64 research outputs found

    Reconstruction of algebraic-exponential data from moments

    Full text link
    Let GG be a bounded open subset of Euclidean space with real algebraic boundary Γ\Gamma. Under the assumption that the degree dd of Γ\Gamma is given, and the power moments of the Lebesgue measure on GG are known up to order 3d3d, we describe an algorithmic procedure for obtaining a polynomial vanishing on Γ\Gamma. The particular case of semi-algebraic sets defined by a single polynomial inequality raises an intriguing question related to the finite determinateness of the full moment sequence. The more general case of a measure with density equal to the exponential of a polynomial is treated in parallel. Our approach relies on Stokes theorem and simple Hankel-type matrix identities

    Geodesic Warps by Conformal Mappings

    Full text link
    In recent years there has been considerable interest in methods for diffeomorphic warping of images, with applications e.g.\ in medical imaging and evolutionary biology. The original work generally cited is that of the evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to deform images of one species into another. However, unlike the deformations in modern methods, which are drawn from the full set of diffeomorphism, he deliberately chose lower-dimensional sets of transformations, such as planar conformal mappings. In this paper we study warps of such conformal mappings. The approach is to equip the infinite dimensional manifold of conformal embeddings with a Riemannian metric, and then use the corresponding geodesic equation in order to obtain diffeomorphic warps. After deriving the geodesic equation, a numerical discretisation method is developed. Several examples of geodesic warps are then given. We also show that the equation admits totally geodesic solutions corresponding to scaling and translation, but not to affine transformations

    Local Uniqueness of the Circular Integral Invariant

    Full text link
    This article is concerned with the representation of curves by means of integral invariants. In contrast to the classical differential invariants they have the advantage of being less sensitive with respect to noise. The integral invariant most common in use is the circular integral invariant. A major drawback of this curve descriptor, however, is the absence of any uniqueness result for this representation. This article serves as a contribution towards closing this gap by showing that the circular integral invariant is injective in a neighbourhood of the circle. In addition, we provide a stability estimate valid on this neighbourhood. The proof is an application of Riesz-Schauder theory and the implicit function theorem in a Banach space setting

    A Riemannian View on Shape Optimization

    Full text link
    Shape optimization based on the shape calculus is numerically mostly performed by means of steepest descent methods. This paper provides a novel framework to analyze shape-Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined yielding often sought properties like symmetry and quadratic convergence for Newton optimization methods.Comment: 15 pages, 1 figure, 1 table. Forschungsbericht / Universit\"at Trier, Mathematik, Informatik 2012,
    • 

    corecore