3,504 research outputs found

    Energy-aware Load Balancing Policies for the Cloud Ecosystem

    Full text link
    The energy consumption of computer and communication systems does not scale linearly with the workload. A system uses a significant amount of energy even when idle or lightly loaded. A widely reported solution to resource management in large data centers is to concentrate the load on a subset of servers and, whenever possible, switch the rest of the servers to one of the possible sleep states. We propose a reformulation of the traditional concept of load balancing aiming to optimize the energy consumption of a large-scale system: {\it distribute the workload evenly to the smallest set of servers operating at an optimal energy level, while observing QoS constraints, such as the response time.} Our model applies to clustered systems; the model also requires that the demand for system resources to increase at a bounded rate in each reallocation interval. In this paper we report the VM migration costs for application scaling.Comment: 10 Page

    Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

    Get PDF
    This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations

    Texture descriptor combining fractal dimension and artificial crawlers

    Get PDF
    Texture is an important visual attribute used to describe images. There are many methods available for texture analysis. However, they do not capture the details richness of the image surface. In this paper, we propose a new method to describe textures using the artificial crawler model. This model assumes that each agent can interact with the environment and each other. Since this swarm system alone does not achieve a good discrimination, we developed a new method to increase the discriminatory power of artificial crawlers, together with the fractal dimension theory. Here, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. We validate our method on two texture datasets and the experimental results reveal that our method leads to highly discriminative textural features. The results indicate that our method can be used in different texture applications.Comment: 12 pages 9 figures. Paper in press: Physica A: Statistical Mechanics and its Application

    The Department of Electrical and Computer Engineering Newsletter

    Get PDF
    Spring 2012 News and notes for University of Dayton\u27s Department of Electrical and Computer Engineering.https://ecommons.udayton.edu/ece_newsletter/1002/thumbnail.jp

    Measuring Kinematic Variables in Front Crawl Swimming Using Accelerometers: A Validation Study

    Get PDF
    Objective data on swimming performance is needed to meet the demands of the swimming coach and athlete. The purpose of this study is to use a multiple inertial measurement units to calculate Lap Time, Velocity, Stroke Count, Stroke Duration, Stroke Rate and Phases of the Stroke (Entry, Pull, Push, Recovery) in front crawl swimming. Using multiple units on the body, an algorithm was developed to calculate the phases of the stroke based on the relative position of the body roll. Twelve swimmers, equipped with these devices on the body, performed fatiguing trials. The calculated factors were compared to the same data derived to video data showing strong positive results for all factors. Four swimmers required individual adaptation to the stroke phase calculation method. The developed algorithm was developed using a search window relative to the body roll (peak/trough). This customization requirement demonstrates that single based devices will not be able to determine these phases of the stroke with sufficient accuracy

    Faculty Publications & Presentations, 2006-2007

    Get PDF
    • …
    corecore