61 research outputs found

    Effectiveness of segment routing technology in reducing the bandwidth and cloud resources provisioning times in network function virtualization architectures

    Get PDF
    Network Function Virtualization is a new technology allowing for a elastic cloud and bandwidth resource allocation. The technology requires an orchestrator whose role is the service and resource orchestration. It receives service requests, each one characterized by a Service Function Chain, which is a set of service functions to be executed according to a given order. It implements an algorithm for deciding where both to allocate the cloud and bandwidth resources and to route the SFCs. In a traditional orchestration algorithm, the orchestrator has a detailed knowledge of the cloud and network infrastructures and that can lead to high computational complexity of the SFC Routing and Cloud and Bandwidth resource Allocation (SRCBA) algorithm. In this paper, we propose and evaluate the effectiveness of a scalable orchestration architecture inherited by the one proposed within the European Telecommunications Standards Institute (ETSI) and based on the functional separation of an NFV orchestrator in Resource Orchestrator (RO) and Network Service Orchestrator (NSO). Each cloud domain is equipped with an RO whose task is to provide a simple and abstract representation of the cloud infrastructure. These representations are notified of the NSO that can apply a simplified and less complex SRCBA algorithm. In addition, we show how the segment routing technology can help to simplify the SFC routing by means of an effective addressing of the service functions. The scalable orchestration solution has been investigated and compared to the one of a traditional orchestrator in some network scenarios and varying the number of cloud domains. We have verified that the execution time of the SRCBA algorithm can be drastically reduced without degrading the performance in terms of cloud and bandwidth resource costs

    ML-based Secure Low-Power Communication in Adversarial Contexts

    Full text link
    As wireless network technology becomes more and more popular, mutual interference between various signals has become more and more severe and common. Therefore, there is often a situation in which the transmission of its own signal is interfered with by occupying the channel. Especially in a confrontational environment, Jamming has caused great harm to the security of information transmission. So I propose ML-based secure ultra-low power communication, which is an approach to use machine learning to predict future wireless traffic by capturing patterns of past wireless traffic to ensure ultra-low-power transmission of signals via backscatters. In order to be more suitable for the adversarial environment, we use backscatter to achieve ultra-low power signal transmission, and use frequency-hopping technology to achieve successful confrontation with Jamming information. In the end, we achieved a prediction success rate of 96.19%

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    Fine-Grained Multivariate Time Series Anomaly Detection in IoT

    Get PDF
    Funding Information: Funding Statement: This work was supported in part by the National Natural Science Foundation of China under Grant 62272062, the Researchers Supporting Project number. (RSP2023R102) King Saud University, Riyadh, Saudi Arabia, the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003, the National Science Foundation of Hunan Province under Grant 2020JJ2029, the Hunan Provincial Key Research and Development Program under Grant 2022GK2019, the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006, the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143, and the Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education (Changsha University of Science Technology) under Grant 21KB07. Publisher Copyright: © 2023 Tech Science Press. All rights reserved.Peer reviewedPublisher PD

    Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review

    Get PDF
    The supply chain is currently taking on a very important role in organizations seeking to improve the competitiveness and profitability of the company. Its transversal character mainly places it in an unbeatable position to achieve this role. This article, through a study of each of the key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the scientific community says is carried out, dividing each of the technologies into different categories. In addition, the global vision of countries interested in each of the enabling technologies is also studied. Both studies present a general vision to the companies of the concerns of the scientific community, thus encouraging research on the subject that is focused on the sustainability of the shipbuilding supply chain

    Efficient Semantic Segmentation on Edge Devices

    Full text link
    Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module
    corecore