larger ones.

2.4.3.2 Image motion parametrization

Manifold learning can also be used to parametrize the transformation between images. Transformation

between images corresponds to some form of motion such as cardiac motion or breathing cycle. In

this case, temporal ordering is a natural choice for ordering data and a manifold representation may be

used to estimate the corresponding image sequence. Isomap was used by Souvenir and Pless (2005)

to parametrize cardiac MRI images. In the low dimensional representation, similar points in the cycle

were close to each other. This technique aims to characterize the deformations of cardiac MRI image

and describe whether images have been deformed due to breathing, or due to contrast agents permeating

slowly through the tissues. Wachinger and Navab (2010) took a similar approach to order 4D ultrasound

images and place them correctly within the cardiac cycle. Georg et al. (2008) used manifold learning for

4D reconstruction of the lung. In their study, manifold learning enables the estimation of lung volume

directly from the images without the need of an external breath measurement. The relation between

manifold learning and type of deformations has also been investigated by Souvenir and Pless (2007).

It was shown that the pairwise distance measure used for manifold learning should reflect the type of

transformation expected. For example, if the images are expected to be related by rigid transformations,
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Figure 2.6: Four dimensionality reduction techniques applied to the same dataset. Dataset is composed of 40 head
and neck CT images. Only the first and second principal components in the lower dimension are shown.
From top to bottom: PCA (blue), Locally linear embedding (green), Isomap (red), Laplacian eigenmaps
(yellow). Each number represents and atlas.
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then the measure used for manifold learning should be chosen accordingly and may be distinct from one

used in non-rigid transformations.

2.4.3.3 Image segmentation

Wolz et al. (2010b) developed the LEAP algorithm (Learning Embeddings for Atlas Propagation) for seg-

menting a large dataset with a high level of inter-subject variance using a small set of manually labelled

atlases that is restricted to a sub-population of the whole dataset. Their method starts with the choice of a

pairwise image similarity. This image similarity can be derived from voxel intensities or from distances

based on the amount of deformation between images. After computing the low-dimensional represen-

tation associated with the dataset, atlases are propagated within the newly defined coordinate system

in successive steps. The Euclidean distance in the low-dimensional space is used to define neighbour

images. In the first step, the initial atlases are propagated to a number of images in their local neigh-

bourhoods. In the second step, newly segmented images become atlases and are used to subsequently

segment images in their vicinity. The process is repeated until the whole dataset is segmented. This

approach has the benefit of decreasing registration error as images are only segmented using their most

similar counterparts. Results showed that there is a significant improvement in overlap measure between

the automated and manual segmentation when applying this manifold-based method in comparison with

the direct registration of the available atlas images to all images. Indeed, for very different anatomies

between images, large deformations are estimated with a sequence of small deformations which reduces

errors resulting from large deformation registration.

2.4.4 Distance metric

An important aspect in manifold learning is the definition of the distance metric used for reconstructing

neighbouring points on the manifold. Applications of manifold learning in medical imaging often use a

simple distance metric such as the sum of squared differences (SSD) (Georg et al., 2008; Wachinger and

Navab, 2010). Metrics developed for the purpose of image registration can also be used as a distance

metric in a manifold learning. This includes the normalized cross correlation (Lewis, 1995) or the mutual

information (Wells III et al., 1996). Metrics based on voxel intensities measure the similarity of images

in terms of their appearance. An alternative approach is to measure similarity based on the shape of

the image. For example, deformations produced by image registration can be used to define a distance

metric between images. Estimates of local deformation or shape difference instead of measures based on

voxel intensity, have been shown to be advantageous for medical image analysis (Pless, 2004; Souvenir

and Pless, 2005). A method for building a low-dimensional representation of a set of brain images

acquired from AD patients and controls was presented in Gerber et al. (2010). In this case, information

about shape variability across the set was captured with a metric derived from non-rigid transformation.

Pairwise distances derived from deformation field were also used in Hamm et al. (2010) to implement

an efficient large deformation algorithm.



2.5. Summary 50

2.5 Summary
In this chapter, the concept of image registration, atlas-based segmentation and manifold learning are

presented. A review of the literature has shown that multi-atlas segmentation significantly improves

segmentation accuracy compared to segmentation based on a single atlas. It uses a dataset of atlases

that is representative of inter-subject variability for a given anatomy. This method has two advantages

compared to single atlas propagation. First, it accounts for the anatomical shape variability by using

multiple atlases. Second, it is robust because segmentation errors associated with single atlas propagation

can be corrected during the fusion process. This method relies on the selection of atlases suitable for

propagation as well as the performance of the label fusion algorithm. With the growing amount of

imaging data acquired, it is crucial to develop strategies for selecting the best atlases in the framework

of atlas-based segmentation in order to achieve optimal accuracy. In recent year, manifold learning

have gained popularity in medical imaging. Those algorithm have been used to reduce the complexity

inherent to the analysis of medical imaging, such as atlas selection. As presented earlier in Wolz et al.

(2010a), manifold learning is used to select atlases which are located in the neighbourhood of the target

on the manifold. This novel approach gives promising results on MR images of brains, however it has

never been applied on CT images. In addition, each manifold learning technique attempts to preserve

a different geometrical property of the underlying manifold. Isomap is a global approach that attempts

to preserve pairwise metrics. In contrast, LLE and LEM aim to preserve the local geometry of the data.

Since each manifold learning technique is associated with a different objective function, it is legitimate

to assume that, for a given data set, the associated embeddings are also different.

The next chapter, Chapter 3, I investigate the appropriate choice of manifold learning technique and

manifold parameters that result in optimal atlas selection and subsequently achieve optimal segmentation

accuracy. This investigation is done on a dataset of MR images of the hippocampus, a well studied

structure in the literature. The results from this investigation are then used in Chapter 4 for segmenting

OARs on CT images of head and neck for radiotherapy. In order to study the effect of manifold learning,

it was best to experiment on a small and well defined structure such as the hippocampus on a high

contrast modality than on full CT images of head and neck which can show tremendous variations due

to field of view or patience corpulence.
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Chapter 3

Atlas selection using manifold learning

3.1 Introduction

As presented in the previous chapter, multi-atlas segmentation relies on the selection of atlases that

are best mapped to a new target image after registration and manifold learning has been proposed as

a method for atlas selection. Each manifold learning technique seeks to optimize a unique objective

function. Therefore, different techniques produce different embeddings even when applied to the same

data set. Previous studies used a single technique in their method and gave no reason for the choice

of the manifold learning technique employed nor the theoretical grounds for the choice of the manifold

parameters. In this chapter, I compare the results given by 3 manifold learning techniques (Isomap,

Laplacian Eigenmaps and Locally Linear Embedding) side-by-side on the same data set. The ability of

those 3 different techniques to select the best atlases to combine in the framework of multi-atlas segmen-

tation is assessed. First, a leave-one-out experiment is used to optimize the proposed method on a set of

110 manually segmented atlases of hippocampi and find the manifold learning technique and associated

manifold parameters that give the best segmentation accuracy. Then, the optimal parameters are used to

automatically segment 30 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For

this dataset, the selection of atlases with Locally Linear Embedding gives the best results. The findings

in this chapter show that selection of atlases with manifold learning leads to segmentation accuracy close

to or significantly higher than the state-of-the-art method and that accuracy can be increased by fine tun-

ing the manifold learning process. Those findings are then used in Chapter 4 to segment OARs on CT

images of the head and neck.

3.2 Related publications

• Hoang Duc A.K., Modat M., Leung K.K., Cardoso M.J., Barnes J., Kadir T., and Ourselin S. for

The Alzheimers Disease Neuroimaging Initiative. Using Manifold Learning for Atlas Selection in

Multi-Atlas Segmentation. (2013). PLoS one 8(8): e70059.

• Hoang Duc A.K., Modat M., Leung K.K., Kadir T., and Ourselin S.: Manifold Learning for Atlas

Selection in Multi-Atlas Based Segmentation of Hippocampus. (2012). SPIE.
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3.3 Methods

3.3.1 Overview

This study aims to qualitatively and quantitatively assess the selection of atlases to combine in the frame-

work of multi-atlas segmentation using 3 different manifold learning techniques. I consider Isomap

(Tenenbaum et al., 2000), Locally Linear Embedding (LLE) (Roweis and Saul, 2000) and Laplacian

Eigenmaps (LEM) (Belkin and Niyogi, 2003) since those techniques are the most widely used in medi-

cal imaging.

My method can be summarized in 3 steps. First, a low-dimensional manifold is learned from

the space spanned by the set of atlases using the 3 different techniques (§3.3.2). The neighbourhood

relationship on the manifold is derived from non-rigid transformations that align atlases to each other

in the high-dimensional space (§3.3.3). Second, a new target image is embedded onto the previously

computed manifold by means of the out-of-sample extension (Bengio et al., 2004) (§3.3.4). Third, the

target image is segmented using atlases that are within its vicinity on the manifold (§3.3.5).

For each manifold learning technique, I investigate the effects of (i) the number of dimensions of

the resulting embedding, (ii) the number of neighbours used to build the k-nearest neighbour graph in

the high-dimensional space, and (iii) the number of atlases used during the combination process.

An atlas data set composed of 110 manually segmented images of hippocampi from the MIRIAD

public data set (www.ucl.ac.uk/drc/research/miriad) is used to optimize each manifold learning technique

on a leave-one-out experiment (§3.4.1). Segmentation accuracy is then validated on an independent

set of 30 manually segmented images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,

www.loni.ucla.edu/ADNI/) (§3.4.2). The MIRIAD data set is described in §3.3.6. The ADNI data set is

described in §3.3.7.

3.3.2 Manifold learning

Given a set of n atlases A = (ai, ..., an) ∈ RD, the goal is to identify atlases that are most similar

to a target image x ∈ RD using manifold learning. It has been suggested that the set of brain images

has an intrinsic dimensionality meaning that points in data set A and image x are lying on or near a

manifold with dimensionality d which is embedded in the D-dimensional space (Gerber et al., 2010).

By using manifold learning, data set A ∈ RD is transformed into a new dataset Y = (y1, ..., yn) ∈ Rd

with d << D, while preserving the non-linear geometry and neighbourhood information of the high-

dimensional data in the low-dimensional space. The atlases that are nearest to x are identified on the

low-dimensional manifold and used for segmentation.

Variation in brain images is best described by non-linear dimensionality reduction models com-

pared to linear ones like Principal Component Analysis (PCA) or Multi-Dimensional Scaling (MDS)

(Gerber et al., 2010). In this study, low-dimensional embeddings are computed with 3 different non-

linear techniques: Isomap (Tenenbaum et al., 2000), Locally Linear Embedding (LLE) (Roweis and

Saul, 2000) and Laplacian Eigenmaps (LEM) (Belkin and Niyogi, 2003). The differences between those
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3 techniques are emphasized by their unique objective functions. For Isomap, the objective function is:

φ(Y ) =

n∑
i=1

n∑
j=1

(d2ij − ‖yi − yj‖2L2) (3.1)

where dij represents the geodesic distance between ai and aj in the high-dimensional space. For LLE,

the objective function is:

φ(Y ) =

n∑
i=1

‖yi −
∑

j∈Nk(i)

wijyij‖2L2 (3.2)

whereNk(i) are the k-nearest neighbours of ai and weight wij is the contribution of aj in reconstructing

ai in the high-dimensional space. As demonstrated by Roweis and Saul (2000), the optimal weights wij

are obtained through minimization by solving a least-squares problem.

Finally, the objective function associated with LEM is:

φ(Y ) =

n∑
i=1

n∑
j=1

wij‖yi − yj‖2L2 (3.3)

where wij = e−‖ai−aj‖
2/2σ2

is a Gaussian kernel. All 3 techniques require the construction of a

connected graph in the high-dimensional space using the k-nearest neighbour algorithm. The number of

neighbours used to build this connected graph is defined as kD.

Unlike PCA, the embedding produced by these techniques is a function of a metric which de-

termines the kD-nearest neighbours in the high-dimensional space and subsequently the neighbouring

images on the low-dimensional manifold. The metric presented in §3.3.3 is used to find those kD-nearest

neighbours.

3.3.3 Distance between pairs of images

I derive the metric from the method presented by Commowick and Malandain (2007). An atlas a and

target image x are similar when the non-rigid transformation that aligns them produces a small deforma-

tion. Similarity is based on the displacement field Fx→a of the non-rigid transformation Tx→a. In order

to avoid the computational load of performing registrations between all atlases and every new unseen

target image, an average atlas M is built from the atlases in the data set using the iterative groupwise

registration scheme described by Rohlfing et al. (2004a). This enables M to lie near the center of the

space of all atlases. From the average atlasM , a displacement field FM→a (resp. FM→x) is derived from

the non-rigid transformation TM→a (resp. TM→x) for each atlas a (resp. new target x). The similarity

is then evaluated with:

s(x, a) =

V∑
l=1

‖FM→a(l)− FM→x(l)‖2 (3.4)

where ‖.‖2 is the L2 norm and V is the number of voxels in each atlas.

In this framework, the similarity between x and any atlases a can be evaluated by registering x to

M . SinceM lies near the center of the space of all atlases, the manifold resulting from the approximation
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of Fx→a with FM→a − FM→x minimizes the error in estimating the neighbourhood relationship when

compared to the manifold resulting from the direct computation of Fx→a.

The non-rigid transformation T is performed using an efficient implementation (Modat et al., 2010)

of the free-form deformation algorithm (Rueckert et al., 1999). The transformation model is param-

eterized using a cubic B-Spline scheme and the transformation T is driven by the normalised mutual

information.

3.3.4 Extending a manifold with a new target image x

For Isomap, LLE and LEM, the out-of-sample extension is performed using the Nyström approximation

(Bengio et al., 2004). Experiments on real high-dimensional data have demonstrated the accuracy of

out-of-sample extension in positioning an out-of-sample point on a low-dimensional manifold (Bengio

et al., 2004). The metric presented in §3.3.3 is also used for extending the manifold.

Since the low-dimensional manifold is embedded in a Euclidean space, the L2 distance is used to

determine the kd-nearest neighbours of x on the manifold. Those kd-nearest neighbours are subsequently

used for label propagation.

3.3.5 Segmentation by fusion strategy

STAPLE (Warfield et al., 2004) is used to combine multiple segmentations generated from the most sim-

ilar atlases. In a previous study (Leung et al., 2010), it was found that STAPLE gives better results com-

pared to a voting rule or shape-based averaging method when using the MIRIAD data set. It simultane-

ously computes a probabilistic estimate of the true segmentation and a measure of the performance level

(sensitivity and specificity) represented by each segmentation in an expectation-maximization frame-

work. An iterative Markov random field optimized with mean field approximation is used to provide

spatial consistency in the probabilistic estimate of neighbouring voxels. The STAPLE algorithm is solved

only in the non-consensus area in order to reduce bias as suggested by Rohlfing et al. (2004a). I denote

by kd the number of atlases used for label propagation.

3.3.6 Atlas data set of 110 hippocampi

The MIRIAD data set is used as the atlas data set. It is a database of volumetric MRI brain scans

of patients suffering from Alzheimer’s disease and healthy elderly people. The data set is publicly

available (www.ucl.ac.uk/drc/research/miriad) in anonymised form to aid researchers in developing new

techniques for the analysis of serially acquired MRI. The atlas data set consists of 55 subjects who were

recruited from the Cognitive Disorders Clinic at The National Hospital for Neurology and Neurosurgery,

into a longitudinal neuroimaging study. All subjects underwent clinical assessment including the Mini-

Mental State Examination (MMSE) (Folstein et al.,1975). All subjects gave written informed consent to

take part in this study. Imaging data were used to create an average atlas using the groupwise registration

algorithm described in §3.3.3 and in the parameter optimization process in §3.4.1. Subjects included 36

clinically diagnosed probable AD patients and 19 age-matched healthy controls. All patients fulfilled

standard NINCDS/ADRDA criteria (McKhann et al., 1984) for the diagnosis of probable AD. Subject

demographics can be seen in Table 3.1. T1-weighted volumetric MR brain scans were performed on the
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same 1.5-T Signa unit (General Electric, Milwaukee), using an inversion recovery prepared fast SPGR

sequence and a 256×256 image matrix with the field of view being 18 cm (acquisition parameters:

repetition time = 15 ms; echo time = 5.4 ms; flip angle = 15◦; inversion time = 650 ms). The volumetric

scans were reconstructed as 124 contiguous 1.5-mm coronal images. T1-weighted volumetric scans

were evaluated by one rater. All scans were N3 corrected (Sled et al., 1998) and bias correction was

performed.

Table 3.1: Subject demographics in control and probable AD subjects used for parameter optimization. Mean (SD)
unless specified otherwise.

Control (n=19) AD (n=36)
Age, years 68.7 (7.0) 69.6 (7.3)

Gender male (%) 9 (47%) 14(39%)
MMSE at baseline, /30 29.5 (0.7) 19.4 (4.1)

The left and right hippocampal regions were manually segmented by an expert segmentor S. The

intra-rater variability measured by an ICC is 0.98, based on same-scan analysis of 20 subjects segmented

twice. The hippocampus was always measured on the right-hand side of the presented image with

the expert segmentor blinded to the subjects name, diagnosis, and left- right orientation of the scans.

Each hippocampus took approximately 45 min to delineate (1.5 h per scan). The left hippocampal

segmentations from all 55 subjects are flipped along the mid-sagittal plane. This flipping effectively

doubles the size of the data set by allowing, for example, the left hippocampus of a target image to be

matched to the right hippocampus in the atlas data set. Therefore, the final atlas data set consists of 110

hippocampal images.

3.3.7 ADNI data set of 30 subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (www.adni.loni.ucla.edu). The 30 ADNI subjects (10 AD, 10 MCI and

10 controls) used for method validation consist of preprocessed baseline volumetric T1-weighted MR

images acquired using 1.5T scanners (GE Healthcare, Philips Medical Systems or Siemens Medical So-

lutions) at multiple sites from the ADNI website. Representative imaging parameters were TR = 2400

ms, TI = 1000 ms, TE = 3.5 ms, flip angle = 8◦, field of view = 240×240 mm and 160 sagittal 1.2 mm-

thick slices and a 192×192 matrix yielding a voxel resolution of 1.25×1.25×1.2 mm3, or 180 sagittal

1.2 mm-thick slices with a 256×256 matrix yielding a voxel resolution of 0.94×0.94×1.2 mm3. The

details of the ADNI MR imaging protocol are described in Jack et al. (2008), and listed on the ADNI

website (www.loni.ucla.edu/ADNI/Research/Cores/). Each scan underwent a quality control evaluation

at the Mayo Clinic (Rochester, MN, USA). Quality control included inspection of each incoming image

file for protocol compliance, clinically significant medical abnormalities, and image quality. The T1-

weighted volumetric scans that passed the quality control were processed using the standard ADNI im-

age processing pipeline, which included post-acquisition correction of gradient warping (Jovicich et al.,

2006), B1 non-uniformity correction (Narayana et al., 1988) depending on the scanner and coil type, in-

tensity non-uniformity correction (Sled et al., 1998) and phantom based scaling correction (Gunter et al.,
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2006) with the geometric phantom scan having been acquired with each patient scan.

Table 3.2 shows the clinical and demographic data of the 30 ADNI subjects. The same expert

segmentor S as previously mentioned manually delineated the left hippocampus of those subjects. A

segmentor S2 also manually delineated the left hippocampus on the same baseline images. The inter-

and intra-rater reliability correspond to a Dice’s similarity index of 0.93 and 0.96 respectively.

Table 3.2: Subject demographics in set of 30 labelled randomly selected subjects used for method validation. Mean
(SD) unless specified otherwise.

Control (n=10) MCI (n=10) AD (n=10)
Age, years 78.6 (5.4) 75.3 (8.8) 77.2 (6.8)

Gender male (%) 6 (60%) 7 (70%) 7 (70%)
MMSE, /30 29.5 (0.7) 27.4 (1.8) 27.0 (2.7)

3.4 Experiments

3.4.1 Optimizing manifold learning parameters using data set of 110 atlases

A leave-one-out approach that excludes both the left and right hippocampi of the target image from the

library of 110 atlases is used to optimize the parameters for each manifold learning technique. The

following 4-step procedure is repeated for each atlas aout in the library. (i) After excluding aout and

its flipped image from the library, an average atlas M is built from the remaining 108 images in the

data set. Distances between remaining atlases are computed based on the non-rigid transformations

that align them to M as described in §3.3.3. (ii) A manifold is computed from the remaining 108

atlases. (iii) The embedding is extended with aout. Distances between aout and the remaining atlases

are derived by registering it to M and performing subtraction of displacement fields. (iv) Its kd-nearest

neighbours are identified on the manifold using the L2 norm and combined in STAPLE to yield an

estimated segmentation of aout.

Dice’s similarity index (Dice, 1945) is used for evaluation and is computed by measuring the overlap

between the estimated segmentation and the manual segmentation. Dice’s similarity index is defined as

DS(A,B) = 2|A∩B|/(|A|+ |B|), where A is the set of voxels in the automated region and B is the set

of voxels in the manual region. A Dice’s similarity index is calculated for each aout and a mean Dice’s

similarity index DS is calculated by averaging all 110 scores.

There is no defined procedure to establish the number of dimensions d of a learned manifold, and the

number of neighbours kD to build the connected graph in the high-dimensional space is often determined

empirically. Results are evaluated for 3 different techniques: Isomap, LLE and LEM with dimension d ∈

[1, 25] and a neighbourhood number of kD ∈ [3, 25] for each manifold technique. Using STAPLE with

a MRF strength of 0.2, segmentations are generated by combining the closest kd ∈ [1, 25] neighbours

to aout in the lower dimensional space. For LEM, σ is set to 1. A 4D matrix of mean Dice’s similarity

indexes is then computed with the following axes: manifold type ∈ {ISO,LLE,LEM}, d ∈ [1, 25],

kD ∈ [3, 25], and kd ∈ [1, 25]. The coordinates in this matrix that give the highest DS indicate the best

manifold learning technique with optimized parameters for this data set.
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In order to compare atlas selection with manifold learning to atlas selection without manifold learn-

ing, I also compute the results given by: a) a plain kd-nearest neighbour selection in the high-dimensional

space D and b) a kd-nearest neighbour selection after performing a Principal Component Analysis. I re-

fer to those 2 selection methods as BASE and PCA and results are computed for kd ∈ [1, 25]. In the

BASE method, for each aout, its kd-nearest neighbours are computed using the metric defined in §3.3.3

and combined in STAPLE to yield an estimated segmentation. As before, a Dice’s similarity index is

calculated for each aout and a mean Dice’s similarity indexDS is calculated by averaging all 110 scores.

3.4.2 Method validation using data set of 30 ADNI subjects

For method validation, the left hippocampus in the baseline images of 30 randomly selected subjects in

the ADNI database (10 AD, 10 MCI and 10 controls) were segmented. Those images differ from the

MIRIAD data set of atlases used for parameter optimization. The atlas data set of 110 images is used

to segment each of the ADNI target images. The optimal parameters determined in §3.4.1 are used to

generate left hippocampal regions. Since the right hippocampus segmentations for this set of 30 subjects

were not available, I only evaluate the accuracy of my method on the left hippocampus.

3.5 Results

3.5.1 Results from method optimization

The best combination of manifold learning technique and parameters is Locally Linear Embedding with

a manifold dimension of d = 11, a neighbourhood size kD = 23 and combining the top kd = 7 matches

in STAPLE, giving a mean (SD) Dice’s similarity index DSmax of 0.9077 (0.0211). In contrast, Isomap

and Laplacian Eigenmaps resulted in Dice’s similarity indexes of 0.8995 (0.0228) and 0.8971 (0.0245)

with d = 21, kD = 23 and kd = 9 and d = 13, kD = 21 and kd = 19 respectively. Each graph in

Figure 3.1 shows the mean Dice’s similarity index for each manifold learning technique when d, kD and

kd are fixed to their respective optimal parameters. It is interesting to note that all 3 manifold learning

techniques result in a very high mean Dice’s similarity index (>0.89). Using a 2-tailed paired t-test,

Locally Linear Embedding gives a significantly (p = 0.0216 < 0.05 and p = 0.0275 < 0.05) higher

average Dice’s similarity index compared to Isomap and Laplacian Eigenmaps, whereas the difference

between Isomap and Laplacian Eigenmaps is not statistically significant (p = 0.3250 > 0.05). The

accuracy achieved by fusing multiple segmentations quickly rises to a maximum and then gradually

declines as the number of segmentations increases. This is in line with results published in Aljabar et al.

(2009) and Leung et al. (2010): the gradual decline corresponds to adding dissimilar images into the

combination process, resulting in segmentation errors. The accuracy also flattens out for manifolds of 3

or more dimensions. This suggests that this data set of hippocampi can be described mostly by 3 main

modes of variation, and this is consistent across all manifold learning techniques presented. The number

of neighbours kD used to build the connected graph has little effect on the accuracy when using Isomap

and Laplacian Eigenmaps. In contrast, increasing kd increases the accuracy achieved with Locally Linear

Embedding.
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Figure 3.1: Mean Dice’s similarity index computed for kD ∈ [3, 25], d ∈ [1, 25], kd ∈ [1, 25]. Locally Linear
Embedding is in blue, Isomap is in red and Laplacian Eigenmaps is in black. Solid lines represent
the mean Dice’s similarity index, doted lines represents the standard deviation. Mean Dice’s similarity
index against: (a) the number of atlases fused in STAPLE (d and kD fixed to best parameters), (b)
the neighbourhood size kD in computing the manifold (d and kd fixed to best parameters), and (c) the
manifold dimension d (kD and kd fixed to best parameters).
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Table 3.3: Mean Dice’s similarity indexes DS (SD) obtained with manifold learning selection (LLE, ISO, LEM)
and BASE/PCA methods. p-values comparing each approach with each other are reported.

LLE ISO LEM
d = 11, kD = 23, d = 21, kD = 23, d = 13, kD = 21,

kd = 7 kd = 9 kd = 19
Mean DS 0.9077 0.8995 0.8971

(SD) (0.0211) (0.0228) (0.0245)

p-value LLE vs. ISO vs. LEM vs.
ISO, p = 0.0216 LLE, p = 0.0216 LLE, p = 0.0275

LEM, p = 0.0275 LEM, p = 0.3250 ISO, p = 0.3250
BASE, p = 0.0056 BASE, p = 0.0137 BASE, p = 0.0204

BASE PCA

kd = 9 kd = 11
Mean DS 0.8756 0.8803

(SD) (0.0219) (0.0217)

p-value BASE vs. PCA vs.
LLE, p = 0.0056 LLE, p = 0.0072
ISO, p = 0.0137 ISO, p = 0.0213
LEM, p = 0.0204 LEM, p = 0.0142

Table 3.4: Mean (SD) of the volumes (in mm3) in the left hippocampus in the baseline images of the atlas library
of 110 images used to assess optimal methods and parameters.

Control (n=19) AD (n=36)
Manual (SD) 2749 (273) 2054 (424)

Automated (SD) 2722 (249) 2066 (387)
Man vs Auto mean of difference (p-value) 27 (p=0.19) -12 (p=0.14)

SD of differences 129 150

Table 3.3 compares the mean Dice’s similarity index (SD) obtained by selecting atlases with man-

ifold learning and using the BASE and PCA methods. The results show that all 3 manifold learning

selection methods significantly outperform (p < 0.05) the BASE and PCA method.

Table 3.4 shows the mean (SD) of the manual and automated hippocampal volumes. The automated

volumes were computed using Locally Linear Embedding with the optimized parameters. The mean

(SD) of differences between the manual and automated hippocampal volumes by baseline diagnostic

group was 27 (129) mm3 (automated<manual) for controls and -12 (150) mm3 (automated>manual)

for AD subjects. In order to test the validity of my method, I compare the proposed method to a state-

of-the-art method for hippocampus segmentation based on a similar atlas library approach (Leung et al.,

2010). Using the same library of 110 hippocampus images and optimal parameters defined in Leung

et al. (2010), a similar leave-one-out method is performed. The mean Dice’s similarity index was 0.8955

(0.0172) compared to 0.9077 (0.0211) in my method. Even though these values differ by 0.01 point only,

the difference is statistically significant (p<0.001). Figure 3.2 plots the volume correlation between the

manual segmentation and my automatic segmentation method. The volume differences between manual

segmentation and automatic segmentation are similar to zero-mean random noise. Figure 3.3 shows an

example of segmentation obtained with my method.
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Figure 3.2: Bland-Altman plot. Each point corresponds to an hippocampal segmentation. The difference between
automatic and manual estimates is plotted against their average. The solid horizontal line corresponds
to the average difference, and the dashed lines are plotted at average +/-1.96 standard deviations of the
difference.

(i)

(ii)

(iii)
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Figure 3.3: Hippocampal segmentation: automated (blue) vs manual (red). Overlapping area in purple. Row: (i)
High case (Dice = 0.9398), (ii) Typical case (Dice = 0.9073), (iii) Low case (Dice = 0.8614). Column:
(a) Coronal view, (b) Sagittal view, (c) Axial view.



3.6. Conclusions 63

Table 3.5: Mean (SD) of the volumes (in mm3) in the left hippocampus in the baseline images of the labelled ADNI
data set of 30 images for method validation.

Control (n=10) MCI (n=10) AD (n=10)
Manual (SD) 2531 (336) 2331 (410) 1994 (478)

Automated (SD) 2642 (360) 2334 (431) 2018 (387)
Man. vs Auto. mean of diff. (p-value, paired t-test) -111 (p=0.33) -3 (p=0.47) -24 (p=0.29)

SD of differences 168 155 130

Table 3.6: Effect size.

ESAD ESMCI

Manual (SD) -1.124 -0.490
Automated (SD) -1.614 -0.720

Overall, these results show that registering atlases that have been selected by manifold learning (i.e.

selection in the lower-dimensional space) produces accurate and robust segmentation in the framework

of multi-atlas based segmentation and gives better results compared to atlas selection without manifold

learning (i.e. selection in the high-dimensional space). Also, given this data set of atlases, Locally Linear

Embedding gives significantly better results than Isomap and Laplacian Eigenmaps.

3.5.2 Results from method validation

I use Locally Linear Embedding with the optimal parameters found in §3.5.1 to generate automatic

segmentation of the 30 ADNI subjects. The mean (SD) Dice’s similarity indexes of the left hippocampus

segmentations of the baseline ADNI images are 0.887 (0.020) for controls, 0.886 (0.025) for MCI, 0.878

(0.038) for AD and 0.883 (0.028) across the three groups. These are summarized in Figure 3.4. The

difference in accuracy compared to the previous experiment can be explained by the fact that the atlases

and the 30 ADNI subjects belong to different data sets. Also the high shape variability and the possible

presence of cysts in the hippocampus can explain lower scores in AD subjects. Table 3.5 shows the means

(SD) of the manual and automated hippocampal volumes. The mean (SD) of differences in the manual

and automated hippocampal volumes by baseline diagnostic group are -111 (168) mm3 for controls, -3

(155) mm3 for MCI, and -24 (130) mm3 for AD subjects with automated volumes higher than manual

volumes in all the three groups. Overall, the mean (SD) of differences in the manual and automated

hippocampal volumes is -45 (154) mm3. I also calculate the effect size ESAD = (µAD−µC)/σAD and

ESMCI = (µMCI − µC)/σMCI in Table 3.6, where µC , µMCI , µAD are the average volumes in the

control, MCI and AD groups respectively, and σMCI , σAD are the standard deviations in the MCI and

AD groups respectively.

3.6 Conclusions
I compared Isomap, Locally Linear Embedding and Laplacian Eigenmaps for the selection of atlases to

use in multi-atlas segmentation of the hippocampus of normal controls and patients with Alzheimer’s

disease in MR images. I found that Locally Linear Embedding generated the best hippocampal seg-

mentation (DS = 0.9077) on a leave-one-out experiment using this data set of 110 atlases. The mean

volumes and SDs of the generated segmentations were similar to those produced using manual segmen-



3.6. Conclusions 64

Control MCI AD
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

D
ic

e 
S

im
ila

rit
y 

C
oe

ffi
ci

en
t

Figure 3.4: Average Dice’s similarity index for NC, MCI and AD group obtained by fusing top 7 atlases with
STAPLE. Atlases were selected with manifold learning.

tation. Overall, the mean difference between my automated volumes and the manual measurements

was 7.5 mm3 or around 0.01% of the mean of all volumes. I found good accuracy of my method

on unseen data, achieving a mean Dice’s similarity index of 0.883 (0.028) when comparing the auto-

mated and manual segmentations of a set of 30 subjects (10 AD, 10 MCI and 10 controls). Overall, the

mean (SD) of differences in the manual and automated hippocampal volumes was 45 (154) mm3 with

manual<automated.

My results are consistent with those in Awate et al. (2012). They found that large number of kd-

nearest neighbours leads to higher Dice’s similarity index for large database size M and that Dice’s

similarity index decreases as kd approaches the value of M. In this study, the Dice’s similarity index

quickly rises to a maximum when the number of kd-nearest neighbours increases for all the manifold

learning techniques. The Dice’s similarity index then gradually declines as the number of kd-nearest

neighbours increases.

Not only is the choice of manifold learning important but also the parameters used to compute the

embedding. For instance, most studies have represented the embedding with 2 or 3 dimensions as it

enables spacial visualization of the embedding. However the optimal embedding could have been of

higher dimensions. Indeed, in this study, I found that the best results arose when using 11 dimensions.

Also all manifold learning techniques presented in this chapter require the choice of a neighbourhood

size either for the calculation of the geodesic distance in Isomap, or reconstructing a data point with

its closest points in Locally Linear Embedding or Laplacian Eigenmaps. The choice of the optimal

dimension and best parameters is often made empirically.
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The results showed that selection of atlases with manifold learning is beneficial in the framework of

multi-atlas based segmentation. The optimal accuracy can be found by fine tuning the manifold learning

process. It also turned out that this atlas data set of hippocampi can be described by 3 main modes of

variation regardless of the manifold learning technique used.

I found that Locally Linear Embedding gave best results for this data set of the hippocampus but

it might not yield optimum results for a different anatomical structure. There is no consensus on which

manifold learning technique to use for a given data set. A legitimate question that arises is which mani-

fold learning algorithm is best suited for which data set. As demonstrated in this study, different manifold

learning techniques produce different low-dimensional embeddings even for the same data set. This can

be explained by the fact that the cost function to optimize associated with a manifold learning technique

differs from one method to another.

The lower Dice’s similarity index obtained when segmenting the 10 AD subjects from the ADNI

data may also illustrate the issue of manifold sampling. Since the manifold is directly learned from

points (i.e. images) in the data set, the sampling of the manifold is highly correlated with the density of

points in the high-dimensional space. For example, if certain areas in the high-dimensional space are too

sparse, the resulting manifold is likely to be a poor approximation of the true manifold structure. Since

the atlas data set did not contain any MCI subjects, the manifold derived from this atlas data set is not

representative of a population containing NC, MCI and AD subjects. It would have been preferable to

derive a manifold from NC only subjects in the atlas data set to segment the 10 NC from the ADNI data

set, and similarly for the 10 AD in the ADNI data set.

An important aspect in manifold learning is the metric used to relate pairs of images in the high-

dimensional space. The most commonly used metrics are based on voxel intensity such as the Euclidean

distance, cross correlation or mutual information. Similarly to Gerber et al. (2010) and Hamm et al.

(2010), I used a metric derived from non-rigid transformation. In theory, the metric used should reflect

the information relating pairs of images (Pless, 2004; Souvenir and Pless, 2005). However, there is cur-

rently no research investigating the influence of the metric on the resulting embedding. In the future, I

am planning to compare the effects of several metrics such as the geometric median and the geodesic es-

timation proposed by Fletcher et al. (2009) and Avants and Gee (2004) respectively on low-dimensional

embeddings.

I have obtained one of the best accuracies reported to date for automated hippocampal segmentation

when compared with gold standard manual segmentations from a set of 30 randomly chosen subjects (10

AD, 10 MCI and 10 controls) from ADNI. My Dice’s similarity index is equal to 0.88 with the previous

highest Dice’s similarity indexes (N=number of hippocampi in the study) being 0.86 (N=14) (Fischl

et al., 2002), 0.83 (N=60) (Heckemann et al., 2006a), 0.81 (N=100) (Pohl et al., 2007), 0.86 (N=54)

(Barnes et al., 2008b), 0.87 (N=30) (Chupin et al., 2008), 0.88 (N=5) (Gousias et al., 2008) (from a

cohort of 2 year old children), 0.86 (N=40) (Morra et al., 2008), 0.85 (N=30) (Powell et al., 2008),

0.86 (N=40) (van der Lijn et al., 2008), 0.83 (N=550) (Aljabar et al., 2009), 0.89 (N=160) (Collins

and Pruessner, 2010), 0.89 (N=30) (Leung et al., 2010), 0.89 (N=120) (Lötjönen et al., 2010) and 0.85
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(N=364) (Wolz et al., 2010a). Our intra-rater variability corresponds to a Dice’s similarity index of 0.96.

Comparing this to the results from using my automatic method with different training and test data (0.88)

suggests that the method has not been over-trained, and that there is potential to improve it further.

Overall, my technique is most similar to that reported by Wolz et al. (2010a). However it fundamen-

tally differs in the following ways: (i) Wolz et al. (2010a) used a similarity measure derived from voxel

intensities, whereas I used a metric derived from registration. (ii) I embedded target images using the

out-of sample extension instead of embedding all images in a single manifold. This method effectively

scales with the number of atlases and not the number of images to segment. (iii) I used STAPLE as a

fusion method, whereas statistical voxel classification and graph cuts was used in Wolz et al. (2010a).

I developed a suitable method for segmenting large data sets by extending the manifold with an

out-of-sample image. Indeed, in my method: (i) the low-dimensional manifold learned from the space

spanned by the set of atlases, (ii) the average atlas M and (iii) the registrations between the atlases and

M are precomputed and stored, thus making my method very computationally efficient. I only need to

perform one non-rigid registration between M and a new unseen target image x to select its most similar

images from the atlases. This method is therefore scalable and extremely computationally efficient,

making it suitable for segmenting large data sets and for clinical use.

3.7 Summary
Several manifold learning techniques have been applied to various datasets. But the key question of

which manifold learning and what parameters to choose for a given dataset remains unanswered. In

many cases, it is not possible to predict how a manifold learning algorithm will perform for a given

dataset. When using manifold learning for atlas selection in the framework of atlas-based segmentation,

inaccuracy in segmentation can come from multiple sources including image registration, the label fusion

technique used or the atlas selection by the manifold learning technique. It is therefore important to limit

the impact of manifold learning in contributing to segmentation errors. In this chapter, 3 manifold

learning techniques were trained and tuned to segment a dataset of hippocampus. The same image

registration and label fusion algorithm was used. LLE was found to perform best on the dataset of

hippocampus. As a result, this manifold learning is subsequently chosen to segment structures at risk in

CT images in Chapter 4.
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Chapter 4

Validation of clinical acceptability of

atlas-based segmentation for the delineation of

organs at risk in head and neck cancer

4.1 Introduction
Intensity-modulated radiotherapy (IMRT) enables normal tissue sparing by allowing better conformal

dose distribution in head and neck cancer tissue. This technology requires the accurate delineation of

several target volumes (TVs) and surrounding organs at risk (OARs). This delineation is typically per-

formed manually by trained experts on computed tomography (CT) or magnetic resonance (MR) images

and sometimes complemented with functional imaging techniques such as positron emission tomogra-

phy (PET) (Kruser et al., 2009; Newbold et al., 2006). This process may need to be repeated multiple

times during radiotherapy treatment to accommodate to tumor response and physiological changes in the

patient.

In practice, manual contouring is time-consuming and labor intensive, especially for large TVs

and irregular OARs. It is also subject to large inter-rater variability (Hong et al., 2004; Jeanneret-Sozzi

et al., 2006), despite universally accepted delineation guidelines (Grégoire et al., 2006, 2003; Sjöberg

et al., 2013). Mean volume variations of up to 50% were reported in parotid delineation across three

radiation oncologists on CT images (Geets et al., 2005). Further investigations showed that the effects

of inter-rater variability in delineating OARs has a significant dosimetric impact (Nelms et al., 2012). In

addition, the range of inter-rater variability has been found to be greater in some cases than errors due to

positioning and organ motion (Weiss and Hess, 2003). Consequently, the development of accurate and

reproducible automatic segmentation method is crucial to allow clinicians to focus on other aspects of

patients treatment.

Recently, automatic atlas-based segmentation methods have shown promising results in segmenting

head and neck CT images (Stapleford et al., 2010; Young et al., 2011). Different methods have been

developed based on either a single-patient atlas (Commowick and Malandain, 2007), a population-based

average atlas (Commowick et al., 2008), or multiple atlases (Teguh et al., 2011). Multi-atlas methods

have been shown to yield better results than single atlas methods (Sjöberg et al., 2013; Teguh et al.,
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2011). For the fusion of multiple atlases, the ”Simultaneous Truth and Performance Level Estimation”

(STAPLE) algorithm (Warfield et al., 2004) has been used in several studies to generate contours in the

head and neck region (Han et al., 2008; Stapleford et al., 2010; Teguh et al., 2011). Since the introduction

of the original STAPLE algorithm, other segmentation methods that build upon it have been proposed

to take into account the similarity between the atlases and the image to segment. In particular, Cardoso

et al. (2013) developed the ”Similarity and Truth Estimation for Propagated Segmentations” (STEPS)

algorithm. In STEPS, atlases are locally ranked based on their similarity with the image to segment

using the locally normalized cross-correlation. For a local region to segment, only the top ranked atlases

for that region are used during the fusion process. In contrast, all atlases carry the same global weight in

STAPLE. STEPS has previously been validated on brain structure segmentation (Irani et al., 2013; Ma

et al., 2014), and has been shown to perform better than STAPLE. This is is line with the fact that local

fusion strategies outperform global methods (Artaechevarria et al., 2009).

A standard evaluation of accuracy has been the direct comparison of manual and automatic seg-

mentations using overlap measures such as the Dice similarity coefficient (DSC) (Dice, 1945). However,

the accuracy of automatic methods as measured this way is limited by the degree of inter-rater variability

in manual contouring. In the presence of such variability, even an algorithm that performs as well as

an expert can not be expected to achieve total agreement with manual segmentations. Furthermore, it is

possible that an automatic segmentation does not resemble the gold standard, but is still acceptable for

use in radiotherapy planning. This judgment can not reliably be made based on overlap measures, and

an expert rater decision is required.

Automated methods can reduce physician contouring time by up to 30-40% as seen in studies of

head and neck cancer (Sjöberg et al., 2013), and also reduce the inherent inter-rater variability in vol-

ume delineation (Stapleford et al., 2010). The improvement in time and consistency are valuable only

if segmentation accuracy is not undermined. Assessing the accuracy of automatic segmentation is a

challenging task and manual editing is usually required to achieve clinically acceptable results (Staple-

ford et al., 2010; Young et al., 2011). Nevertheless, the workload of manual editing can be significantly

shorter than manual contouring (Sjöberg et al., 2013).

In this study, I compare STAPLE against STEPS in producing accurate segmentations for radiother-

apy planning. Both algorithms are used to segment the following OARs in head and neck cancer: the

brainstem, the spinal canal, the left and right parotids, the optic chiasm, and the eyes. The accuracy of

both algorithms was measured using the Dice similarity coefficient (DSC) (Dice, 1945). In addition to

accuracy, I measure the clinical acceptability of each automatic method. To account for the variability in

overlap measures, manual contours and automatic segmentations produced by STAPLE and STEPS were

graded on a 3-point scale for clinical acceptability in a blind experiment by 3 distinct trained physicians.

The comparison through blindly obtained grades of manual and automatic segmentations represents a

novel approach for their evaluation. Traditional evaluation has been to directly compare manual and

automatic segmentations using the DSC. Although a high DSC should guarantee clinical acceptability,

a lower DSC does not necessarily mean that an automatic segmentation is not clinically useful. To our
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knowledge, methods classifying segmentations for clinical acceptability on a point scale by expert raters

have not been published before. Time gain by using automatic segmentation was also assessed.

4.2 Related publications
• Hoang Duc A.K., Eminowicz G., Mendes R., Wong S.L., McClelland J., Modat M., Cardoso

M.J., Mendelson A.F., Veiga C., Kadir T. and Ourselin S.: Validation of clinical acceptability of

an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.

Medical Physics. In press.

4.3 Materials and methods

4.3.1 Overview

First, 6 OARs were delineated by two radiation oncologists in a dataset of 100 patients with head and

neck cancer on computed tomography (CT) images. Each patient in the dataset was automatically seg-

mented with both the STAPLE and STEPS algorithms using those manual contours. DSC was then

used to measure the accuracy of the automatic segmentations. Second, 3 separate and distinct trained

physicians graded the manual and automatic segmentations generated by both methods into one of the

following 3 grades in a blind experiment: clinically acceptable without modification, fulfilling universal

delineation guidelines (Cefaro et al., 2013) for radiotherapy planning (grade A), reasonably acceptable

for clinical practice upon manual editing (grade B) and not acceptable (grade C). DSC for the STEPS

algorithm and for each grade was then calculated. Last, STEPS segmentations graded B were selected

and given to one of the 3 physicians who manually edited them to grade A. Editing time were recorded.

4.3.2 Atlas dataset

The atlas dataset consisted of N = 100 planning CT images of patients with different diagnoses of head

and neck cancer. These were cases treated with IMRT at the radiotherapy department for any head

and neck cancer diagnosis (squamous cell cancer and adenocarcinoma), including post-operative and

primary radiotherapy with diagnoses including pharyngeal, laryngeal, oral cavity, unknown primary and

maxillary sinus cancer. Staging ranged from T2N0M0 to T4N3M0.

Each CT image was acquired using a General Electric RT CT scanner and was composed of 100 to

205 slices (2.5mm thick) containing 512 x 512 pixels each. All patients were scanned head-first supine

with their head blocked by an anatomical cushion and an individual thermoplastic mask. Our study

involved 100 patients: a first radiation oncologist contoured 43 patients, and a second distinct radiation

oncologist contoured the remaining 57 patients. For each patient, six OARs in the head and neck region

were manually contoured for radiotherapy purposes. This included the brainstem, the spinal cord, the

parotids (left/right), the optic chiasm, and the eyes. The eyes volume comprises the left and right side

of the orbits, lenses and optic nerves. This grouping was deliberate. Since those structures are small,

spreading only a couple of axial slices, and are generally delineated successively one side after the other,

it was coherent to group them under a single label. Also, this was done to align the time scoring of the

eyes with the time scoring of the other OARs (i.e. brainstem, the spinal cord, the parotids (left/right),
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the optic chiasm). Some traditional OARs (i.e. lymph nodes, mandible) used in head and neck planning

were not investigated. Indeed, not all traditional OAR segmentations were available for all patients. In

a large amount of cases, the lymph nodes (either left or right), the mandible or the vocal cord were not

available to us for this study. As a result, we only considered the OARs that were available for every

patient which were the brainstem, the spinal canal, the left and right parotids, the optic chiasm, and the

eyes.

4.3.3 Atlas-based segmentation

A registration algorithm is used to create automatic segmentations of regions of interest for a new im-

age by transforming existing segmentations of the corresponding structures in existing images. Those

automatic segmentations are then combined into a single consensus using a fusion algorithm.

4.3.3.1 Registration algorithm

A leave-one-out experiment was used in which each patient (referred to as a target) in the dataset was

automatically segmented using the remaining atlases. A registration algorithm (Modat et al., 2010) was

used to deform the atlases onto the target image space. The target image space is defined as the space

of the patient to segment. The manual contours were then mapped onto the target using the resulting

transformation from registration and fused with either the STAPLE or STEPS algorithm to yield esti-

mated segmentations. The registration first determined an affine registration using translation, rotation

and scaling. The affine registration used a symmetric approach of the block-matching algorithm devel-

oped by (Ourselin et al., 2001). A multi-level non-rigid registration step using free-form deformations

with a cubic B-spline control point parameterization (Rueckert et al., 1999) was subsequently applied.

The locally normalized cross-correlation was used as a similarity measure. The control point spacing

was 5 voxels in all directions and a bending energy penalty term was used to regularize the deformation.

The time to perform affine and non-rigid atlas registration onto a patient target image is about 45 min

using a regular CPU.

4.3.3.2 Fusion using the STAPLE and STEPS algorithms

The STAPLE and STEPS algorithms are both based on an expectation-maximization (EM) framework.

The framework starts with computing an estimate of the ground truth using a simple segmentation

method. Based on this initial guess, it is possible to calculate the performance of each individual la-

bel. In the expectation step (E-step), labels are combined to estimate the true segmentation depending

on their performance. In the maximization step (M-step), given an estimate of the true segmentation,

the performance values of each labels are re-assessed and is maximized. In general, the performance

is dependent on certain parameters and the M-step is used to find the parameters which maximize the

performance of each label, while in the E-step, the estimate of the true segmentation is improved based

on these parameters. In STAPLE, each segmentation is weighted globally depending upon their esti-

mated performance level in the E-step and the sensitivity and specificity of each label is calculated in

the M-step. In STEPS, the sensitivity and specificity is only calculated in areas where each classifier is

considered an expert by the LNCC ranking strategy. This results in a 2 step performance estimation that
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decouples the two sources of error: one based on the LNCC image similarity metric observation char-

acterizing the non uniform registration accuracy and shape differences, and the other step characterizing

the specificity and sensitivity of each classifier when compared with the consensus classification. Due

to the local nature and smoothness of the metric, the similarity between the images is described on a

smooth voxel by voxel basis, enabling a voxel by voxel ranking with reduced discontinuity effect. The

raw HU units were used to compute the LNCC metric.

When a dataset of atlases is available, it is best to select the most similar atlases to the target when

using STAPLE rather than using the whole dataset (Aljabar et al., 2009; Leung et al., 2010). To apply

STAPLE in this study, I followed the method in Hoang Duc et al. (2013) based on manifold learning for

atlas selection as the method showed consistently good results in selecting atlases. In Hoang Duc et al.

(2013), three dimensionality reduction techniques (Isomap, Locally Linear Embedding and Laplacian

Eigenmaps) were compared for the selection of atlases to use in multi-atlas segmentation. This study

also investigated the optimal number of atlases to fuse for each technique. Optimal results were obtained

by choosing the best 7 atlases using locally linear embedding. Therefor, for each target, the best 7 atlases

where selected using the locally linear embedding method (Roweis and Saul, 2000). In contrast, STEPS

does not require an explicit atlas selection as the algorithm already integrates a local ranking scheme.

In this study, the whole dataset was registered to the target. Once all registrations are done, the top 7

ranked registered atlases for each local region (i.e. a patch of 5 × 5 voxels) to segment were used in

the fusion process. As a result, STEPS does not require an atlas selection strategy but more registrations

need to be performed than in STAPLE. Indeed, STEPS requires as many registrations as the size of the

atlas dataset. The time to perform atlas fusion is about 5 min using a regular CPU. So total time to obtain

an automatic segmentation (registration and fusion) is about 50 min.

4.3.4 Evaluation

The first objective was to compare the STAPLE against the STEPS algorithm in producing accurate

segmentations. DSC between manual contouring and the two automatic segmentation methods was

reported. It is defined as D(U, V ) = 2|U ∩ V |/(|U | + |V |), where |U | (resp. |V |) is the number of

voxels in the automated (resp. manual) region. Its value ranges from 0 to 1, where 0 means no overlap,

and 1 signifies a perfect match.

4.3.5 Segmentation grading

The second objective was to assess whether the STAPLE and STEPS algorithms could produce segmen-

tations as clinically relevant as manual contouring. All segmentations were imported into a treatment

planning system (Varian Eclipse version 11) and graded by a trained physician. Three distinct physi-

cians, with the same level of expertise as the two radiation oncologists, graded in a blind experiment

manual and automatic segmentations using one of the following 3 grades:

• Grade A: the segmentation is clinically acceptable and satisfies universal OAR delineation guide-

lines (Cefaro et al., 2013) and can be used as created for radiotherapy planning.

• Grade B: the segmentation is reasonably acceptable but needs some manual editing. Some contour
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lines need to be corrected to meet universal guidelines.

• Grade C: the segmentation does not meet universal guidelines. Some slices show gross mis-

delineation that cannot be attributed to segmentation variability.

On this scale, grade A is considered higher than grade B, and grade B higher than grade C. The 3

distinct physicians graded manual and automatic segmentations in a random order. To reduce bias from

assessing the same structure multiple times, associated automatic and manual segmentations were graded

at least 1 week apart. The first physician graded the 6 OARs of 100 patients. Due to time constraint, the

second and third physicians could only grade the 6 OARs of 50 and 30 patients respectively. Comparison

between grades of manual and automatic segmentations by the 3 trained physicians is used as an indica-

tor of clinical acceptability. Although radiation oncologists contours were graded by 3 distinct trained

physicians, this does not imply that one expert rater was better than another. A total of 1200 automatic

and 600 manual segmentations were graded (1200 = 6 OARs x 100 patients × 2 and 600 = 6 OARs ×

100 patients).

4.3.6 Manual editing time

The third objective was to quantify manual contouring time saved by using the STEPS algorithm. When

patients were originally contoured for radiotherapy treatment, contouring time was not recorded. In

order to estimate this contouring time and to keep manual contouring to an acceptable level, one of the

3 trained physicians re-contoured the OARs of 5 patients and the time was recorded. Those 5 patients

were chosen to be representative of the whole dataset by an external researcher. Time reported for the

eyes volume was the aggregated time to contour the component parts. For each OAR, the physician

was given 15 randomly selected STEPS segmentations graded B and edited them to grade A. Editing

time was recorded. A brush to push in/out the contour lines, freehand and eraser tools were used for

contouring and editing.

4.4 Results

4.4.1 STAPLE vs STEPS

The DSC are reported in Figure 4.1. Significant improvements can be seen when using the STEPS

algorithm on large structures such as the brainstem, spinal canal and left/right parotid compare to the

STAPLE algorithm. Using a Wilcoxon rank-sum test, STEPS segmentations yielded significantly higher

DSC than STAPLE segmentations (all p < 0.001) for those structures. For smaller structures such as

optic chiasm and the eyes, the difference are not significantly different (p > 0.300 and p > 0.170). The

DSC for those structures are significantly lower compare to larger ones. This can be explained by their

size, where even small voxel mis-classification in the automatic segmentation will result in large DSC

discrepancy. Figure 4.2 shows some examples of manual, STEPS and STAPLE segmentations of the

brainstem, the spinal canal, and the parotids (left/right). The clinical acceptability of our method could

not have been reliably determined with the DSC, and verification by means of separate trained physicians

was required.
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Figure 4.1: Dice similarity coefficient of the STEPS (green) and STAPLE (blue) algorithm against manual contour-
ing.

Figure 4.2: Examples of manual (blue), STEPS (red), and STAPLE (green) segmentations of the brainstem, spinal
canal and parotids (left/right).

Brainstem   Spinal C. Parotid L. Parotid R.  Optic C.           Eyes
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4.4.2 Grading

Results of grading by the 3 trained physicians are shown in Figure 4.3. A surprising number of manual

contours for the eyes and optic chiasm were graded B and C, corresponding to high inter-rater variability.

This is consistent across the 3 trained physicians. This may be due to the poor contrast of those areas

in CT images. Manual and STEPS segmentations of the parotids (left/right) and the optic chiasm were

given similar grades by 2 trained physicians. The third physician, except for the left parotid, drew similar

conclusion. When similar grades where given, a Wilcoxon signed-rank test did not show any significant

difference for those OARs (all p > 0.100). For the brainstem and the spinal canal, STEPS segmentations

were overall graded similarly as well. In some cases, STEPS segmentations of those OARs were graded

higher than manual segmentation and those differences were statistically significant (p < 0.010). In

contrast, STEPS segmentations the eyes were graded significantly lower (p < 0.005).

Overall, STAPLE segmentations were graded significantly lower than both manual and STEPS

segmentations (all p < 0.01), except for the optic chiasm and the eyes (p > 0.273 and p > 0.382).

Figure 4.4 shows the grade distribution of STEPS, which gave the best results out of the two auto-

matic methods, and manual segmentations. Only distribution from the trained physician who graded all

100 patients is shown. It can be noted that a substantial number of STEPS segmentations of the spinal

canal (27 cases) and the eyes (30 cases) were graded lower than their associated manual contours, and I

offer some explanation. The well defined boundaries of the spinal canal make it one of the easier OARs

to segment for an expert rater, but atlas-based methods were seen to suffer from two key problems there.

High neck flexion confounded registration in 10 cases, and discrepancies in the length of the lower part

segmented in the atlas set (vertebrae below C1) caused failure in 17 more. No atlas-based method can

overcome such discrepancies, and they must be fixed by standards in the templates used. For the eyes,

since the structures involved are small, a slight deviation in the automatic segmentation will inevitably

result in some manual editing being required.

Across all OARs, STEPS was observed to outperform STAPLE and produce segmentations graded

as well as or better than manual contours with a rate of 83%. A one sided confidence interval based on

the t-statistic places the true rate above 80% with 95% confidence.

4.4.3 Dice similarity coefficient and clinical acceptability

To examine the relationship between acquired grades and DSC, I calculated the DSC between clinically

acceptable (grade A) manual contours only and the STEPS segmentations graded A, B and C. Only the

segmentations from the physician who graded all 100 patients are examined. Results are presented in

Figure 4.5. Using a Wilcoxon rank-sum test, STEPS segmentations graded A did not yield significantly

higher DSC than STEPS segmentations graded B. The median DSC was also seen to vary significantly

between OARs, for instance, the median DSC of the left/right parotids were significantly different from

all other regions (all p < 0.020). Therefore, it may not be meaningful to compare segmentation quality

between different regions using this measure. For all OARs, DSC of STEPS segmentations graded C

were significantly lower (all p < 0.005) compared to segmentations graded A and B. Since STEPS

segmentations graded A and B yielded similar DSC, the clinical acceptability of my method could not
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Figure 4.3: Grading of manual and automatic segmentations by 3 distinct trained physicians. Each graph represents
grading done by a physician. For each OAR: STEPS = left bar, STAPLE = middle bar, Manual = right
bar. Grade A: clinically acceptable, no editing required. Grade B: reasonably acceptable, some editing
required. Grade C: not acceptable.

Brainstem Spinal C. Parotid L. Parotid R. Optic C. Eyes

Brainstem Spinal C. Parotid L. Parotid R. Optic C. Eyes

Brainstem Spinal C. Parotid L. Parotid R. Optic C. Eyes
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Figure 4.4: Grade distribution of automatic and associated manual segmentations. STEPS > Man.: STEPS seg-
mentation has a higher grade than its associated manual contour. STEPS = Man.: STEPS and manual
segmentations have the same grade. STEPS < Man.: STEPS segmentation has a lower grade than its
associated manual contour.

Auto. without editing Auto. with editing
vs. Man scratch vs. Man scratch

Brainstem 95.16%, p < 10−3 69.46%, p < 10−3

Spinal Canal 91.77%, p < 10−3 64.50%, p < 0.005
Parotid Left 92.53%, p < 10−3 67.42%, p < 10−3

Parotid Right 94.58%, p < 10−3 70.10%, p < 10−3

Optic Chiasm 92.43%, p < 10−3 66.80%, p < 10−3

Eyes 95.28%, p < 0.01 28.26%, p < 0.005

Table 4.1: Relative gain (%) in segmentation time. PTvalues are the results of the Wilcoxon rankTsum test.

have been reliably determined with DSC, and verification by means of a separate trained physician was

required.

4.4.4 Time scoring

Figure 4.6 shows the time taken to obtain a grade A result using the STEPS algorithm with manual

editing, without it, and using fully manual contouring. Using the Wilcoxon rank-sum test, these results

demonstrate that STEPS yielded significant time saving, even when automatic segmentation needed

editing. Time saved is relatively lower for the eyes, these being a grouping of 6 different structures, the

trained physician spent a significant amount of time switching between editing tools, which added to the

effective editing time. Time gained and p-values are reported in Table 1. Time gained is calculated using

the following ratio: (grading time + editing time) / (manual contouring time) if the automatic segmenta-

tion needed editing, and (grading time) / (manual contouring time) if the automatic segmentation didnt

need editing.

Brainstem Spinal Canal Parotid L. Parotid R. Optic C. Eyes
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Figure 4.5: Dice similarity coefficient of STEPS segmentations graded A (green), graded B (blue) and grade C
(black) versus manual contours graded A. Only the segmentations from the physician who graded all
100 patients are shown.
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Figure 4.6: Time in seconds to obtain a grade A segmentation using STEPS algorithm without (green) or with (blue)
manual editing and with fully manual contouring (red).
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4.5 Discussion

In this study, the STAPLE and STEPS algorithms used multiple manual contours to generate the most

likely segmentation using information from the radiation oncologists. Inter-rater variability is one of the

most challenging issues in IMRT and is a motivation for the development of methods that improve con-

sistency. The results showed the advantages of STEPS over STAPLE in segmenting OARs in head and

neck cancer. In summary, DSC from STEPS were higher compared to DSC from STAPLE for the brain-

stem, spinal canal and left/right parotids. This showed that the local combination strategy introduced in

STEPS outperform the global fusion method in STAPLE. In addition, STEPS produced segmentations

that were as clinically acceptable as manual contouring for structures such as the brainstem, spinal canal,

parotids (left/right), and optic chiasm. In contrast, STEPS segmentation grades of the eyes were lower

than grades from manual contouring. DSC reported in this study compare well with DSC reported in

the literature (0.78 and 079 for the brainstem and parotids gland in (Teguh et al., 2011), 0.75 and 0.72

in (Daisne and Blumhofer, 2013)). Across all OARs, I found a reduction in time of 61% and 93% on

average when STEPS segmentation did and did not respectively require manual editing. This time gain

was superior to numbers previously reported in the literature (40% in (Daisne and Blumhofer, 2013),

26% in (Stapleford et al., 2010), and 47% in (Chao et al., 2007)).

The better results generated by STEPS over STAPLE are in line with findings in the literature.

In Cardoso et al. (2013) , the robustness and accuracy of STEPS were evaluated on a database of cross-

sectional and longitudinal brain MRI scans. In that study, STEPS performed better that STAPLE. STEPS

has also been successfully used in other papers Irani et al. (2013); Ma et al. (2014) to segment MR im-

ages. However only our studies and the one from Cardoso et al. (2013) directly compared the perfor-

mance of STEPS and STAPLE and further investigation will need to be done across various range of

image modalities to check if this statement holds.

A standard evaluation approach in radiotherapy has been to directly compare manual and automatic

segmentations using the DSC. However this study demonstrated that the DSC does not reliably reflect

clinical acceptability of an automatic segmentation. Although a high DSC should mean clinical accept-

ability, a lower DSC does not necessarily mean that an automatic segmentation is not clinically useful. It

may then be counterproductive to use a particular minimum DSC as a threshold for clinical acceptance

of an automatic method, even if this is calibrated for a particular OAR.

Atlas-based segmentation is highly dependent on the similarity between the underlying atlas and

the patient (Rohlfing et al., 2005). In this study, the failure in delineating the spinal canal in some cases

could be due to multiple factors: a) bad performance of the registration algorithm around that area, b)

lack of images in the atlas dataset with the same overall spinal morphology, c) labeling discrepancies in

the manual segmentation of the spinal canal (i.e. discrepancies in the length of the lower part segmented

in the atlas set (vertebrae below C1)), and d) patient head and neck position in the scanner when images

are acquired. Different segmentation strategies based on either a single patient atlas, a population-based

average atlas, or multiple atlases have intrinsic limitations due to large deformations of normal anatomy

that cannot be corrected with registration algorithms. Importantly, when thinking about applying auto-
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mated segmentation, clinical concern arises due to abnormal anatomy in patients developing head and

neck cancer. My dataset included a variety of cases including some with bulky tumors, and results with

our method were still comparable to manual contouring for the brainstem, spinal canal, left/right parotid

and optic chiasm across the cohort. In any case, automatic segmentations should always be checked and

corrected if necessary by an expert before planning.

Starting contouring from an existing template (either automatic or manual) may have influenced the

trained physicians perception of gold standard. In general, relatively minor editing to the segmentations

was performed and the lack of modifications may be attributed to the fact that the segmentations closely

resembled physicians definition of gold standard. However, this scenario represents the common clinical

situation of verifying contours from less experienced clinicians, where relatively minor modifications

are usually made overall.

Finally, there are some limitations to this study. Limitations include the small number of OARs

edited and manually contoured to measure time cost and the lack of assessment of intra-rater variability.

However, these limitations should not affect the conclusion drawn as the significant p-values are all

below 0.01 despite a wide confidence interval. In addition, this study did not include TVs. Multi-

modality imaging is often used to improve the visibility of TVs by co-registering CT with MR or PET

images. Unfortunately, I did not have access to any imaging modalities other than CT. I note that atlas-

based methods perform well when the shape of the target is well represented in the dataset of atlases,

which is rarely the case in radiotherapy as tumors have no predefined shape.

4.6 Conclusions
The STEPS algorithm shows better performance than the STAPLE algorithm in segmenting OARs for

radiotherapy of the head and neck. It is clinically useful and can considerably save time for clinicians in

contouring OARs for radiotherapy planning. Even though automatically generated segmentations should

always be checked and approved by an expert before radiotherapy planning, the STEPS segmentation

method was found to be comparable to manual contouring for the brainstem, spinal canal and left/right

parotid.
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Chapter 5

Generating synthetic CT images from MR

scans for radiotherapy treatment of the head

and neck

5.1 Introduction
The calculation of the dose distribution is a critical step in radiotherapy planning as the irradiation of tu-

mour tissue needs to be maximized while the irradiation to organs at risks (OARs) needs to be minimized

during treatment. In particular, the head and neck region contains a large number of OARs, and therefore

requires a high level of accuracy in dose calculation. This calculation requires the knowledge of the linear

attenuation coefficient of irradiated tissues (Hoppe et al., 2010). Tissues with a large attenuation coeffi-

cient quickly attenuate radiation beam, whereas tissues with a small attenuation coefficient are relatively

transparent to the beam. Computed tomography (CT) imaging has been the modality of choice for pro-

viding such information in form of CT numbers expressed in Hounsfield units (HU) (Parker et al., 1979).

HU are defined by the following equation: HUtissue = [(µtissue − µwater)/µwater] × 1000, where µ

is the linear attenuation coefficient of the medium. For example, HUair = −1000, HUwater = 0,

HUtissue ∈ [100, 300] and HUbone > 700. HU values can be converted into relative electron density by

using a look-up table within the treatment planning system. The look-up table can be described by two

linear fits. Figure 5.1 represents a look-up table of CT number against physical density. The calculation

of dose distribution can subsequently be performed with the knowledge of this density (Seco and Evans,

2006).

Recently, radiotherapy planning solely based on magnetic resonance (MR) imaging without the

use of CT imaging has gained popularity. MR imaging provides superior soft tissue contrast which is

beneficial for segmentation in the head and neck region (Evans, 2008). It has been shown that manual

delineations of the parotids on MR scans have higher inter-observer agreement than those on CT scans

(Rasch et al., 1997). Margins added to target volume delineation to account for uncertainties could be

reduced by using MR imaging resulting in less radiation to normal tissues and a reduction in treatment

toxicity (Rasch et al., 1999; Roach III et al., 1996). For instance, in the case of prostate cancer, volume

delineation on MR and CT images were compared by Roach III et al. (1996). The bony anatomy on
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Figure 5.1: A look-up table to convert from CT number to relative electron density used by a treatment planning
system for dose calculation. The look-up table is generally derived from the CT scan of a phantom
containing a number of medium of know density.

the images was matched and the measured prostate volumes compared. The mean prostate volume

was found to be 32% larger on average on CT images. However, MR has yet to replace CT imaging in

clinical practice. Indeed, CT imaging provides higher anatomical accuracy compared to MR imaging, the

latter being subject to geometric distortions caused by magnetic inhomogeneities, non-linear gradients,

susceptibility and chemical shifts (Doran et al., 2005; Stanescu et al., 2010). In addition, MR imaging

does not directly provide electron-density information for dose calculation.

There is no direct mapping between MR intensity and the underlying electron density of a tissue. As

a result, several approaches have been proposed to generate CT-like images and derive electron density

from MR images (Dowling et al., 2012; Karotki et al., 2011; Lee et al., 2003; Uh et al., 2013). Those

CT-like images are commonly referred to as pseudo CT or synthetic CT in the literature. One proposed

method has been to segment MR images into distinctive structures (typically bony structure, soft tissue,

and air) and assign corresponding bulk CT intensities to each structure. Figure 5.2 from Lee et al. (2003)

presents an example of a synthetic CT image generated using bulk assignment. Bulk electron density

assignment has shown dosimetric results similar to those based on electron density provided by real CT

images (Karotki et al., 2011; Lee et al., 2003). State-of-the-art methods use a spatial mapping between

MR and CT images, similar to an atlas-based propagation (Dowling et al., 2012; Uh et al., 2013), to

estimate probable CT intensities at each voxel location of a given MR image. In Dowling et al. (2012),

a single atlas composed of a paired CT/MR image was used to generate a synthetic CT image from a

given target MR image in prostate radiation therapy. The MR atlas was registered to the target MR image

and the resulting deformation was applied to the CT atlas yielding a synthetic CT image. Overall, the

dose distributions calculated on the synthetic CT image were in close agreement with the original doses.

Another approach is to use multiple pairs of CT/MR atlases to create a synthetic CT image by fusing the

deformed CT atlases after registration to the target. In Uh et al. (2013), averaging of voxel intensities

with different number of atlases was used to combine CT atlases of the brain. This study suggested that

synthetic CT images created from multiple deformed atlases are more suitable for treatment planning
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and CT numbers. To create treatment plans on MR, this
information must be assigned. The feasibility of assigning
CT numbers to MR images, and how this affects the dose
distributions, was studied.

Contiguous axial CT scans of four patients with stage
T1b/c or T2a prostate cancer were acquired using a Siemens
Somatom Plus 4 (Siemens Medical Systems, Erlangen,
Germany) with an image matrix size and slice thickness
of 256 £ 256 and 5.0 mm. The pixel size ranged from
1.63 to 1.96 mm. The GTVs (prostate and the base of semi-
nal vesicles) and OARs (rectum and bladder) were
contoured by a radiotherapy oncologist. The GTV and clin-
ical target volume (CTV) were considered equivalent for
prostate cancer treatment. The planning target volume
(PTV) included the GTV plus a 1-cm uniform 3D margin.

This was in the boundaries of the patient set-up measure-
ments according to Nutting et al. and the margins defined by
van Herk et al. and McKenzie et al. [11,13,21].

Using the outlines obtained from the CT image, CT
numbers, calculated from electron-density values were
assigned in two different ways. Firstly, as shown in Fig.
1b, the body was assumed to be homogeneous, i.e. all the
voxels in the body outline were assigned the CT number of
water. An electron-density value of n0 ¼ 3.340 £ 1029 m23

(ICRU Report 46 [9]) is set to 0 HU. The new image data
will be referred to as Iwater and individual dose voxel values
will be referred to as Dwater.

Secondly, a bone1 water bulk-assigned image was
created as follows. The whole bone was manually outlined
on the pelvic region for each CT scan. The average value of
the four patients’ bone CT numbers was found to be 320 HU
(range 270–370 HU), equivalent to electron-density value
n0 ¼ 3:874 £ 1029m23, which is similar to the ICRU value
for whole femur, 3:950 £ 1029m23 (365 HU in VOXEL-
PLAN). The average bone value was then assigned to the
voxels in the bone outlines. The rest of the voxels in the
body were assigned to the water value. This image, as
shown in Fig. 1c, will be referred to as Ibone1water and the
individual dose voxel values as Dbone1water. The average
bone-electron-density-equivalent value of 320 HU was
used instead of the electron-density-equivalent values
given in the ICRU 46 because the large range of bone elec-
tron-density values would require segmenting the bone
outline into different components of bone (cortical bone
and bone marrow). This was not possible since bone cannot
be segmented reliably based on contrast of the images.

Conformal RT treatment was planned on the two density-
assigned images (Iwater and Ibone1water) and the original CT
from which Iwater and Ibone1water were derived. These three
plans that are to be compared will be referred to as Iwater
plan and Ibone1water plan, CT plan. VIRTUOS (VOXEL-
PLAN) treatment planning system was used to plan the
CRT treatment with a prescription dose of 64 Gy to be
delivered to the PTV using three-irregular-fields, one ante-
rior and two wedged lateral beams with angles 0, 90 and
2708, respectively. A 6-mm field margin was used to
account for the dosimetric penumbra of the fields. The
beamweights of the fields were kept the same for all three
plans. Dose distributions were calculated using a pencil-
beam algorithm by Bortfeld et al. with the matrix and
pixel sizes 128 £ 128 and 3.9 mm, respectively [2]. This
dose distribution, determined using the CT data, was
assumed to be the best estimate of the delivered dose distri-
bution.

Dose distribution comparisons between the two density-
assigned images (Iwater and Ibone1water) and original CT were
made using the following methods.

Test 1: the root mean square difference (rms), in Gy, was
calculated for voxels inside known isodose regions of the
CT plan as shown in Eq. (1):

Y.K. Lee et al. / Radiotherapy and Oncology 66 (2003) 203–216 205

Fig. 1. Corresponding slices of (a) CT, (b) water and (c) bone1 water bulk-
assigned images. The bulk-assigned values used were equivalent to water
and average bone value found from four patients. Orange, red, dark blue
and light blue outlines are GTV, PTV, rectum and bladder, respectively.
Yellow and green outlines are of bone and patient outline. The margin on
the GTV appears larger than 1 cm due to the 3D uniform margin growth
from the slice inferior to the slice shown here.

Figure 5.2: Corresponding slices of (a) CT, (b) water and (c) bone and water bulk assigned images. The bulk-
assigned values were equivalent to water and average bone value. Orange, red, dark blue and light blue
outlines are GTV, PTV, rectum and bladder, respectively. Yellow and green outlines are of bone and
patient contour. Figure from Lee et al. (2003).

than those from a single atlas or bulk electron density assignment. Nevertheless, atlas-based methods are

prone to registration uncertainty, and heavily deformed anatomy in patients developing head and neck

cancer increases the risk of registration errors.

In this chapter, the method presented by Burgos et al. (2013) that alleviates the registration uncer-

tainty is used to synthesize an electron density map from a given target MR image. It is based on atlas

propagation with the additional consideration of morphological similarity between patients. This mor-

phological similarity, based on an image similarity measure, is applied so that the more morphologically

the atlases are, the higher the weight they carry in the fusion process (Cardoso et al., 2012). The method

employs aligned CT/MR pairs of images from multiple patients to propagate CT atlas intensities onto

the target MR image in a voxel wise manner. It showed good result in creating an attenuation correction

map for PET/MR scanners (Burgos et al., 2013). Since head and neck data show tremendous variability

across patients, the use of morphological similarity could be highly beneficial during the fusion process.

To the best of my knowledge, using atlas-based propagation for generating a synthetic CT image of
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the head and neck area using morphological similarity represents a novel approach in electron density

mapping for dose calculation.

5.2 Methods

5.2.1 Overview

A synthetic CT image providing electron density information was generated from a target MR image by

deforming pairs of CT/MR atlases onto that target image. First, for each patient in the dataset, the CT

image was aligned to the MR image to create a CT/MR atlas. Second, the MR atlases were registered to

the target MR image. The resulting deformations were then applied to the CT atlases to create multiple

deformed CT images. Third, those CT images, aligned with the target MR, are combined using a fusion

strategy based on a spatially varying weighted averaging and atlas ranking to create a synthetic CT image.

For evaluation, the image similarity between the real and synthetic CT images was compared using the

mean absolute error. In addition, difference in dose distribution was calculated by replacing the real CT

image in the treatment planning system with the synthetic CT image.

5.2.2 Data

The dataset consisted of N = 30 pairs of planning CT and T2 weighted planning MR images of patients

with different diagnoses of oropharyngeal cancer. All patients were diagnosed with stage T2 to T3

tumors. They were sampled from a clinical trial aiming to evaluate the utility of functional magnetic

resonance imaging (diffusion, dynamic contrast enhancement, spectroscopy and blood oxygenation level

dependent contrast) for the detection of residual nodal disease following chemo-radiotherapy to head and

neck squamous cell cancer. Images from both modalities were acquired during the same day. Patients

were placed in a supine position on a rigid couch with their head blocked by an anatomical cushion

during image acquisition. Each CT image was composed of 125 to 170 slices, and each slice contained

512 × 512 voxels. The CT images were acquired on a GE Wide Bore 16 slice system with contrast

injection and an imaging resolution of 0.977 × 0.977 × 2.50 mm. MR images were acquired using

a T2 axial sequence with a Siemens Avanto scanner. They were composed of 60 or 61 slices, with 4

cases containing less than 50 slices. Each MR slice contained 256 × 256 voxels. The image resolution

was 0.703 × 0.703 × 3.30 mm. MR images were corrected for intensity non-uniformity following a

non-parametric non-uniform intensity normalisation procedure (Sled et al., 1998).

5.2.3 CT/MR atlas creation

The method used in this chapter requires the creation of a pair of CT/MR atlas for each patient in the

dataset. CT images in my dataset were acquired for treatment planning. MR images were acquired

for pre-treatment planning. As a result, the field of view (FOV) in CT images included the entire head

and neck region extending up to the superior part of the lungs. In contrast, FOV in MR images only

encompassed the target volume which included the top of the brainstem up to vertebrae C1 or C7. Due

to the acquisition from different imaging modalities, the CT and MR images needed to be aligned to

create a paired CT/MR atlas. An affine followed by a non-rigid cubic B-spline registration (Modat et al.,
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Figure 5.3: Top left: planning CT image. Top right: planning MR image. Bottom left: CT image in the space of
the MR image. Bottom right: CT image overlaid on the MR image.

2010) was applied to align the CT to the MR image. The normalized mutual information (NMI) was used

as a similarity measure along with a control point spacing of 10 mm. All the results from the registration

were assessed visually, and no critical mis-alignement were reported. Figure 5.3 presents an example

of a CT and corresponding MR image. In an ideal situation, the planning CT and MR image would

have been acquired with the same FOV so that the two modalities contained the same or comparable

geometric information. However, using retrospective data, this is unlikely to be possible as there is yet

no clinical reason to acquire a planning MR image with an extended FOV due to time and cost. In

addition, acquisition of larger FOV requires longer acquisition time to obtain the same image resolution,

and is prone to additional artefacts such as patient motion.

5.2.4 Construction of a synthetic CT image

A leave-one-out experiment was performed in which a synthetic CT image was constructed for each

target MR image in the dataset using the remaining atlases. First, all MR atlases are registered to the

target MR image using a symmetric global registration followed by a cubic B-spline parametrised non-
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Figure 5.4: Illustration of CT synthesis for a given MRI image. All the MR images in the atlas dataset are registered
to the target MR image. The CT images in the atlas dataset are then mapped using the same transfor-
mation to the target MR image. A local image similarity measure (S) between the mapped and target
MRIs is converted into weights (W ) to generate the synthetic CT image.

rigid registration, using NMI as a measure of similarity (Modat et al., 2010). A control point spacing

of 5 mm was employed to account for morphological differences in inter-subject registration. Second,

CT atlases were mapped onto the target using the resulted transformation that aligned the subject’s

corresponding MR atlas to the target MR image. Through this process, we obtained a series of paired

CT/MR images aligned to the target MR image.

A synthetic CT was then constructed by combining multiple CT atlases aligned to the target into a

single consensus following the method presented in Burgos et al. (2013). In this method, the intensity

of each synthetic CT voxel is obtained by a locally varying weighted averaging. For a given local

region on the target MR image, local weights are calculated using local similarity between the target

MR image and the MR atlases mapped onto it. Providing that the local image intensity similarity is a

good approximation of the local morphological similarity between patients, it can be assumed that if two

MR images are similar at a certain spatial location, the associated CT images will also be similar at this

location (Cardoso et al., 2012). Figure 5.4 illustrates the process of generating a synthetic CT image.

Details of the label fusion are provided next.

The local similarity measure used was the the convolution-based fast local normalised correlation

coefficient (LNCC) proposed by Cachier et al. (2003). In the following, the target MR image is denoted

by TMRI and its corresponding unknown CT by TCT . For each of the N atlases in the database, the

registered MR and CT images of atlas n are denoted by AMRI
n and ACTn respectively. The LNCC

between TMRI and AMRI
n at voxel ~v is then given by:

LNCCn,~v =
〈TMRI , AMRI

n 〉~v
σ(TMRI)~vσ(AMRI

n )~v
(5.1)

The mean and standard deviation at voxel ~v were calculated using a Gaussian kernel GσG with
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standard deviation σG through convolution:

T~v = [GσG ∗ T ]~v σ(T )~v =

√
T 2

~v − T
2

~v 〈T,A〉~v = T.A~v − T~v ·A~v (5.2)

High LNCC values indicate a better local match between the two MR images. In addition, registered

MR atlases were also ranked using a ranking scheme similar to the one proposed by Yushkevich et al.

(2010) in order to compensate for registration inaccuracies, giving a larger weight to MR atlases better

registered to the target MR image. The LNCC at each voxel were ranked across all images, with the

rank being denoted by Kn~v. The ranks Kn,~v were then converted to weights by applying an exponential

decay function:

Wn,~v = e−βKn,~v (5.3)

with Wn,~v being the weight associated with the nth subject image at voxel ~v, and β is a coefficient influ-

encing the repartition of the weights. Similarly to the label fusion framework suggested by Cardoso et al.

(2012), an estimate of the target CT image can be obtained by a spatially varying weighted averaging.

The weights Wn,~v were used to reconstruct the target CT image TCT at voxel ~v as follows:

TCT~v =

∑N
n=1Wn,~v.A

CT
n,~v∑N

n=1Wn,~v

(5.4)

Based on previous optimization experiments done by Burgos et al. (2013) on MR and CT brain

images, σG and β were set to 3 and 0.5 respectively.

5.3 Evaluation

5.3.1 Synthetic CT accuracy

For each target MR image in the dataset, a synthetic CT image, called SCT , was built using the proposed

method. In addition, the single best MR atlas for each target was selected and used to generate a cor-

responding CT image, called best-atlas CT image BCT . The best atlas was selected based on a global

similarity measure: the normalised cross-correlation (NCC). This measure was computed over the entire

image between each MR atlas mapped onto the target MR image to select the most similar atlas to the

target. The NCC is defined as:

NCCn =
1

V

〈TMRI − TMRI , AMRI
n −AMRI

n 〉
σ(TMRI)σ(AMRI

n )
(5.5)

where T is the mean and σ(T ) the standard deviation of image T .

The intensities of the SCT and theBCT images were compared to the real CT intensitiesRCT . The

metric employed to measure the synthesis error was the mean absolute error, defined as:

MAE(SCT ) =

∑
~v |SCT~v −RCT~v |

V
(5.6)

where V is the number of voxels in the region of interest. This cost function was estimated between the

real CT image and the synthetic/best atlas CT image for every subject in the dataset. Moreover, compar-
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isons of histograms between the real image and the synthetic/best atlas CT images were performed in

order to detect possible bias.

5.3.2 Dose calculation

A dosimetric evaluation was performed to assess the suitability of using the synthetic CT image for dose

calculation. The FOV of the synthetic CT image was the same as the FOV of the MR image. Since the

synthetic CT image is missing some anatomy of the patient, the original CT scan could not have been

replaced by the synthetic CT image in the treatment planning system for dose calculation. As a result,

the original planning CT image was cropped to the same FOV of the MR image and was used as a ground

truth for dose calculation. Doses were calculated for an IMRT plan using Varian Eclipse External Beam

Planning System analytical anisotropic algorithm with a resolution of 2.5 mm. The individual IMRT

plan for which each patient was treated with, including a 9-beam arrangement, monitor units and fluence

maps, was applied. For each patient, dose calculation was estimated based on that individual original

plan. In order to compare the proposed method with the bulk assignement method, a bulk-assigned

CT image BulkCT with a single value corresponding to water (HUwater = 0) assigned inside the

patient body contour and the value of air (HUair = −1000) outside was built. Dose calculation was

then computed on the real (RCT ), synthetic (SCT ) and bulk-assigned (BulkCT ) for comparison. Dose

distribution for each case is referred to as DR, DS and DBulk respectively.

Dose calculation was done on 4 cases chosen to be representative of the dataset. The dose distribu-

tions were compared considering dose differences with a constraint of 2% prescribed dose. In addition,

the dose volume histograms (DVHs) for 4 OARs (brainstem, spinal canal, left parotid, and right parotid)

were computed. DVH is an histogram relating radiation dose to tissue volume. It is routinely used in

clinical practice to assess if the plan is appropriate for the patient, by displaying information of dose

delivered both to volume of interest. DVHs were computed using manual contours. The structures were

delineated by the radiation oncologists as part of clinical practice.

5.4 Results

5.4.1 Comparison between synthetic CT and real CT images

Figure 5.5 shows an example of a synthetic CT image generated with the proposed method and a best

atlas CT image. Overall, the synthetic CT images showed good visual similarities with the real CT

images, especially in vicinity of bony structures. In contrast, the best atlas CT images displayed some

missing anatomy as illustrated in Figure 5.5 due to the difference in field of view between the target

and the best atlas. In addition, the synthetic CT images did not show dental artefacts that could be

observed on the best atlas CT images. This can be explained by the local label fusion which can detect

voxels of dental artefacts as outliers due to their high CT numbers and does not take them into account

during fusion. The difference between the real and synthetic CT images was more pronounced around

bony structures and surfaces between air and tissue. This is possibly due to bone/tissue and air/tissue

interfaces not being precisely registered by the non-rigid transformation.

The MAEs were computed between the synthetic CT/best atlas CT images and the real CT images.
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Figure 5.5: Top left: real CT image (RCT ). Top middle: synthetic CT image (SCT ). Top right: best atlas CT image
(BCT ). SCT shows good visual similarity with RCT , especially in vicinity of bony structures. BCT

can have missing information. Bottom left: real MR image. Bottom right: difference between the real
and synthetic CT image.

The mean (STD) MAE for the synthetic CT method was 131.8 (± 31.5) HU, and 144.9 (± 22.3) HU for

the best atlas method. A paired t-test showed that this difference was significant (p < 10−5). Figure 5.6

shows the distribution of the MAEs.

The average distribution of CT numbers in real, synthetic and best atlas CT images is shown in

Figure 5.7. The synthetic CT images tend to underestimate CT numbers in the range -500 to 0 which

correspond to air/tissue surfaces. This can be explained by the fact that the body contour in the real CT

image is better defined compared to the body contour in the synthetic image.

5.4.2 Evaluation of dose calculated on synthetic CT images

The 4 cases on which dose calculation was done are presented in Figure 5.8. The dose difference between

the synthetic/bulk-assigned CT image and the real CT image for a single case is presented in Figure 5.9.

Overall DS matches DR well, whereas DBulk presents a global overestimation, meaning that more dose

is delivered to tissue when using bulk-assigned CT images compared to real CT images. Compared to

DR,DS was mostly different at the location of air/tissue surfaces. This is again due to the accuracy of the

body contour in the synthetic image compared to the real CT image. The dose similarities were analysed
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Figure 5.6: Boxplot showing the mean absolute error distribution. The central mark is the median and the edges of
the box are the 25th and 75th percentiles. The whiskers extend to the most extreme data points.
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Figure 5.7: Distribution of CT number in real (red), synthetic (blue), and best atlas CT (green) images. Synthetic
CT images tend to underestimate CT numbers in the range -500 to 0 which correspond to air/tissue
surfaces. This can be explained by the fact that the body contour in real CT image is better defined
compared to the body contour in synthetic image.
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Figure 5.8: Dose calculation was done on 4 different patients. For each patient, dose calculation was estimated
based on the individual original IMRT plan. Each row represents a patient. Left column: MR image.
Middle column: real CT image. Left column: synthetic CT image.

Region of interest Method Pass percentage (%)
Treatment FOV DS 92.52 (± 2.62)

DBulk 90.38 (± 6.80)
95% isodose volume DS 98.53 (± 0.92)

DBulk 82.94 (± 12.88)

Table 5.1: Percentage of voxels within the region where the dose difference between DS /DBulk and DR is smaller
than 2% of the prescribed dose.

based on two different anatomical regions: the treatment FOV (i.e the region of the body that receives

10% of the prescribed dose) and the 95% isodose volume (i.e the region of the body that receives 95%

of the prescribed dose). Table 5.1 presents the percentage of voxels within the region where the dose

difference is smaller than 2% of the prescribed dose. For both regions, DS displayed higher similarities

than DBulk when compared to DR.
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Figure 5.9: Absolute dose difference (Gy) between DBulk/DS and DR. Left bulk-assigned CT image. Right
synthetic CT image. More dose is delivered to tissue when using BulkCT compared to RCT .

DVHs of the brainstem, spinal canal, left parotid, and right parotid are presented in Figure 5.10.

DVHs from synthetic CT images agreed with those from real CT images. In constrast, DVHs from bulk

assigned CT images deviated toward higher doses than the other DVHs. This was expected since the

value of water was assigned to the bulk assigned CT images which has a lower CT number than tissues

in real CT images, particularly at bony structures, which would result in less attenuated beams and, in

turn, a higher dose distribution.

5.5 Discussion
MR imaging often provides improved contrast resolution between different types of tissues compared

to CT imaging. Nevertheless, MR imaging is usually not used as a stand-alone in radiotherapy due

to several technical limitations, one of them being the lack of electron density information for dose

calculation. In this study, a novel method is presented for generating a synthetic CT image from an MR

image to obtain an electron density map used for dose calculation. The method relies on an atlas-based

propagation and integrates a morphological similarity measure and an atlas ranking scheme.

Results showed that SCT images had good visual similarities with the RCT images. The MAE

estimated between the SCT and the RCT images is significantly smaller compared to the propagation of

the single best atlas. However, discrepancies between the SCT and the RCT images could be observed

around the bone/tissue and air/tissue interfaces where non-rigid registration in those area was not accu-

rate. Results from dosimetry demonstrated that the SCT images were better than the BulkCT images

showing higher pass percentage for different regions of interest. Dose distribution calculated on SCT

images were in close agreement with the one calculated on RCT . In addition, DVHs of OARs from SCT

closely matched those from RCT . Overall, this study shows promising results for the use of synthetic

CT images in radiotherapy treatment planning.

A potential drawback of atlas-based methods for radiotherapy treatment planning is that image reg-

istration is associated with geometric uncertainties. In this study, registration problems were compen-

sated by the local atlas selection and ranking steps. However, errors associated with atlas deformation

can be significant if severe anatomical abnormalities are present in the target image. If the size of the
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Figure 5.10: DVH for different OARs using dose distribution from real CT image (red), from synthetic CT image
(green), and from bulk assigned CT image (blue). Top: brainstem (diamond lines) and spinal canal
(cross lines). Bottom: left parotid (dashed lines) and right parotid (continuous lines).
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dataset is large enough to cover a wide range of the population, the non-rigid registration should be able

to capture those abnormalities. Further work will need to be completed on measuring the accuracy of the

deformation maps and improving registration algorithms. One source of errors in the registration algo-

rithm used in this study is the inherent deformation of bony elements, which physically can only move

rigidly. A possible way to improve the proposed method could be to use poly-affine and poly-smooth

registration algorithms (Arsigny et al., 2003).

Errors occurring in the generation of the synthetic CT images can be due to the intra-subject regis-

tration uncertainties between CT and MR images or the inter-subject registration uncertainties between

MR and MR images. The fusion strategy can also contributes to those errors. Multiple hypothesis can

be formulated: are dissimilar atlases being included when they should not be? Are similar atlases not

being weighted high enough? Are there no atlases which are good enough? How does different fields of

view and missing data from some atlases influence the fusion algorithm? Further research will need to

be done in order to answer those questions.

The main limitation in this study is the small field of view on MR images. At the time of image

acquisition, there were no clinical reasons for imaging the patients in treatment position with a larger

field of view on the MR scan. However this limitation should not affect the conclusion from this study.

The technique could, in theory, be applied to other body parts as long as the morphological variability

is represented in the database and the registration between MR images is sufficiently accurate. Future

work will include additional clinical validation by performing dose calculation on the full dataset, and

making the method more robust by improving the registration algorithm as well as the fusion strategy.

5.6 Conclusion
In this chapter, the feasibility of using synthetic CT images for treatment planning of head and neck

cancer generated from multiple deformed CT/MR atlases has been demonstrated. Synthetic CT images

showed high similarities with the real CT images and the calculated doses agreed well with those based

on real CT images. Larger scale studies need to be done in order to further validate the accuracy of

synthetic CT images compared to real CT images for the broad workflow of radiotherapy applications in

the head and neck. To conclude, the results obtained in this Chapter 5 along with the ones in Chapter 4

further support the use of atlas-based algorithms in radiotherapy treatment planning.
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Chapter 6

General Conclusions

6.1 Summary
Radiotherapy treatment of head and neck cancer requires the delineation of OARs, a time-consuming

and labour intensive process when performed manually. Accurate segmentation is critical in order to

minimize radiation doses during treatment. This consequently improves life expectancy and reduces any

negative impact on quality of life. In this thesis, I demonstrated that atlas-based method can produce

clinically acceptable segmentations and reduce clinicians manual labour, helping them to focus on other

aspects of patient’s treatment. MR imaging is frequently used in radiotherapy planning as it has superior

soft tissue contrast over that of CT imaging. However, it has not been clinically used alone as it does

not provide electron density of tissues, rendering direct dose calculation on MR scans an impossible

task to perform. CT imaging remains the main modality for radiotherapy planning because of a lack

of correlation between MR intensities and electron density information. In this work, I showed that

dose calculations based on synthetic CT images generated through an atlas-based method were in close

agreement with full density CT-based plans. The proposed method in this thesis provides the necessary

tools to MR imaging-based treatment planning feasible.

In Chapter 3, I proposed a new atlas-based segmentation method based on the out-of-sample prop-

erty of manifold learning. The method is computationally fast and scalable making it suitable for seg-

menting large datasets of images acquired during radiotherapy planning. It was demonstrated that this

method produces robust and accurate segmentation comparable to state-of-the-art methods. The results

showed that selection of atlases with manifold learning is beneficial in the framework of multi-atlas

based segmentation. The optimal accuracy can be found by fine tuning the manifold learning process.

In Chapter 4, I demonstrated that atlas-based method can produce segmentations graded as good as

or better than manual contours with a rate of 83% in the context of radiotherapy planning and decrease

manual labour. The reduction in segmentation time was on average 77%. In addition, I showed that

the Dice similarity coefficient (DSC) does not reliably reflect the clinical acceptability of an automatic

segmentation. Although a high DSC should guarantee clinical acceptability, a lower DSC does not

necessarily mean that the segmentation produced by the proposed method was not clinically useful. The

dataset used contained a variety of cases including some with bulky tumors, and results with the proposed

method were still comparable to manual contouring across the cohort, demonstrating its robustness. In
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any case, it was concluded that automatic segmentations should always be checked and corrected if

necessary by an expert before planning.

In Chapter 5, I showed that synthetic CT images generated from MR scans with an atlas-based

method can be used for radiotherapy planning. Fusion of multiple atlases using a local similarity mea-

sure and an atlas ranking scheme resulted in a synthetic CT image similar to the real CT image. The

reported mean absolute error was 131.8 (±31.5) HU for this method, significantly lower than using the

propagation of a single best atlas. The distribution of CT number in real and synthetic CT images were

in close agreement as well as the dose volumes histograms generated from real and synthetic images.

In addition, using a dose difference with a constraint of 2% prescribed dose, the pass percentage on the

95% isodose volumes was 98.58% (±0.92) when comparing dose distribution from real and synthetic

CT image. Imaging cost during treatment can be reduced by using a single modality instead of multiple

modalities, and I demonstrated the feasibility of MR imaging-based treatment planning. Manually delin-

eated volumes on MR images have been shown to have lower inter-observer variability and are smaller

that those on CT images. Extra margins added to account for delineation uncertainties could be reduced

by using MR imaging, resulting in less tissues irradiated and a reduction in treatment toxicity. Being

able to generate synthetic CT images could be very useful for adaptive and image guided radiotherapy

using the new MR-LINACs that are currently being developed.

6.2 Future work
The future of imaging in radiotherapy planning is promising, and advances in technologies will con-

tribute to a better definition of target volumes and organs at risk. This will in turn enable an increase in

the precision of the calculation of radiation dose to the tumor, a reduction in toxicity and an improve-

ment in treatment outcome. In addition, several solutions are currently implemented in order to allow

MR imaging-based treatment planning to become a reality. This may ultimately lead to the elimination

of CT imaging which has been the foundation of treatment planning for the past four decades. This

will have several beneficial implications including a lower overall treatment cost and a reduced X-ray

exposure.

The segmentation of target volumes has not been addressed in this thesis and remains the first fu-

ture work to be done. Atlas-based delineation of tumours is very challenging due to large variability.

As discussed in Chapter 4, atlas-based segmentation is highly dependent on the similarity between the

underlying atlas and the patient. It performs well when the shape of the target is well represented in the

dataset of atlases. However tumors have no predefined shape. This especially affect inter-patient registra-

tion accuracy. As demonstrated in this thesis, clinical evaluations of automatic segmentations still reveal

the need for manual editing of automatic contours. The definition of a dataset with appropriate atlases

remains an open question. In particular, for anatomical structures outside the brain, atlas datasets often

fail to include the whole spectrum of variations. Presently no consensus exists on inclusion/exclusion

rules or dataset size. In my opinion, atlas-based segmentation can benefit from customization of datasets.

In this respect, an effort should be made to build application specific datasets and to develop rules for

choosing the appropriate atlases. However, the final goal should be patient specific, on-the-fly atlas
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selection that assures an appropriate feature matching between a target image and atlases.

As demonstrated in Chapter 4, clinical validation is required to ensure that automatic segmentation

algorithms are suitable for radiotherapy planning. In this thesis, this was performed by a trained clini-

cian on a 3-point grading scale. However, the development of an automatic clinical validation protocol

will be beneficial. In the absence of segmentation ground truth, automatic segmentations are validated

against manual contours. The Dice similarity coefficient (DSC) is commonly used for the validation

of automatic segmentations in radiotherapy. When multiple manual contours are available for a given

region of interest, the DSC is calculated for each manual contour individually. The multiple DSCs are

then averaged. The drawback of such a validation measure is that it does not use the knowledge of

expert agreements and disagreements which becomes important in the context of structure delineation

for radiotherapy planning. The second research direction that I propose is the development of a method

for assessing the quality of segmentations used in radiotherapy treatment planning that incorporates the

level of agreement between several raters.

In Chapter 5, I demonstrated that treatment planning using MR images is feasible making the ac-

quisition of CT scan unnecessary in the radiotherapy workflow. However, the proposed method was only

tested on images with small field of view. A third future work is a follow up on my work with further

clinical validation of the synthetic CT images, using MR images with field of view covering full anatomy

of the head and neck region. This could include investigating if the geometrical accuracy is good enough

to generate satisfactory digitally reconstructed radiograph for patient alignment and investigating if the

dosimetric deviations are significant compared to a CT based plan.
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Appendix A

Open Software Effort

Open source is a development approach that promotes transparency and promises more quality, reliability

and flexibility in the production and testing of software. Due to his open nature, most licenses allow

anyone to contribute, understand, re-factor and reuse the code with no restrictions. As a supporter of

this approach, all the code developed during my PhD is available under a Berkeley Software Distribution

(BSD) licence. With a BSD licence, redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

• Redistributions of source code or binaries must retain the copyright notices, the list of conditions

and a disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the organisation nor the names of its distributors may be used to endorse or

promote products derived from this software without specific prior written permission.

A.1 Manifold learning software package
The manifold learning algorithms detailed in Chapter 2 have been implemented in C++: Principal

Component Analysis (PCA), Isomap (ISO), Locally linear embedding (LLE) and Laplacian Eigenmaps

(LEM). A list of images are taken as an input, as well as a mask defining a region of interest. A text

file containing the coordinates of the nifty images in the low-dimensional space is recorded as an output.

Examples of command line for each algorithm are as follows:

• run pca -in image *.nii -mask mask.nii -out pca mapping.txt

• run iso -in image *.nii -mask mask.nii -k 10 -out iso mapping.txt

• run lle -in image *.nii -mask mask.nii -k 10 -reg 0.001

-out lle mapping.txt

• run lem -in image *.nii -mask mask.nii -k 10 -rho 0.1

-out lem mapping.txt

where the description of the parameters are as follows:

• -in: the input parameter to specify a list of images, i.e: image 001.nii image 002.nii

image 003.nii ...
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• -mask: the input parameter to specify a binary mask in the space of the images above. The mask

specifies the region of interest in the high-dimensional space.

• -k: the input parameter to specify the number of neighbours to built the connected graph in the

high-dimensional space. Must be an integer.

• -reg: the input parameter to specify a regularization term. When the local covariance C is not

full rank, it should be regularized with a small constant of order Trace(C)∗10−3. Only necessary

when using LLE.

• -rho: the input parameter to specify the standard deviation of the Gaussian kernel. Only neces-

sary when using LEM.

• -out: the ouput text file containing the coordinates of the images in the low-dimensional space.

There are 4 main libraries pca, iso, lle, and lem making up the main application programming

interface (API) for external linkage. Each one of these libraries defines a C++ object that defines, sets

and runs the model and the necessary variables.
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