94 research outputs found

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Approximate Turing Kernelization for Problems Parameterized by Treewidth

    Get PDF
    We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An α\alpha-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs cc-approximate solutions in O(1)O(1) time, obtains an (αc)(\alpha \cdot c)-approximate solution to the considered problem, using calls to the oracle of size at most f(k)f(k) for some function ff that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth \ell has a (1+ε)(1+\varepsilon)-approximate Turing kernel with O(2ε)O(\frac{\ell^2}{\varepsilon}) vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give (1+ε)(1+\varepsilon)-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call "friendly" admit (1+ε)(1+\varepsilon)-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint HH-packing for connected graphs HH, Clique Cover, Feedback Vertex Set and Edge Dominating Set

    How Fast Can We Play Tetris Greedily With Rectangular Pieces?

    Get PDF
    Consider a variant of Tetris played on a board of width ww and infinite height, where the pieces are axis-aligned rectangles of arbitrary integer dimensions, the pieces can only be moved before letting them drop, and a row does not disappear once it is full. Suppose we want to follow a greedy strategy: let each rectangle fall where it will end up the lowest given the current state of the board. To do so, we want a data structure which can always suggest a greedy move. In other words, we want a data structure which maintains a set of O(n)O(n) rectangles, supports queries which return where to drop the rectangle, and updates which insert a rectangle dropped at a certain position and return the height of the highest point in the updated set of rectangles. We show via a reduction to the Multiphase problem [P\u{a}tra\c{s}cu, 2010] that on a board of width w=Θ(n)w=\Theta(n), if the OMv conjecture [Henzinger et al., 2015] is true, then both operations cannot be supported in time O(n1/2ϵ)O(n^{1/2-\epsilon}) simultaneously. The reduction also implies polynomial bounds from the 3-SUM conjecture and the APSP conjecture. On the other hand, we show that there is a data structure supporting both operations in O(n1/2log3/2n)O(n^{1/2}\log^{3/2}n) time on boards of width nO(1)n^{O(1)}, matching the lower bound up to a no(1)n^{o(1)} factor.Comment: Correction of typos and other minor correction

    Fine-Grained Complexity of Regular Path Queries

    Get PDF
    A regular path query (RPQ) is a regular expression q that returns all node pairs (u, v) from a graph database that are connected by an arbitrary path labelled with a word from L(q). The obvious algorithmic approach to RPQ evaluation (called PG-approach), i. e., constructing the product graph between an NFA for q and the graph database, is appealing due to its simplicity and also leads to efficient algorithms. However, it is unclear whether the PG-approach is optimal. We address this question by thoroughly investigating which upper complexity bounds can be achieved by the PG-approach, and we complement these with conditional lower bounds (in the sense of the fine-grained complexity framework). A special focus is put on enumeration and delay bounds, as well as the data complexity perspective. A main insight is that we can achieve optimal (or near optimal) algorithms with the PG-approach, but the delay for enumeration is rather high (linear in the database). We explore three successful approaches towards enumeration with sub-linear delay: super-linear preprocessing, approximations of the solution sets, and restricted classes of RPQs

    Barriers for Faster Dimensionality Reduction

    Get PDF

    Parameterized pre-coloring extension and list coloring problems

    Get PDF
    Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by k: (1) Given a graph G, a clique modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of colors for every v ∈ V(G), decide whether G has a proper list coloring; (2) Given a graph G, a clique modulator D of size k for G, and a pre-coloring λ_P: X → Q for X ⊆ V(G), decide whether λ_P can be extended to a proper coloring of G using only colors from Q. For Problem 1 we design an O*(2^k)-time randomized algorithm and for Problem 2 we obtain a kernel with at most 3k vertices. Banik et al. (IWOCA 2019) proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly n-k colors for every v ∈ V(G), decide whether there is a proper list coloring for G. We obtain a kernel with O(k²) vertices and colors and a compression to a variation of the problem with O(k) vertices and O(k²) colors

    Efficient Isolation of Perfect Matching in O(log n) Genus Bipartite Graphs

    Get PDF
    We show that given an embedding of an O(log n) genus bipartite graph, one can construct an edge weight function in logarithmic space, with respect to which the minimum weight perfect matching in the graph is unique, if one exists. As a consequence, we obtain that deciding whether such a graph has a perfect matching or not is in SPL. In 1999, Reinhardt, Allender and Zhou proved that if one can construct a polynomially bounded weight function for a graph in logspace such that it isolates a minimum weight perfect matching in the graph, then the perfect matching problem can be solved in SPL. In this paper, we give a deterministic logspace construction of such a weight function for O(log n) genus bipartite graphs

    Hard Problems on Random Graphs

    Get PDF
    Many graph properties are expressible in first order logic. Whether a graph contains a clique or a dominating set of size k are two examples. For the solution size as its parameter the first one is W[1]-complete and the second one W[2]-complete meaning that both of them are hard problems in the worst-case. If we look at both problem from the aspect of average-case complexity, the picture changes. Clique can be solved in expected FPT time on uniformly distributed graphs of size n, while this is not clear for Dominating Set. We show that it is indeed unlikely that Dominating Set can be solved efficiently on random graphs: If yes, then every first-order expressible graph property can be solved in expected FPT time, too. Furthermore, this remains true when we consider random graphs with an arbitrary constant edge probability. We identify a very simple problem on random matrices that is equally hard to solve on average: Given a square boolean matrix, are there k rows whose logical AND is the zero vector? The related Even Set problem on the other hand turns out to be efficiently solvable on random instances, while it is known to be hard in the worst-case
    corecore