10,210 research outputs found

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    Conceptual design framework for information visualization to support multidimensional datasets in higher education institutions

    Get PDF
    Information Visualization (InfoVis) enjoys diverse adoption and applicability because of its strength in solving the problem of information overload inherent in institutional data. Policy and decision makers of higher education institutions (HEIs) are also experiencing information overload while interacting with students‟ data, because of its multidimensionality. This constraints decision making processes, and therefore requires a domain-specific InfoVis conceptual design framework which will birth the domain‟s InfoVis tool. This study therefore aims to design HEI Students‟ data-focused InfoVis (HSDI) conceptual design framework which addresses the content delivery techniques and the systematic processes in actualizing the domain specific InfoVis. The study involved four phases: 1) a users‟ study to investigate, elicit and prioritize the students‟ data-related explicit knowledge preferences of HEI domain policy. The corresponding students‟ data dimensions are then categorised, 2) exploratory study through content analysis of InfoVis design literatures, and subsequent mapping with findings from the users‟ study, to propose the appropriate visualization, interaction and distortion techniques for delivering the domain‟s explicit knowledge preferences, 3) conceptual development of the design framework which integrates the techniques‟ model with its design process–as identified from adaptation of software engineering and InfoVis design models, 4) evaluation of the proposed framework through expert review, prototyping, heuristics evaluation, and users‟ experience evaluation. For an InfoVis that will appropriately present and represent the domain explicit knowledge preferences, support the students‟ data multidimensionality and the decision making processes, the study found that: 1) mouse-on, mouse-on-click, mouse on-drag, drop down menu, push button, check boxes, and dynamics cursor hinting are the appropriate interaction techniques, 2) zooming, overview with details, scrolling, and exploration are the appropriate distortion techniques, and 3) line chart, scatter plot, map view, bar chart and pie chart are the appropriate visualization techniques. The theoretical support to the proposed framework suggests that dictates of preattentive processing theory, cognitive-fit theory, and normative and descriptive theories must be followed for InfoVis to aid perception, cognition and decision making respectively. This study contributes to the area of InfoVis, data-driven decision making process, and HEI students‟ data usage process

    Evolutionary Search Techniques with Strong Heuristics for Multi-Objective Feature Selection in Software Product Lines

    Get PDF
    Software design is a process of trading off competing objectives. If the user objective space is rich, then we should use optimizers that can fully exploit that richness. For example, this study configures software product lines (expressed as feature models) using various search-based software engineering methods. Our main result is that as we increase the number of optimization objectives, the methods in widespread use (e.g. NSGA-II, SPEA2) perform much worse than IBEA (Indicator-Based Evolutionary Algorithm). IBEA works best since it makes most use of user preference knowledge. Hence it does better on the standard measures (hypervolume and spread) but it also generates far more products with 0 violations of domain constraints. We also present significant improvements to IBEA\u27s performance by employing three strong heuristic techniques that we call PUSH, PULL, and seeding. The PUSH technique forces the evolutionary search to respect certain rules and dependencies defined by the feature models, while the PULL technique gives higher weight to constraint satisfaction as an optimization objective and thus achieves a higher percentage of fully-compliant configurations within shorter runtimes. The seeding technique helps in guiding very large feature models to correct configurations very early in the optimization process. Our conclusion is that the methods we apply in search-based software engineering need to be carefully chosen, particularly when studying complex decision spaces with many optimization objectives. Also, we conclude that search methods must be customized to fit the problem at hand. Specifically, the evolutionary search must respect domain constraints

    What makes an industrial control system security testbed credible and acceptable? Towards a design consideration framework

    Get PDF
    The convergence of Industrial Control System (ICS) with Information Technologies (IT) coupled with the resulting and widely publicized cyber security incidents have made ICS security and resilience issues of critical concern to operators and governments. The inability to apply traditional IT security practice to ICSs further complicates the challenges of effectively securing critical industrial systems. To investigate these challenges without impacting upon live system operations, testbeds are being widely used as viable options to explore, develop and assess security risks and controls. However, how an ICS testbed is designed, and its attributes, can directly impact not only on its viability but also its credibility and acceptance for use as a whole. Through a systematic review and analysis of ICS security testbed design factors, a novel outline conceptual mapping of design factors for building credibility and acceptance is proposed. These design considerations include: design objectives, implementation approach, architectural component coverage, core operational characteristics, and evaluation approach
    • …
    corecore