76 research outputs found

    Scalable WDM phase regeneration in a single phase-sensitive amplifier through optical time lenses

    Get PDF
    Scalable solutions for data regeneration of multiple parallel channels are elusive. Here the authors report a scalable wavelength-division multiplexing technique for phase regeneration and demonstrate the highest reported number of regenerated wavelength-division multiplexed channels in a single phase regenerator

    An Optical Grooming Switch for High-Speed Traffic Aggregation in Time, Space and Wavelength

    Get PDF
    In this book a novel optical switch is designed, developed, and tested. The switch integrates optical switching, transparent traffic aggregation/grooming, and optical regener-ation. Innovative switch subsystems are developed that enable these functionalities, including all-optical OTDM-to-WDM converters. High capacity ring interconnection between metro-core rings, carrying 130 Gbit/s OTDM traffic, and metro-access rings carring 43 Gbit/s WDM traffic is experimentally demonstrated. The developed switch features flexibility in bandwidth provisioning, scalability to higher traffic volumes, and backward compatibility with existing network implementations in a future-proof way

    All-optical Regeneration For Phase-shift Keyed Optical Communication Systems

    Get PDF
    All-optical signal processing techniques for phase-shift keyed (PSK) systems were developed theoretically and demonstrated experimentally. Nonlinear optical effects in fibers, in particular four-wave mixing (FWM) that occurs via the ultra-fast Kerr nonlinearity, offer a flexible framework within which numerous signal processing functions can be accomplished. This research has focused on the regenerative capabilities of various FWM configurations in the context of processing PSK signals. Phase-preserving amplitude regeneration, phase regeneration, and phase-regenerative wavelength conversion are analyzed and demonstrated experimentally. The single-pump phase-conjugation process was used to regenerate RZ-DPSK pulse amplitudes with different input noise distributions, and the impact on output phase characteristics was studied. Experiments revealed a limited range over which amplitude noise could effectively be suppressed without introduction of phase noise, particularly for signals with intensity pattern effects. Phase regeneration requires use of phase-sensitive amplification (PSA), which occurs in nonlinear interferometers when the pump and signal frequencies are degenerate (NI-PSA), or in fiber directly through single-stage (degenerate) or cascaded (non-degenerate) FWM processes. A PSA based on a Sagnac interferometer provided the first experimental demonstration of DPSK phase and amplitude regeneration. The phase-regenerative capabilities of the NI-PSA are limited in practice by intrinsic noise conversion (amplitude to phase noise) and to a lesser extent by the requirement to modulate the pump wave to suppress stimulated Brillouin scattering (SBS). These limitations are relaxed in novel materials with higher SBS thresholds and nonlinearities. Degenerate FWM provides PSA in a traveling-wave configuration that intrinsically suppresses the noise conversion affecting the NI-PSA, while providing stronger phase-matched gain. Experiments confirmed superior phase-regenerative behavior to the NI-PSA with simultaneous reduction of amplitude noise for NRZ-DPSK signals. Phase-regenerative wavelength conversion (PR-WC) provides the regenerative properties of PSA at a new wavelength, and was proposed and demonstrated for the first time in this research. The parallel implementation of two FWM processes, phase-conjugation and frequency conversion, provides two idlers which exhibit interesting and useful regenerative properties. These were investigated theoretically and experimentally. Ideal phase-regenerative behavior is predicted when the contributing FWM processes are equally phase-matched, which can be maintained over any interaction length or wavelength shift provided the pump powers are properly adjusted. Depleted-pump regime PR-WC provides simultaneous phase and amplitude regeneration. Experiments confirmed regenerative behavior for wavelength shifts of the idlers up to 5 nm. Two techniques for phase regeneration of 4-level PSK signals were developed and evaluated. The first is based on parallel operation of PSAs suitable for processing 2-level PSK signals, where phase projection and regeneration are combined to recover the input data. Analysis of this scheme outlined the conditions required for effective phase regeneration and for practical implementation using known PSAs. A novel process based on FWM (parallel phase-conjugation followed by PSA) was developed and analyzed, and demonstrated using numerical simulations. These studies provide a basis for further work in this area

    Nonlinear Photonic Signal Processing Subsystems and Applications

    Get PDF

    All optical 2R regeneration systems for broadband agile dense wavelength division multiplexing transparent optical networks

    Get PDF
    Recentemente è stata notata una crescita dei servizi multimediali richiesti dagli utenti finali; in tal modo numerose soluzioni sono state implementate per garantire elevati bit rate e qualità del servizio necessari per questo tipo di applicazioni. Le reti completamente ottiche sono state stese in molte nazioni (Giappone, Corea, Cina) per fornire servizi a banda larga fino a casa dell'utente. Conseguentemente, sono richiesti dispositivi in grado di operare nel dominio ottico in modo tale da evitare il noto “collo di bottiglia” derivante dalle conversioni di formato O/E/O (ottico/elettrico/ottico). In questo modo, nuovi tipi di sistemi (per esempio: optical processing e passive optical network) in grado di operare nel dominio completamente ottico sono richiesti poiché solo questo tipo di soluzione è la miglior strada per offrire alte prestazioni in termini di servizi, rate e riduzione dei costi per bit. Il lavoro eseguito durante questo dottorato di ricerca è stato incentrato sull'evoluzione di dispositivi per la rigenerazione ottica in grado di operare al contempo una Ri-amplificazione e Ri-sagomatura (2R) dei segnali ottici. Studi ed esperimenti sono stati effettuati nei laboratori dell’ ISCOM sfruttando la possibilità di rigenerazione completamente ottica di un dispositivo 2R multi-canale in grado di lavorare e gestire più clients nel medesimo istante temporale. Il sistema è stato implementato in uno scenario DWDM (Dense Wavelegth Division Multiplexing); inoltre, lavorando nel dominio completamente ottico sono state eliminate le conversioni di formato (O/E/O). Il sistema di rigenerazione è basato sulla modulazione di fase presente all'interno della fibra ottica usata per ottenere, sotto particolari condizioni, la generazione di nuove repliche del segnale originario che si vuole rigenerare. Queste nuove repliche, essendo posizionate a nuove lunghezze d’onda, possono essere usate sia per ottenere una conversione di lunghezza d’onda sia per ottenere una rigenerazione ottica dei segnali. Ciascuna replica, infatti, è caratterizzata dall’ avere un andamento simile alle funzioni di Bessel in grado di eliminare il rumore accumulatosi durante la trasmissione dei segnali. L’idea di questo lavoro è basato su un approccio multi-lunghezza d’onda in modo tale da poter usare un solo dispositivo per fornire una rigenerazione 2R completamente ottica ai numerosi utenti operanti a 10 Gbps. La capacità dei sistemi, implementati nei laboratori ISCOM, di risagomare i segnali, è stata confermata sperimentalmente in termini di misurazioni di diagramma ad occhio dei segnali di uscita e dalle curve di BER (Bit Error Rate).A recent increase of multimedia service demand from end-users has been noticed, thus several solutions have been implemented to guarantee the high rate and relative QoS (Quality of Service) needed for these kind of services. All optical networks have been deployed in many countries (Japan, Korea, China, at all) in order to supply broadband services to the home. Consequently, devices able to operate in optical domain are requested in order to avoid the so called “bottle-neck” coming from the O/E/O data conversion format. Thus, new kind of systems (optical processing and passive optical networks, at all) able to operate in photonic domain are requested because only this kind of solution is the better way to offer high performances in term of services, rate and low cost per bit. The work performed during this PhD program has been focused on the evolution of regeneration devices able to perform Re-amp and Re-shaping also know as 2R. Studies and experiments have been carried out at the ISCOM labs exploiting the possibility to a multi-channel 2R all optical regeneration device which is able to work with different client signals at the same time. The system has been implemented in a dense WDM (Wavelength Division Multiplexing) scenario. Moreover, working completely in optical domain, the format conversion (O/E/O) is avoided. The regeneration system is based on phase modulation present in the fiber and used to obtain, under particular conditions, the generation of new signal replica. These new replica, being placed at new different wavelengths can be used both to reach a wavelength conversion and to obtain an all optical regeneration effect. Each replica, in fact, is characterized by a Bessel like transfer function able to clean the noise accumulated along the signal transmission. The idea of this work is based on a multi-wavelength approach, thus only one device can be used to provide all optical 2R regeneration to several client signals at 10 Gbps at the same time. The ability of the systems, implemented at the ISCOM labs, to reshape the signals, has been experimentally confirmed in terms of eyes diagrams and BER (Bit Error Rate) measurements

    Electroabsorption modulators used for all-optical signal processing and labelling

    Get PDF

    Optical Signal Processing and Pulse Shaping for Wavelength Multiplexed High Speed Communication Systems

    Get PDF
    The steady growth of capacity demand in telecommunication networks has sparked the development of various photonic devices for ultrafast optical signal processing functions to meet the requirements of future flexible fiber networks in general and backbone in particular. Although these photonic devices expand the electrical bandwidth operation, they mostly operate at single wavelength and hence remain non-viable solutions for practical implementation in WDMnetworks that are considered as the major technology for high speed communications. Another key challenge of future optical networks is the ability tomerge channels in time and frequency domain in the most efficient way in order to reach the theoretical Nyquist limit of transmission links. A promising technique is the use of sinc-shaped Nyquist pulses that enable multiplexing channels in time domain with no inter-symbol interference (ISI) while exhibiting a rectangular spectrumthat alleviates the need for guard-band. The sinc pulse is indeed the basic building block in most theoretical papers that have estimated overall capacity limits, and intense efforts are being made to generate optical Nyquist pulses beyond the limit of electronics that can directly be used at the physical layer. Within the above context, two approaches, referred to as optical signal processing of WDM networks and generation/detection of Nyquist superchannels, have been studied in this thesis. The first addressed problem is simultaneous signal processing of WDMchannels. We present two principal blocks required for routing and transporting data in WDM networks, both based on dual-pump fiber optical parametric amplifier (FOPA) with (sinusoidally) modulated pumps. We show that this scheme can be designed to operate simultaneously on WDM channels at any desired wavelength range. The former block enables simultaneous wavelength conversion and time compression which is a necessary functionality in connecting dissimilar rate WDM networks. The latter processing block is all-optical 3R regeneration (reamplification, reshaping, retiming) which is crucial for maintaining pulse quality along long-haul WDMlinks. We use theoretical analysis supported by experimental results to demonstrate the efficiency of the proposed technique. The second problem that we investigate is the generation and detection of WDM-Nyquist superchannels. We developed a simple technique based onMach-Zehnder modulators (MZM) to generate a sinc-shaped Nyquist time window by direct synthesis of a rectangular, phase locked frequency comb. We show the produced pulses have exceptional quality as well as high tunability in terms of pulse width and repetition rate. We also further demonstrate a noncoherent method based on the proposed technique to performreal-time demultiplexing of WDM-Nyquist superchannels, simultaneously in time and frequency. The experimental results that are proved by mathematical analysis are employed to demonstrate the effectiveness of the proposed methods

    Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    Get PDF
    This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator at the receiver side. This is typically implemented in a one bit delay Mach-Zehnder interferometer (MZI). Two alternative ways of performing phase-to-intensity modulation conversion are presented. Successful demodulation of DPSK signals up to 40 Gbit/s is demonstrated using the proposed two devices. Optical labeling has been proposed as an efficient way to implement packet routing and forwarding functionalities in future IP-over-WDM networks. An in-band subcarrier multiplexing (SCM) labeled signal using 40 Gbit/s DSPK payload and 25 Mbit/s non return-to-zero(NRZ) SCM label, is successfully transmitted over 80 km post-compensated non-zero dispersion shifted fiber (NZDSF) span. Using orthogonal labeling, an amplitude shift keying (ASK)/DPSK labeled signal using 40 Gbit/s return-to-zero (RZ) payload and 2.5 Gbit/s DPSK label, is generated. WDM transmission and label swapping are demonstrated for such a signal. In future all-optical WDM networks, wavelength conversion is an essential functionality to provide wavelength flexibility and avoid wavelength blocking. Using a 50 m long highly nonlinear photonic crystal fiber (HNL-PCF), with a simple four-wave mixing (FWM) scheme, wavelength conversion of single channel and multi-channel high-speed DPSK signals is presented. Wavelength conversion of an 80 Gbit/s RZ-DPSK-ASK signal generated by combining different modulation formats is also reported. Amplitude distortion accumulated over transmission spans will eventually be converted into nonlinear phase noise, and consequently degrade the performance of systems making use of RZ-DPSK format. All-optical signal regeneration avoiding O-E-O conversion is desired to improve signal quality in ultra long-haul transmission systems. Proof-of-principle numerical simulation results are provided, that suggest the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation of high-speed optical signals at bit rate that is twice the operating speed of the electronics involved. Generation of an 80 Gbit/s DQPSK signal is demonstrated using 40 Gbit/s equipment. The first demonstration of wavelength conversion of such a high-speed signal is implemented using FWM in a 1 km long HNLF. No indication of error floor is observed. Using polarization multiplexing and combination of DQPSK with ASK and RZ pulse carving at a symbol rate of 40 Gbaud, a 240 Gbit/s RZ-DQPSK-ASK signal is generated and transmitted over 50 km fiber span with no power penalty. In summary, we show that direct detection and all-optical signal processing -including optical labeling, wavelength conversion and signal regeneration- that already have been studied intensively for signals using conventional on-off keying (OOK) format, can also be successfully implemented for high-speed phase modulated signals. The results obtained in this work are believed to enhance the feasibility of phase modulation in future ultra-high speed spectrally efficient optical communication systems
    • …
    corecore