16,085 research outputs found

    Report of the workshop on Aviation Safety/Automation Program

    Get PDF
    As part of NASA's responsibility to encourage and facilitate active exchange of information and ideas among members of the aviation community, an Aviation Safety/Automation workshop was organized and sponsored by the Flight Management Division of NASA Langley Research Center. The one-day workshop was held on October 10, 1989, at the Sheraton Beach Inn and Conference Center in Virginia Beach, Virginia. Participants were invited from industry, government, and universities to discuss critical questions and issues concerning the rapid introduction and utilization of advanced computer-based technology into the flight deck and air traffic controller workstation environments. The workshop was attended by approximately 30 discipline experts, automation and human factors researchers, and research and development managers. The goal of the workshop was to address major issues identified by the NASA Aviation Safety/Automation Program. Here, the results of the workshop are documented. The ideas, thoughts, and concepts were developed by the workshop participants. The findings, however, have been synthesized into a final report primarily by the NASA researchers

    Remanufacturing and product design: designing for the 7th generation

    Get PDF
    The following is taken directly from the research report. This report investigates Design for Remanufacture in terms of both detailed product design and the business context in which Design for Remanufacture may operate. Key Study Objectives • To understand the link between design and remanufacture • To understand how Design for Remanufacture can lead to increased innovation and Sustainable Development (SD) • To identify proactive strategies to further Design for Remanufactur

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system's status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers' expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone. [Abstract copyright: Copyright Š 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Performance of CAM based Safety Applications using ITS-G5A MAC in High Dense Scenarios

    Get PDF
    ETSI ITS-G5 is the current vehicle-to-vehicle communication technology in Europe, which will be standardized by ETSI TC ITS. It is based on IEEE 802.11p and therefore uses a CSMA/CA scheme for Media Access Control (MAC). In this paper we analyze the performance of CAM based safety applications using the ETSI ITS-G5 MAC technology in a challenging scenario with respect to MAC issues: A suitable freeway segment with 6 lanes in each direction. The freeway scenario is thoroughly modeled and implemented in the well known ns-3 simulation environment. Based on this model, the paper shows the performance of CAM based safety applications under MAC challenging conditions. Therefore we provide a set of simulation results resting upon a particular performance metric which incorporates the key requirements of safety applications. Finally we analyze two concrete example scenarios to make a point how reliable CAM based safety applications are in high dense traffic scenarios

    Process-Oriented Information Logistics: Aligning Process Information with Business Processes

    Get PDF
    During the last decade, research in the field of business process management (BPM) has focused on the design, modeling, execution, monitoring, and optimization of business processes. What has been neglected, however, is the provision of knowledge workers and decision makers with needed information when performing knowledge-intensive business processes such as product engineering, customer support, or strategic management. Today, knowledge workers and decision makers are confronted with a massive load of data, making it difficult for them to discover the information relevant for performing their tasks. Particularly challenging in this context is the alignment of process-related information (process information for short), such as e-mails, office files, forms, checklists, guidelines, and best practices, with business processes and their tasks. In practice, process information is not only stored in large, distributed and heterogeneous sources, but usually managed separately from business processes. For example, shared drives, databases, enterprise portals, and enterprise information systems are used to store process information. In turn, business processes are managed using advanced process management technology. As a consequence, process information and business processes often need to be manually linked; i.e., process information is hard-wired to business processes, e.g., in enterprise portals associating specific process information with process tasks. This approach often fails due to high maintenance efforts and missing support for the individual demands of knowledge workers and decision makers. In response to this problem, this thesis introduces process-oriented information logistics(POIL) as new paradigm for delivering the right process information, in the right format and quality, at the right place and the right point in time, to the right people. In particular, POIL allows for the process-oriented, context-aware (i.e., personalized) delivery of process information to process participants. The goal is to no longer manually hard-wire process information to business processes, but to automatically identify and deliver relevant process information to knowledge workers and decision makers. The core component of POIL is a semantic information network (SIN), which comprises homogeneous information objects (e.g., e-mails, offce files, guidelines), process objects (e.g., tasks, events, roles), and relationships between them. In particular, a SIN allows discovering objects linked with each other in different ways, e.g., objects addressing the same topic or needed when performing a particular process task. The SIN not only enables an integrated formal representation of process information and business processes, but also allows determining the relevance of process information for a given work context based on novel techniques and algorithms. Note that this becomes crucial in order to achieve the aforementioned overall goal of this thesis

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling
    • …
    corecore