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Abstract. The study of 2D shapes and their similarities is a central problem in the field of vision. It arises in
particular from the task of classifying and recognizing objects from their observed silhouette. Defining natural
distances between 2D shapes creates a metric space of shapes, whose mathematical structure is inherently relevant
to the classification task. One intriguing metric space comes from using conformal mappings of 2D shapes into
each other, via the theory of Teichmüller spaces. In this space every simple closed curve in the plane (a “shape”) is
represented by a ‘fingerprint’ which is a diffeomorphism of the unit circle to itself (a differentiable and invertible,
periodic function). More precisely, every shape defines to a unique equivalence class of such diffeomorphisms up
to right multiplication by a Möbius map. The fingerprint does not change if the shape is varied by translations and
scaling and any such equivalence class comes from some shape. This coset space, equipped with the infinitesimal
Weil-Petersson (WP) Riemannian norm is a metric space. In this space, the shortest path between each two shapes
is unique, and is given by a geodesic connecting them. Their distance from each other is given by integrating the
WP-norm along that geodesic. In this paper we concentrate on solving the “welding" problem of “sewing" together
conformally the interior and exterior of the unit circle, glued on the unit circle by a given diffeomorphism, to
obtain the unique 2D shape associated with this diffeomorphism. This will allow us to go back and forth between
2D shapes and their representing diffeomorphisms in this “space of shapes”. We then present an efficient method
for computing the unique shortest path, the geodesic of shape morphing between each two end-point shapes. The
group of diffeomorphisms of S1 acts as a group of isometries on the space of shapes and we show how this can be
used to define shape transformations, like for instance ‘adding a protruding limb’ to any shape.

Keywords: group of diffeomorphisms, group of shape transformations, shape representation, metrics between
shapes, conformal, Riemann mapping theorem, Weil-Petersson metric, geodesic, fingerprints of shapes

1. Introduction

Many different representations for the collection of all
2D shapes1, and many different measures of similar-
ity between them have been studied recently (Hildreth,
1984; Kass et al., 1988; Ullman, 1989; Amit 1991;
Yuille, 1991; Sclaroff and Pentland, 1995; Kimia et
al., 1995; Geiger et al., 1995; Gdalyahu and Weinshall,
1999; Basri et al., 1998; Belongie et al., 2002; Sebas-

∗Research was supported by NSF grants DMS-0074276 and IIS-
0205477.

tian et al., 2001; Carlsson, 1999). Although significant
progress has been made, none are fully satisfactory
from the point of view of a leading to a successful
classification of the collection of all shapes. In part,
this shortcoming is due to the fact that human per-
ception may give different meanings to similarity be-
tween shapes in different contexts and for different
tasks (Biederman, 1985; Mumford, 1991) (see Fig. 1).
In this paper, we propose the study of a new approach
to measuring the similarity of shapes by applying the
mathematical theory of complex analysis. This grows
out of a new way of representing shapes.
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Figure 1. All the figures A, B, C, D and E are similar to the
middle one, but they differ in different ways. Which shapes should
be considered closer may depend on context. This illustration is due
to B. Kimia.

Representing shapes in a simple way for classifi-
cation is difficult because of two things: on the one
hand, the set of all shapes is inherently infinite dimen-
sional and, on the other hand, it has no natural linear
structure. More precisely, the first assertion means that
if we map every shape to a point of R

n by assign-
ing to it n features, there will always be many distinct
shapes on which all these features coincide. You can-
not capture all the variability of a shape in a finite set
of features. The second assertion means that there is
no vector space structure on the set of all shapes, no
way of adding, subtracting and multiplying by scalars
in this set which satisfies the vector space axioms2. So
if we use an infinite number of features to describe
shapes, such as all its moments or all its Fourier coef-
ficients, then although we get a representation of the
set of shapes in a vector space, there will be sequences
of moments or Fourier coefficients which do not come
from any shape. The upshot is that the set of all shapes
is mathematically rather complicated. We feel this is
the deep reason why shape classification algorithms in
the literature have been less than perfectly satisfactory.

Although the set of shapes is nonlinear and infinite
dimensional, this does not prevent it from having its
own geometry. The first step towards analyzing its ge-
ometry is to endow this set with a metric, a numerical
measure of the difference between any 2 shapes. Many
metric approaches for the classification of shapes have
also been suggested. The Hausdorff distance is perhaps
the best known: this is a ‘sup’ or so called L∞ norm.
One can also take the area of the symmetric difference
of the interiors of the 2 shapes: this is a L1 type norm,
gotten by a simple integral. We may also measure in
some way the difference of the orientations as well as
the locations of the 2 shapes: these are first derivative

norms. One can play with these alternatives and work
out which shapes in Fig. 1 are closer to the central
shape in which metric.

In our method of representing shapes, every shape
will define a sort of ‘fingerprint’, which is a diffeomor-
phism of the unit circle to itself. Such a diffeomorphism
is given by a smooth increasing function f : R → R

which is differentiable and satisfies f (x + 2π ) = f(x)
+ 2π and two functions f1, f2 define the same diffeo-
morphism if f1(x) ≡ f2(x) + 2πn. The group of such
diffeomorphisms will be denoted by Diff(S1). The con-
struction is based on the existence of a conformal map-
ping from the interior of any shape � to the interior of
the unit disk via the Riemann mapping theorem. Like
all conformal maps, it preserves the angles between any
two intersecting curves and, moreover, it is unique up to
composition with a Möbius-transformation ambiguity.

More precisely, we will show that every simple
closed curve in the plane defines an equivalence class
of diffeomorphisms f. These equivalence classes are
the right cosets of these diffeomorphisms modulo
the three dimensional subgroup of Möbius maps3

PSL2(R), namely the maps from the complex unit circle
{z∣∣|z| = 1} to itself given by z �→ (az + b)/(b̄z + ā).
This set of equivalence classes is then written as the
quotient Diff(S1)/PSL2(R). In this assignment, two
shapes �1, �2 define the same diffeomorphism only
when one shape is gotten from the other by a trans-
lation and scaling, i.e. �2 = a · �1 + (b, c). If S
is the set of 2D shapes and H is the group of maps
(x, y) �→ (ax + b, ay + c), then the result of this con-
struction is a bijection between the two quotient sets:

Diff(S1)/PSL2(R) ∼= S/H.

Moreover, this quotient space turns out to be
equipped with a very remarkable metric, the Weil-
Petersson (WP) Riemannian metric. The resulting met-
ric space has two major properties. First, the space
has non-positive sectional curvature, and hence there
exists a unique geodesic between each two shapes.
Defining the integral of the WP-norm along a path
as the length of this path, a geodesic is defined as
the shortest path connecting the two shapes and its
length is the global metric on the space of shapes. The
shapes along that path represent a natural morphing
of one into the other. Secondly, the resulting space is
homogenous with respect to the group of diffeomor-
phisms operating on the cosets from the left. Thus,
for example, we can transform all shapes into new
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shapes by composing the coset representing them by a
diffeomorphism on the left and this transformation will
preserve the WP distance, take geodesics to geodesics
and hence change the above morphing between any
two shapes into the morphing between the transformed
shapes.

It is essential in this framework to be able to move
back and forth computationally between 2D shapes and
the diffeomorphisms representing them. Moving from
a given shape into the diffeomorphism representing it
can be done by computational implementations of the
Riemann mapping theorem. Several approaches to this
exist in the literature, see 3.1. Perhaps the most effec-
tive way is by using a numerical implementation of the
Schwarz-Christoffel formula, applied to a polygon that
tightly approximates the shape (Driscoll, 1996). But
going back from the diffeomorphism to the shape is a
new computational challenge, known as the “welding”
problem. It involves the construction of two conformal
maps, one defined inside the unit circle and one out-
side, which differ on the unit circle by the given diffeo-
morphism. In this paper, we will give two approaches
to computing the solution of welding problem. Having
this transformation between the space of shapes and the
group of diffeomorphisms, we then go on to compute
geodesics in the WP-metric. We do this by computing
the geodesics in the coset space Diff(S1)/PSL2(R) and
then using welding to move this into a morphing of
two plane shapes.

2. Shapes as Diffeomorphisms of the Circle

In this paper, by a “shape” we mean a simple closed
smooth curve � in the plane. Smooth means having
derivatives of all orders (i.e. being C∞), and simple
means that the curves do not intersect themselves. Ev-
erything is based on the Riemann mapping theorem
which states that it is possible to map the unit disc
conformally to the interior of any such shape4. The
conformal transformation is unique up to any preced-
ing Möbius transformations mapping the unit disc to
itself (that is, maps of the form z �→ (az+b)/(b̄z+ ā)).
Conformal means that the infinitesimal angle between
each two crossing curves is equal to the infinitesimal
angle between the transformed curves. The nature of
these mappings is shown in Fig. 2, where the im-
age of the radial grid on the unit disc (made out of
concentric circles and lines through the origin) under
this map is shown. Note that the image curves remain
perpendicular.
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Figure 2. On the top, the conformal parametrization of the interior
and exterior of an ellipse given by the Riemann mapping theorem,
shown by plotting the images under �− and �+ of circles around
the origin and radial lines. On the bottom, the ‘fingerprint’ �. The
circled points on the 2 figures are corresponding points. Note the
large derivative of the fingerprint at the points θ = 0, π corrsponding
to the ends of the major axis and the small derivative at the points
θ = π /2, 3π /2 corresponding to the ends of the minor axis.

2.1. Shapes to Diffeomorphisms

In this whole paper, we associate R
2 with the complex

plane C and hence we denote planar points by complex
numbers u + iv . We often want to add in the ‘point at
infinity’; adding this in, we get the extended complex
plane, also called the Riemann sphere and denoted by
Ĉ

.= C ∪ {∞}
Further, we denote the unit disc {z | |z| ≤ 1} by

�− and the infinite region outside or on the unit disc
{z | |z| ≥ 1} (including ∞) by �+. Observe that using
the transformation z �→ 1/z we can identify �+ with
�−. For every simple closed curve � in C we denote
by �− its union with the region enclosed by it, and
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Figure 3. The conformal map f, as described in Sec. 2.2, maps
the two halves of the z-sphere divided by the unit circle (left) onto
the two parts of the w-sphere divided by � (right), correspondingly,
such that f−(z) = f+(ϕ(z)) on |z| = 1.

denote by �+ its union with the infinite region outside
� (including ∞). We can think of �− and �+ as a
partition of the Riemann sphere into two parts along �

(see Fig. 3).
Then by the Riemann mapping theorem, for all �

there exists a conformal map

�− : �− → �−,

unique up to replacing �− by �− ◦ A for any Möbius
transformations A : �− → �−, A = (az + b)/(b̄z +
ā). That is, for every two conformal maps �

(1)
− ,�

(2)
− :

�− → �− we have that �
(2)
−

−1 ◦ �
(1)
− = A, where A is

a Möbius map.
This works for �+ and �+ too as the point at infinity

is no different from other finite points. Spelling this out,
under 1/z, � is transformed into the inverted simple
closed curve �′ so that �+ is identified with the interior
�′− of �′. Thus we can apply the Riemann mapping
theorem to get a �′ from �− and �′−. Composing
this conformal map with inverse on both sides, i.e.
�+(z) = 1/�′(1/z), we get a conformal map of the
exteriors

�+ : �+ → �+.

�+ is also unique up to Möbius transformations as
above. But now we can do better with �+: we take the
unique Möbius map A so that, replacing �+ by �+ ◦
A, we achieve the extra normalization that �+ carries
∞ to ∞, and that its differential carries the real posi-
tive axis of the �-plane at ∞ to the real positive axis
of the �-plane at ∞. Thus, we eliminate the Möbius
ambiguity of �+ for every �, and make �+ unique.
An example of this construction is shown at the top in
Fig. 2, where the curve � is an ellipse.

The goal of this construction is to define the map

�
.= �+−1 ◦ �−,

which it is defined on the unit circle S1. (Note that
�−(S1) = �, and �+−1(�) = S1.) � : S1 → S1 is a
diffeomorphism, which can be thought of as a peri-
odic, real-valued function from [0, 2π ] to [0, 2π ], hav-
ing a positive derivative everywhere. � is a uniquely-
identifying fingerprint of the shape �. The fingerprint
of the ellipse is also shown in Fig. 2.

From the Möbius-transformation ambiguity left in
�− we can see that by the construction of � every
simple closed curve � induces a diffeomorphism �

: S1 → S1, which is unique up to composing on the
right by a diffeomorphism Ã : S1 → S1 coming from
the restriction to S1 of any Möbius transformation A :
�−→ �−.

If, as in the introduction, we denote the coset space5

by Diff(S1)/PSL2(R) and we denote the space of sim-
ple closed smooth curves � by S, then our construction
of � gives us the ‘fingerprint’ map:

S → Diff(S1)/PSL2(R).

2.2. Diffeomorphisms to Shapes: Welding

Remarkably, this map is nearly a bijection. In fact,
every coset � · PSL2(R) comes from some shape �

and two shapes �1, �2 give the same coset if and only
if they differ by a translation and scaling. If S is the
quotient of shapes modulo translations and scalings,
the final result is

S ∼= Diff(S1)/PSL2(R). (1)

To obtain �,�− and �+corresponding to any coset,
we first pick any � in the coset. The ‘high level’ way of
finding � is to construct an abstract Riemann surface
X by ‘welding’ �+ and �− using the map � to glue
their boundaries together and apply the result that any
Riemann surface which is topologically a 2-sphere –
like X – is, in fact, conformally isomorphic to Ĉ via
some map �. Then �± are just the restrictions of �

to �± and the shape � is nothing but the image of
the unit circle in the welded surface X under �. This
construction is illustrated in Fig. 3.

A less abstract way to prove weldings exist is to
use a celebrated existence theorem of B. Bojarski and
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L. Bers [9, p., 10]. We sketch the proof without details.
We use the standard abreviations:

fz = 1

2
( fx − i fy), fz̄ = 1

2
( fx + i fy).

The theorem states that for any c < 1 and any complex
valued function µ(z) with |µ(z)| ≤ c (called a Beltrami
differential), the partial differential equation:

Fz̄ = µFz,

has a complex valued solution6. We get the µ from �

as follows. First define G : �− → �− by:

G(reiθ ) = rei�(θ).

Then let µ = Gz̄/Gz on �− (one can readily check
that this works out to be eiθ 1−� ′

1+� ′ ) and µ = 0 on �+.
With this µ, solve the above equation for the function
F. Because µ = 0 on �+, F must be a conformal map
on �+, hence it extends to ∞ and we can normalize
it to have positive real derivative there. Let �+ be
F on �+. Note that G satisfies the equation on �−
and, by standard arguments, any other solution there
is G followed by an analytic function (that is a map
with complex derivatives but which is not everywhere
conformal because they can be zero). So let �− be the
analytic function F ◦ G(−1) on �−. Then �− ◦ G ≡
�+ on the unit circle, as required.

2.3. Shapes with Base Points

We have now seen that shapes, up to scaling and
translation, are represented by cosets � · PSL2(R) ⊂
Diff(S1). An important variant of this representation
concerns shapes with base points, that is pairs {�,
P} where P is a point in the interior of �. The re-
sult is that shapes with base points are represented
by cosets �· ROT(S1) ⊂ Diff(S1) where ROT(S1) is
the group of rotations θ �→ θ + φ of the circle. Note
that ROT(S1) ⊂ PSL2(R) as the rotation through an-
gle φ is given by the map z �→ (az + b)/(b̄z + ā) for
a = eiφ/2, b = 0.

This representation is a simple extension of what we
have already seen: having a base point P in the interior
of the shape � allows one to normalize the conformal
map �− so that �−(0) = P. This fixes �− up to right
multiplication by a rotation, hence � is also determined
up to such a right multiplication. This state of affairs

is often depicted by a ‘commutative diagram’:

Diff(S1)/ROT (S1) ∼= {�, P}/H
↓ ↓

Diff(S1)/PSL2(R) ∼= {�}/H

where the vertical arrows denote the maps given by (i)
passing from the small cosets mod ROT to the larger
cosets mod PSL; and (ii) passing from a shape with
base point to a shape without base point.

Closely related to this is the following remark: if
a coset � · PSL2(R) represents the shape �, then the
cosets A ◦ � · PSL2(R), for various Möbius maps A ∈
PSL2(R) represent the shapes B(�) for those complex
Möbius maps B ∈ PSL2(C) such that B−1(∞) lies
outside �. Recall that complex Möbius maps are the
maps of the extended complex plane given by z �→
(az + b)/(cz + d). To see this, use the definition � =
�−1

+ ◦�−. Then multiplying � on the right by A is the
same as replacing �+ by �+ ◦ A. Now �+ ◦ A is a
good conformal map of the exterior of the unit circle
onto the exterior of �, only it doesn’t have the right
normalization any more as it doesn’t carry ∞ to ∞. In
fact, Q = �+(A(∞)) is some point in the exterior of �.
Choose a complex Möbius map B so that B−1(∞) =
Q. Further require that B−1 carry the positive real axis
tangent direction at ∞ to the tangent direction at Q
which is the image of the positive real direction under
�+ ◦ A. Then B ◦ �+ ◦ A is fully normalized, carrying
∞ to itself and carrying the postive real direction at
∞ to itself. Thus �′+ = B ◦ �+ ◦ A and �′− = B
◦ �− are the exterior and interior conformal maps
for the shape B(�). Thus the fingerprint of B(�) is
� ′ = (�′

+)−1 ◦ �′
− = A ◦ �−1

+ ◦ �− = A ◦ �.

2.4. The Homogeneous Structure of S

Any group G operates, of course, on any coset space
G/H by left multiplication, hence, as a result of the
above construction, Diff(S1) operates on the space of
shapes S. A concrete way of defining this action is
this: to transform any � ∈ S by a group element �,
we construct the conformal map �+ : �+ → �+
hence we get the map � ′ = �+ ◦ � ◦ �−1

+ from � to
itself. Then we use the same welding trick by cutting
open Ĉ along � and rewelding it with the map � ′.
The result can be conformally mapped to the extended
sphere, taking � to a new curve �′. This way we get a
transitive group operation on S.
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3. Computing Shapes from Diffeomorphisms
and Vice Versa

3.1. Schwarz-Christoffel: From Shapes to
Diffeomorphisms

There seem to be three published methods of comput-
ing the conformal mapping from the unit disk to the
interior of a simple closed curve �:

1 using the Schwarz-Christoffel formula, developed
by Tobin Driscoll, cf. http://www.math.
udel.edu/∼driscoll/SC and Driscoll and
Trefethen (2002).

2 the method of circle packing, developed by
Kenneth Stephenson, cf. http://www.math.
utk.edu/∼kens/ and Stephenson (1989)

3 the ‘zipper’ algorithm of Donald Marshall,
cf. http://www.math.washington.edu/
∼marshall/zipper.html.

The Schwarz-Christoffel method is like this: start by
approximating � by a polygon. Let z be the complex
coordinate in the unit disk, and let {ai} be the points
on the unit circle which will map to the vertices of the
polygon and let {παi} be the angles of the polygon at
these vertices. Then for some C1, C2:

�(z) = C1

∫ z

0

∏

i

(z − ai )
αi −1dz + C2.

For instance, if the polygon is a square, then the con-
formal map of the unit disk to its interior is given by
the elliptic integral:

�(z) = C1

∫ z

0

dz√
1 − z4

+ C2.

This method has been implemented in the excellent
package ‘sc’ by Tobin Driscoll (cited above), based
on joint work with L.N. Trefethen (1996). The key
problem is that one is usually given only the points
�(ai) and must compute {ai} at the same time as �.
Moreover, they are non-unique as, for any Möbius map
A, �′ = � ◦ A, a′

i = A−1(ai ) are equally good solu-
tions. The program allows you to specify the point
�(0) ∈ Int(�) to get the best looking and best be-
haved solution. We use this package for our examples in
Section 4 below.

3.2. From Diffeomorphisms to Shapes: The First
Method of Welding

3.2.1. Reducing Welding to Coupled Elliptic Bound-
ary Value Problems. Setting the equations for the
conformal map f (see Fig. 3). We consider �− and
�+ as a partition of the Riemann sphere into two
parts along the unit circle �, and �− and �+ as a
partition of the Riemann sphere into two parts along
�, as explained in Sec. 2.1 (see Fig. 3). We associate
the complex-plane variable z with the �-sphere, and
the complex-plane variable w with the �-sphere. We
will assume that 0 ε �− in order to normalize the map
�− as well as �+ by asking that �−(0) = 0. Given
a diffeomorphism ϕ : � → �, we seek a function
f(z) from the z-sphere minus the unit circle to the
w-sphere, complex analytic on |z| < 1 with boundary
values f ||z|=1 = f−, and complex analytic on |z| > 1
with f ||z|=1 = f+, such that

f (0) = 0, f (∞) = ∞
f−(z) = f+(ϕ(z)) |z| = 1

(2)

Defining g, a function of f which is more convenient
to compute. Note that f (z)/z has finite non-zero lim-
iting values at 0 and ∞, hence it has a single-valued
logarithm in �− and �+. Thus we may define g(u) by

log

(
f (eu)

eu

)

= g(u), u ∈ Ĉ − iR (3)

so that g(u + 2π i) ≡ g(u).
Now,

Re(u) → −∞ ⇒ |eu | → 0

⇒ f (eu) ≈ c1eu ⇒ g(u) ≈ log c1,
(4)

and

Re(u) → ∞ ⇒ |eu | → ∞
⇒ f (eu) ≈ c2eu ⇒ g(u) ≈ log c2,

(5)

for some constants c1 and c2. Without loss of generality,
we can replace f by c2

−1 f so that c2 = 1, and g(u) ≈ 0
as Re(u) → +∞.

We define � : R → R, satisfying �(θ + 2π ) =
�(θ ) + 2π by ϕ(eiθ ) = ei�(θ). Then,

g−(iθ ) = log( f−(eiθ )) − iθ

= log( f+(ϕ(eiθ ))) − iθ = log( f+(ei�(θ)) − iθ

= g+(i�(θ )) + i�(θ ) − iθ. (6)
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Thus we get a new welding condition on the imagi-
nary axis

g−(iθ ) = g+(i�(θ )) + i(�(θ ) − θ ). (7)

Note that if Eq. 7 holds at θ then it also holds at θ +
2π .

Setting the equations for g’s imaginary part k. (h is
then known from k.) Now let

g(u) = h(u) + ik(u), (8)

where h, k are real. Then,

h, k harmonic if Re(u) < 0, Re(u) > 0

h, k → 0 if Re(u) → +∞
h, k → suitable if Re(u) → −∞

constants

h, k periodic if u → u + 2π i.

(9)

Furthermore, from Eq. 7 we get that

h−(iθ ) = h+(i�(θ ))

k−(iθ ) = k+(i�(θ )) + �(θ ) − θ.
(10)

By the Cauchy-Riemann equations, if u = s + iθ ,
we have for s < 0, s < 0 that

∂h

∂θ
= −∂k

∂s
,

∂h

∂s
= ∂k

∂θ
. (11)

For s = 0 this gives

− ∂k−
∂s

= ∂h−
∂θ

= � ′(θ )
∂h+
∂θ

= −� ′(θ )
∂k+
∂s

. (12)

Thus, we can conclude the following conditions on k

k harmonic on s < 0, s > 0

k periodic w.r.t. θ → θ + 2π

k → 0 if s → ∞, k → c if s → −∞
k−

∣
∣
iθ = k+

∣
∣
i�(θ) + �(θ ) − θ on s = 0

∂k−
∂s

∣
∣
iθ = � ′(θ ) ∂k+

∂s

∣
∣
i�(θ) on s = 0,

(13)

for some real constant c which comes implicitly from
the equations. Note that Eq. 13 is in fact an equation
for a real function k, of the two real variables s and θ .
Having solved it for k = k(s, θ ) we get h = h(s, θ ) as

Figure 4. The (si, θ j) k-grid on the (s, θ ) plane. In blue over
the grid points, a schematic sketch of the three types of equations
involved in the numeric solution of k, as described in Sec. 3.2.2: the
zero derivatives at the external boundaries (s = ±ŝ), described by
the equal signs (Neuman boundary conditions), the template of the
Laplacian mask applied to internal grid points (s �= ±0,±ŝ), and the
9 grid points (circled) involved in the internal boundary condition
for every internal-boundary grid point (s = ± 0). The square inset
demonstrates the three staggered grids, for the functions k, h and g.
Every grid point is represented by the corresponding letter.

the conjugate function of k, via the Cauchy-Riemann
relations in Eq. 11.
f is then known from k and h. From Eq. 3 and Eq. 8
we get that

f (es+iθ ) = eh(s+iθ)+i(k(s+iθ)+θ). (14)

Since � is given by f(θ )|s=±0, we have that h(θ )|s=±0

and k(θ )|s=±0 describe the magnitude and angle, re-
spectively, of the complex-plane vectors delineating �

as a periodic function of θ .

3.2.2. Solving the Elliptic Problem Numerically
Given a diffeomorphism �, we solve Eq. 13 for the
θ -periodic function k = k(s, θ ) on the plane branch θ

∈ [0, 2π ] and −∞ < s < ∞. We conveniently set
three different, staggered grids on (s, θ ), with uniform
meshsize δ > 0 for the three functions k, h and g (see
the square inset in Fig. 4). In practice, we cut off the s
direction into −ŝ ≤ s ≤ ŝ, for some ŝ > 0, at which
the values of k, h and g already converge to constants
(cf. Eq. 9). Solving for k on the k-grid, we use Eq. 11
to compute h on the h-grid, and interpolating both to
get g on the g-grid. It is the values of g on s = ±0
that fix the resulting curve �. In practice, having k, we
directly compute h on s = ±0, at the k-grid points, as
explained at the end of Sec. 3.2.2.

Solving for k: setting the s-grid and three types
of numerical equations (see Fig. 4). Solving for
k(s, θ ), we define the (si, θ j) k-grid, by indexing
with i, j ∈ N an s-grid: si ∈ {−ŝ, (−ŝ + δ),
(−ŝ + 2δ), . . . ,−2δ,−δ,−0,+0, δ, 2δ, . . . , (ŝ −
2δ), (ŝ − δ), ŝ}, and a θ -grid: θ j ∈ {0, δ, 2δ, . . . , (2π
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− δ)} (for which the index j applies periodically). We
set three different types of equations.

Setting the Laplacian-mask equations. First we have
the basic simplest second-order discretization of the
Laplace equation holding for every internal point, k
being harmonic, that is: ∀ j and ∀si �= ±ŝ,±0 we have

0 = 1
δ2 (−4k(si , θ j ) + k(si−1, θ j ) + k(si+1, θ j )

+ k(si , θ j−1) + k(si , θ j+1))
(15)

Setting the Neuman-boundary-condition equations.
Second, accounting for k’s convergence to constants at
s = ±∞, we set Neuman boundary conditions at the
external boundaries si = ±ŝ

k(−ŝ, θ j ) = k(−ŝ + δ, θ j ) ∀ j

k(ŝ, θ j ) = k(ŝ − δ, θ j ) ∀ j
(16)

Setting the internal-boundary-condition (welding)
equations. Third, we have the k-value, and k-derivative
pair of welding equations from Eq. 13, between the
internal boundaries s = −0, associated with k−, and
s = +0 associated with k+.

For every j we will associate one such pair of equa-
tions with every value k(−0, θ j), and similarly with
every value k(+0, θ j). We separate the equations for
k− from those for k+ because the values of �(θ j) in-
volved in the equation for k(−0, θ j) do not necessarily
fall on some grid line θ j̃ , since � is a continuous weld-
ing diffeomorphism that does not typically send θ j into
some other grid line θ j̃ . (Symmetrically, when focus-
ing on the pair of welding equations for k(+0, θ j) we
may have that �−1(θ j) is not a grid line.)

For every grid line θ j we use the following second-
order discretizations for ∂k±

∂s

∂k

∂s
|(−0,θ) = 3

2δ
k(−0, θ ) − 2

δ
k(−0 − δ, θ )

+ 1

2δ
k(−0 − 2δ, θ ) + O(δ2),

(17)

and

∂k

∂s
|(+0,�) = − 3

2δ
k+|(+0,�) + 2

δ
k|(+0+δ,�)

− 1

2δ
k|(+0+2δ,�) + O(δ2).

(18)

To replace the first term on the right, k|(+0,�(θ j )),
we may simply use the value of k at the grid point

(−0, θ j), via the k-value welding equation from
Eq. 13

k+|(+0,�(θ j )) = k(−0, θ j ) − �(θ j ) + θ j . (19)

The other two values of k participating in Eq. 18 may
each be simply interpolated from the nearest three grid
points along the θ -direction. We use three such values
to keep an approximation of order δ2. More precisely,
for every s-column, and specifically for s = +0 + δ
and s = +0 + 2δ, we can write the exact interpolation
relations

k|(s,�) = (� − θ j2 )(� − θ j3 )

(θ j1 − θ j2 )(θ j1 − θ j3 )
k|(s,θ j1 ) + O(δ2)

(� − θ j1 )(� − θ j3 )

(θ j2 − θ j1 )(θ j2 − θ j3 )
k|(s,θ j2 )+ (� − θ j1 )(� − θ j2 )

(θ j3 − θ j1 )(θ j3 − θ j2 )
k|(s,θ j3 ),

(20)

where θ j1 , θ j2 and θ j3 are the closest grid points to �.
Substituting Eq. 19 and Eq. 20 in Eq. 18 we get

from the last equation in Eq. 13 an equation between
exactly 9 grid values. We associate this equation with
the unknown k(−0, θ j). A similar equation is associated
with k(+0, θ j) for every θ j. Together with Eq. 15 and
Eq. 16 we have thus associated one equation with every
grid point (si, θ j). See Fig. 4 for exemplifying the three
different types of equations.

Regularizing the system of equations for k. Notice
however that the solution is still not uniquely fixed.
Adding a constant to any solution of this system will
keep it a solution still. Thus the system is singular.
So we first need to add one more equation that will
determine that constant. Recalling that k → 0 as s →
∞ (cf. Eq. 9), a natural numerical equivalent condition
would be that

∫ 2π

θ=0 k(∞, θ ) = 0, and in its descretized
form

δ
∑

j

k(ŝ, θ j ) = 0. (21)

(We could in principle set a one grid-point value of k
but this is less favorable numerically in general, and
somewhat less amendable when carrying the set of
differential equations in Eq. 13 to other, coarser grids.)

We now have one equation more than variables. Up
to round-off errors the system has a unique solution
since the equations are dependent. But for the numeri-
cal solver to work properly we add another unknown,
say ε, to some of the equations making the new system
non-singular. Since the system without this addition
has a unique solution ε will actually turn out to be zero
up to round-off errors. We have chosen to add ε to each
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of the k-derivative welding equations, although other
choices could be made as well.

Having computed k we compute h and then g, on
s = −0. Having computed the values of k over the k-
grid we note that in order to get the resulting shape �

we only need the values of g(s, θ ) and hence of h(s, θ )
at either one of the internal boundaries s = ±0. We can
use a discretized version of the first Cauchy-Riemann
equation presented in Eq. 11 in order to approximate
∂h
∂θ

on s = ±0, at exactly midpoints between the k-grid
points. Specifically we write

h(−0, θ j+1) − h(−0, θ j )

δ

= −1

2

(
∂k

∂s
|(−0,θ j+1) + ∂k

∂s
|(−0,θ j )

)

+ O(δ2),
(22)

where ∂k
∂s

∣
∣
(−0,θ j+1) and ∂k

∂s

∣
∣
(−0,θ j )

were already computed
during the process of computing k, via Eq. 17. We can
easily integrate the values {h(−0, θ j)}j out of their
differences computed in Eq. 22, up to a global additive
constant that does not matter in terms of the result-
ing �.

From {k(−0, θ j)}j and {h(−0, θ j)}j we have {g(−0,
θ j)}j via Eq. 8, and can get {f(−0, θ j)}j via Eq. 3, and
eventually �.

3.3. A Second Method of Welding

The second algorithm is based on the Hilbert trans-
form. Recall that for functions on the real line, the
Hilbert transform is convolution with the singular
kernel 1/x and that it multiples the fourier transform of
the function by −i ·sign(ξ ). In our case, we are dealing
with functions on the circle and the modified Hilbert
transform is convolution with ctn(θ/2) or, equivalently,
multiplication of the fourier coefficients by −i ·sign(n).
For any function f ∈ L2(S1), let H( f ) be its Hilbert
transform in this sense.

Now consider the function f+ as above. It is mero-
morphic on {|z| ≥ 1} ∪ ∞ and with a simple pole and
positive real derivative at ∞, hence it has an expansion:

f+(z) = bz + a0 + a1z−1 + a2z−2 + · · · , b > 0.

Since � is only defined up to scalings, we can normalize
so that b = 1. Thus, on the unit circle:

f+(eiθ ) = eiθ +
∑

n≥0

ane−inθ .

Let F(θ ) = f+(eiθ ). Then

i H (F)(θ ) = 2eiθ + a0 − F(θ ).

On the other hand, we know that f− is holomorphic on
{|z| ≤ 1}, so it has the expansion:

f−(z) = c0 + c1z + c2z2 + · · · .

Since f−(eiθ ) = F(�(θ )), we get:

i H (F ◦ �)(θ ) = (F ◦ �)(θ ) − c0.

Thus, by subtraction, we get:

i H (F ◦ �) ◦ �(−1) − i H (F) = 2F − (a0 + c0) − 2eiθ .

We may replace F by F − a0+c0
2 since � is only defined

up to a translation. Letting K (F) = i/2(H (F)−H (F ◦
�) ◦ �(−1)), we get the integral equation

K (F) + F = eiθ (23)

for F.
We can calculate K as follows. Let χ = �(−1) be the

inverse of the welding map. Then:

K (F)(θ1) = i

2

∫

S1
ctn

(
θ1 − θ2

2

)

F(θ2)dθ2

− ctn

(
χ (θ1) − θ3

2

)

F(�(θ3)dθ3

= i

2

∫

S1

(

ctn

(
θ1 − θ2

2

)

− χ ′(θ2)ctn

×
(

χ (θ1) − χ (θ2)

2

))

F(θ2)dθ2

and it is easily seen that the poles in the kernel can-
cel out. Remarkably, K is therefore a smooth integral
operator. By the Fredholm alternative, F can be solved
for as (I + K)−1(eiθ ) provided that I + K has no kernel.
Running the above argument backwards, it is easily
seen that a function in its kernel would define a holo-
morphic function on the compact surface gotten by
welding and this would have to be a constant. These
are not in the kernel as K kills constants. Thus the weld-
ing is transformed into solving a well-posed integral
equation.

Numerically, we sample F on some grid and need
only convert the linear map K into a suitable matrix.
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The only difficult point is to not allow the singularity of
the Hilbert kernel to cause problems. To address this,
we use the fact that the Hilbert kernel can be integrated
explicitly:

∫ b

a
ctn(x/2)dx = 2 log

(∣
∣
∣
∣

sin(a/2)

sin(b/2)

∣
∣
∣
∣

)

.

Note that even if 0 ∈ (a, b), the result is correct provided
the intergal is taken to be its principal value (i.e. the
limit of its values on the domain [a,−ε] ∪ [ε, b] as
ε → 0.

The linear map K is then converted into a matrix
as follows: let F(θ ) be given at points θ = θα , e.g.
θα = 2πα/N . Let θα+1/2 = (θα +θα+1)/2. The divide
the interval [0, 2π ] into intervals Iα = [θα−1/2, θα+1/2].
Assume F is approximately constant on each interval
Iα . Then replacing F(θ2) for θ2 ∈ Iβ by F(θβ), and
setting θ1 = θα , the integral for K over Iβ gives the
matrix entry:

Kα,β = i · log

∣
∣
∣
∣

sin(θα − θβ+1/2) · sin(χ (θα) − χ (θβ−1/2))

sin(θα − θβ−1/2) · sin(χ (θα) − χ (θβ+1/2))

∣
∣
∣
∣
.

4. Examples of Fingerprints and Their Shapes

We implemented solvers both for the welding equa-
tions described in Eq. 13, according to Sec. 3.2.2 and
for Eq. 23 in Sec. 3.3. To go back and forth between
S and Diff(S1)/PSL2(R) we start with a shape � ∈
S, and using the Schwarz-Christoffel transformation
(Sec. 3.1) we compute the two conformal mappings,
�− and �+ of the unit disc to the interior and exte-
rior of the shape, correspondingly as explained in Sec.
2.1. We may then obtain a diffeomorphism � from the
coset in Diff(S1)/PSL2(R) describing � by defining
�

.= �−1
+ ◦ �−

∣
∣

S1 . To go back from � to � we follow
Sec. 3.2.2 or Sec. 3.3 for welding in order to get f, and
demonstrate that the resulting � is indeed the one we
started with.

The first example is a family of shapes for which
the conformal mappings �− and �+ can be solved
analytically: these are the lens or eye shaped regions
bounded by two circular arcs meeting at two corners.
Figure 5 shows how the conformal map to the interior
one such shape can be constructed. To get any other
eye shaped region, one need only change the power in
the third step and change the Möbius map used in the
final step. If the angle of the eye at its corners is απ ,
then one uses z3 = zα

2 . The same method gives us the

Figure 5. Example: The construction of �− – the conformal map-
ping of the interior of the unit disc onto the interior of the “eye”
shape, presented in steps. The transformation z1 = es+iθ carries the
real-plane (s, θ ) to the complex-plane circle (most left), z2 = 1−z1

1+z1
carries the circle to a half-plane (second left), z3 = z2

3/2 carries the
half-plane to an “angled” half-plane (second right), and z4 = 1−z3

1+z3
carries the angled half-plane to the eye shape (most right). Note that
the same maps take the exterior of the unit circle to the exterior of
the eye, except that the middle map must be replaced by z′

3 = i z4/3
2 .

We can work out the fingerprint by going from z1 to z2 to z3 which
we equate to z′

3, then back to z2 and to z1 without going to z4 at all.
Using the fact that if z1 = eiθ , then z2 = −i tan(θ/2), we get the
formula �(θ ) = 2arctan(±| tan(θ/2)|1/2) where the sign is that of
the tangent.

conformal to the exterior, except that as the exterior
angle is (2−α)π , one uses z3 = z2−α

2 . Applying this
construction to both the interior and the exterior, we
can verify that the fingerprints which give eye shaped
regions are all of the form:

�β(θ ) = 2 · arctan
(

tan(θ/2)β
)

,

where tanβ = sign(tan)| tan |β. (24)

Here, if απ is the angle of the corner of the eye, then
β = α/(2 − α). The fingerprint for one eye shape is
shown in Fig. 6.

It is striking that the formula for the fingerprint of
eye-shaped regions is of the form f−1(β · f(θ )): in fact
define f1 : (0, π ) ←→ R by f1(θ ) = log(tan(θ/2))
and f2 : (−π, 0) ←→ R by f2(θ ) = log(− tan(θ/2)).
Then

�β(θ ) =







f −1
1 (β( f1(θ ))) on (0, π )

f −1
2 (β( f2(θ ))) on (−π, 0)

θ if θ = 0 or π

This formula makes apparent the identity:

�β1β2 = �β1 ◦ �β2 .

In this situation, the set of diffeomorphisms {�β} is
called a one parameter subgroup.

All one-parameter subgroups of the group of dif-
feomorphisms can be gotten this way. Their additive
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Figure 6. On the left, the fingerprint of the eye shape as given by Eq. 24; in the middle and right, the functions k(s, θ ) and h(s, θ ) used in
Sec. 3.2.2 to construct the shape from its fingerprint.

form is more general. To put the �β’s in this form, it’s
convenient to decompose the circle into four intervals
between the four fixed points {0, π /2, π , 3π /2} of
�β . Then define g(θ ) = log(| log(| tan(θ/2)|)|) at all
non-fixed points. Then:

�β (θ )

=
{

g−1(log(β) + g(θ )), if θ ∈ ((k − 1)π/2, kπ/2), some k

θ if θ = kπ/2, some k.

The recipe generalizes like this: take any decomposi-
tion of the circle into a set of intervals {Ik = (θ k, θ k+1) }.
On each interval, take a bijective map fk : Ik ←→ R.
Then define:

�α(θ ) =
{

f −1
k (α + fk(θ )), if θ ∈ Ik,

θ, if θ = θk, some k.

For α infinitesimal, this diffeomorphism is given by
the vector field:

v(θ )

= ∂

∂α
f −1
k (α+ fk(θ ))

∣
∣
∣
α=0

=(

f −1
k

)′
( fk(θ ))= 1

f ′
k(θ )

.

In this way, every vector field v defines a one-parameter
subgroup, as is well known from the theory of Lie
groups.

Here’s an elegant example of this: start with the
Fourier basis for vector fields – vn(θ ) = sin(nθ ), n ≥
2. The zeros of these vector fields are the 2n points
{πk/n, 0 ≤ k < 2n}: these will be the fixed points
of the corresponding one-parameter subgroups. By
integrating, we solve for fk and it comes out:

fk(θ ) = 1

n
log

(

|tan
n

2
θ |

)

.

Welding, one finds wonderful n-petalled ‘flowers’
coming out as the corresponding shapes. As you move
out on the one-parameter subgroup, increasing α, the
petals start as small ripples, then extend and form al-
ternating large circular evaginations and invaginations.
This is shown in Fig. 7.

Another simple example is the square (see Fig. 8). As
mentioned above, the interior and exterior conformal
maps are given by simple Schwarz-Christoffel expres-
sions7, namely:

�−(z) =
∫ z

0

dζ
√

1 − ζ 4

�+(z) = z +
∫ z

∞

(√

ζ 4 − 1

ζ 2
− 1

)

dζ

From the eye and square examples (Figs. 6 and 8), the
derivative of the conformal map on the interior goes
to ∞ (shown by the spreading out of the internal ra-
dial lines at the corners) while the derivative of the
conformal map on the exterior goes to 0 (shown by
the bunching up of the external radial lines). This is
seen explicitly by noting that the derivative of the S-C
formula is just its integrand and this is 0 (resp. ∞)
at convex (resp. concave) corners. Thus the derivative
of the fingerprint is ∞ at convex corners, 0 at con-
cave corners. If the shape has high positive curvature
at some point but not infinite as in a convex corner,
we will find that the fingerprint has large derivative
at the corresponding point; while points with large
negative curvature, not −∞ as in a concave corner,
the fingerprint has very small derivative at the corre-
sponding point.

An interesting family of fingerprints are those
coming from long elongated blobs, i.e. elliptical or
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Figure 7. The shapes obtained by welding with (2/n)arctan(α tan(nθ/2)) for (n, α) equal to (2, 2) (top left), (2, 50) (top right), (4, 2) (bottom
left) and (4, 50) (bottom right).

‘cigar-shaped’ blobs. One might have expected that
these come from the one-parameter subgroup given by
the vector field sin(2θ ), but, as we saw, these shapes
develop concavities. This is because they are symmet-
rical with respect to inversion z �→1/z. Although the
exact fingerprint for specific large eccentricity ellipses
or long blobs is hard to compute exactly, the follow-
ing argument gives fingerprints for one family of long
blobs, as one verifies by welding. To construct this, we
use 2 simple conformal maps which don’t quite match
up and then we force them to match up! The exterior of
a circle can be mapped to the whole plane minus the slit
[−r + r] by the conformal map w = (r/2)(u + 1/u). In
this map, the exterior of a circle |u| ≥ λ, for λ slightly
greater than 1, is carried to the exterior of an ellipse sur-
rounding the slit, with width r(λ + 1/λ) ≈ 2r and small
height r(λ−1/λ). Unfortunately, the conformal map to
the interior of the ellipse is not given by elementary
functions. But one can map the interior of the circle to
the strip |imag(w)| < π by the map w = 2 log ((1 +
z)/(1 − z)), and this maps the interior of the circle |z| ≤

µ, for µ slightly less than 1, to the interior of a cigar-
shaped region inside this strip. This blob has height
slightly less than 2π and width 4 log ((1 + µ)/(1 −
µ)). Both maps are illustrated in Fig. 9.

The images of these circles roughly match up if
we require that 2π = r(λ − 1/λ) and 4 log (((1 +
µ)/(1−µ)) = r(λ + 1/λ). We make an approximate
fingerprint by mapping a point on the circle |z| = µ to
that point on the circle |u| = λ for which the real parts
of the corresponding z-values are equal. This means:

Re
(r

2

(

λeiθ1 +λ−1e−iθ1
))=Re

(

2 log

(
1 + µeiθ2

1 − µeiθ2

))

.

or

r

2
(λ + λ−1) cos θ1 = log

(∣
∣
∣
∣

1 + µeiθ2

1 − µeiθ2

∣
∣
∣
∣

2
)

= log

(
1 + ν cos θ2

1 − ν cos θ2

)

, ν = 2µ

1 + µ2
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Figure 8. On the top left, internal and external conformal parametrization of the square. Top right, the fingerprint of the square; in the bottom,
the functions k(s, θ ) (left) and h(s, θ ) (right) used in Sec. 3.2.2 to construct the shape from its fingerprint.

Figure 9. The construction of an explicit formula for the fingerprint of a long blob: on the left, (i) the red curve is an ellipse and its exterior
is uniformized by w = (r/2)(u + 1/u), (ii) the interior of the blue curve is uniformized by the map w = 2 log ((1+z)/(1−z)) applied to a circle
with radius slightly less than 1. The fingerprint on the right is made by matching points on these with the same real part and the yellow curve
on the left is the result of welding with this fingerprint.

Simplifying, we get the formula for the fingerprints of
long blobs, �blob1 as:

θ1 = arccos

(

log

(
1 + ν cos θ2

1 − ν cos θ2

)/

log

(
1 + ν

1 − ν

))

In this form, the fingerprint has high derivatives at
2 points, corresponding to the 2 ends of the blob and the
interior conformal map takes 0 to the center of the blob.
The same shape, however, is defined by �blob1 ◦ A for
any Möbius map A. In particular, we get such a finger-
print if the interior map is chosen to take 0 to a point at
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one end of the blob. Then the fingerprint will only have
high derivatives at one point. With some experimenta-
tion, one finds a simple form for such a fingerprint:

�blob2(θ ) =
{

2arctan
(

C1

√

log(1 + a tan2(θ/2))
)

, if θ ∈ [−θ0, θ0]

2arctan (tan(θ/2) + C2sign(θ )) , if θ ∈ (−π, π ) − [−θ0, θ0]

where C1, C2 are chosen to make the above continuous
with continuous derivatives8.

We can use the formula for elongated blobs to illus-
trate the power of the group law in Diff(S1). Suppose
�1 and �2 are the fingerprints of 2 shapes. We can
combine them in various ways using the fingerprints
�1 ◦ A ◦ �2, for various Möbius maps A. As A varies,
the mode of combination varies. We take �1 = �blob2

to be the fingerprint of a suitable blob and �2 = �boom

to be the fingerpint of a ‘boomerang’ shape computed
by Schwarz-Chistoffel. To combine them, we will first
pick the constants a and θ0 in the blob fingerprint so that
�blob1 is close to the identity over much of its domain,
and has very large derivative at one point. Then we
combine them with a rotation R inserted. In fact, to put
the boomerang back in a fixed orientation, we show in
Fig. 10 the shapes defined by R−1 ◦�blob1 ◦ R ◦�boom.
The effect will be to create a new shape in which a
blob is glued to the boomerang at a point depending on
where this derivative is large.

Finally, we look at two more complex shapes. The
first is a silhouette of a cat. For this we apply the
Schwarz-Christoffel package in order to obtain �(θ ).
Hence �(θ ), � ′(θ ) and �−1(θ ) involved in Eq. 13
are computed numerically. We reconstrcut the shape
using the first welding method. The result is shown in
Fig. 11. Note again the close similarity of the com-
puted � (right) to the original shape (left). Recall from
Eq. 14 the way k and h (Fig. 11, bottom row) describe
�. In our current straightforward implementation we
are limited in the size of the (s, θ )-grid we can solve
for. This results in the minor distortions in k, h and the
resulting �.

The final example is the silhouette of the upper body
of a person (see Fig. 12).

5. The WP Riemannian Metric on S

5.1. The WP Norm on the Lie Algebra of Diff(S1)

The Lie algebra of the group Diff(S1) is given by the
vector space vec(S1) of smooth vector fields on the

circle: v(θ ) ∂/∂ θ where v (θ + 2π ) = v(θ ). In general,
the adjoint action of a group element g ∈ G is the linear
map from Lie(G) to itself induced by the conjugation

map h �→ g−1◦ h ◦ g from G to itself. Explicitly, this
maps v ∈ vec(S1) to (v ◦ g)/g′, i.e. adg(v) = (v ◦ g)/g′.

We can expand such a v in a Fourier series v(θ ) =
∑∞

n=−∞ aneinθ (where an = a−n). The Weil-Petersson
norm on vec(S1) is defined by:

||v||2W P =
∞

∑

n=2

(n3 − n)|an|2.

The null space of this norm is given by those vector
fields whose only Fourier coefficients are a−1, a0 and
a1, i.e. the vector fields (a + bcos(θ ) + csin(θ ))∂/∂θ ,
which are exactly those tangent to the Möbius subgroup
PSL2(R), i.e. in its Lie algebra psl2(R).

The motivation for this particular definition is the
fact that, for all φ ∈ PSL2(R) and v ∈ vec(S1), one can
verify that

||adφ(v)||W P = ||v||W P .

5.2. Extending the Metric to Diff(S1)/PSL2(R)

Riemannian metrics on coset spaces G/H which are
invariant by all left multiplication maps Lg : G/H →
G/H, g ∈ G are given by norms ||v|| on the Lie algebra
of G which are zero on the Lie subalgebra of H and
which satisfy ||adh(v)|| = ||v|| for all h ∈ H. Here the
norm on the tangent space TgH,G/H to G/H at any gH
is gotten from the norm on the Lie algebra via the
isomorphism

DLg : Lie(G)/Lie(H ) = TeH,G/H → TgH

given by the derivative of Lg at the identity e of G.
In particular, this applies to Diff(S1) and PSL2(R).
Because Diff(S1)/PSL2(R) ∼= S , we have now con-
structed a homogeneous Riemannian metric on S also.

Next let’s translate this into concrete terms. Take
any path �(t, θ ) in Diff(S1), where t ∈ [0, t0] ⊂ R

and �(t, θ + 2π ) = �(t, θ ) + 2π . The tangent vec-
tors to this path are given by ∂�(t,θ)

∂t = �t (t, θ ) or,
translated back to the Lie algebra using DL (−1)

� , by
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Figure 10. Top-left: the boomerang shape, middle-left: its fingerprint, middle-right: the fingerprint of the blob, and bottom-left: the
fingerprint of a composition. Note the very large derivative on the boomerang fingerprint for two ends, and the very small derivative
for the concave corner. The blob fingerprint has one point of high derivative corresponding to the far end, the origin being placed at
the near end. A rotation is used in the composition, and the small circles mark corresponding points in the graphs of the 3 diffeo-
morphisms. On the top-right and bottom-right: shapes defined by compositions of the fingerprints with various rotations and constants.
The composite shapes can be interpreted as the boomerang plus a blob at some point of its boundary—short on the top-right, much
longer than the boomerang itself on the bottom-right. In the composite shapes on the left, the blob’s constants are a = e20, on the right
a = e50, while θ0 = .05 radians in both cases. For each set of constants, rotations through k π /10 radians have been put in the middle so that
the protrusions are placed on the boomerang at different points of its boundary.

�t (t, θ )/�θ (t, θ ). We expand the tangent vector at ev-
ery t ≥ 0 by its Fourier series in θ :

�t (t, θ )/�θ (t, θ ) =
∞

∑

n=−∞
an(t)einθ , (25)

where a−n(t) = an(t) because the vector field is real.
Its Weil-Petersson norm is then given by

‖�t (t, θ )/�θ (t, θ )‖WP
.=

∞
∑

n=2

|an(t)|2(n3 − n) (26)
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Figure 11. Top: the conformal mappings �− and �+ carrying a homogenous radial grid (left, drawn schematically) onto the interior and
exterior of the cat silhouette �; middle line: the fingerprint of the cat and the cat, as reconstructed by welding following the first method; bottom:
the harmonic functions k (left) and h (right) used for reconstruction.

and the length of the path is by definition:
∫ t0

0

√
∑∞

n=2 |an(t)|2(n3 − n)dt.
It is a wonderful fact that all sectional curvatures

of the Weil-Petersson norm are non-positive (Bowick
and Lahiri, 1988). Because of this, it is to be expected
that there is a unique geodesic joining any two shapes9

�1, �2 ∈ S. Because minimizing energy and length

are equivalent, these geodesics are the solutions of the
following minimization problem

Min�(t,θ),t0

∫ t0

t=0

∞
∑

n=2

|an(t)|2(n3 − n)dt, (27)

where �(0, θ ) and �(t0, θ ) are the diffeomorphisms
corresponding to the two given end-point shapes.
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Figure 12. A truncated human figure. On the left, the conformal parametrization of the interior and exterior; in the middle, the fingerprints;
on the right, the reconstruction using the first method.

6. Calculating the Geodesics

We solve for the geodesics {�(t, θ )}t∈[0,1], where �(t,
θ ) ∈ Diff(S1) ∀ t ∈ [0, 1], parameterized by ‘time’ t
between the two given end-point shapes �0

.= �(0, θ )
and �1

.= �(1, θ ). The length of the geodesic between
each two given end-point shapes is obtained by mini-
mizing the Weil-Petersson norm

∫ 1

0
‖�t (t, θ )/�θ (t, θ )‖WP dt, (28)

where �0 and �1 are the diffeomorphisms (finger-
prints) corresponding to the two given end-point shapes
(see Sec. 5.2).

Minimizing the norm in Eq. 28 is equivalent to min-
imizing the energy

E(�0, �1)
.=

∫ 1

0

∞
∑

n=2

|an(t)|2(n3 − n)dt, (29)

(cf. Sec. 5.2), where

�t (t, θ )/�θ (t, θ ) =
∞

∑

n=−∞
an(t)einθ (30)

We discretize t ∈ [0, 1] into M homogenously
spaced points tu = u

M , u = 0, 1, 2, . . . , M , and
we discretize θ ∈ [−π, π ] into N homogenously
spaced points θk = −π + 2πk

N , k = 0, 2, . . . , N − 1.
We will always choose N = 2n, and M = 2m for
suitable n, m. We discretize the geodesics using a

(k, u)-grid into {�(tu, θ k)}k,u, where k = 0, 2, . . . ,
N−1, and u = 0, 2, . . . , M. Both �̃0

.= {�(t0, θk)}k

and �̃1
.= {�(tM , θk)}k are fixed as the end-point

diffeomorphisms. In addition it is convenient for com-
puting the energy (Eq. 29) to discretize the parameter
t in the integral using also a shifted u-grid, namely an
s-grid for which ts = 1

2M + s
M , s = 1, 2, . . . , M . We

denote ts−
.= ts − 1

2M and ts+
.= ts + 1

2M , so that the
grids s− and s+ coincide with points of the u grid.

We can therefore discretize

�θ (ts, θk) ∼= 1

2

(
�(ts+ , θk+1) − �(ts+ , θk−1)

4π/N

+ �(ts− , θk+1)−�(ts− , θk−1)

4π/N

)

, (31)

and

�t (ts, θ ) ∼= �(ts+, θ ) − �(ts−, θ )

1/M
, (32)

thus obtaining the following discretization:

�t (ts, θk)

�θ (ts, θk)
∼=

(
M N

8π

)
�(ts+ , θk) − �(ts− , θk)

�(ts+ , θk+1) + �(ts− , θk+1) − �(ts+ , θk−1) − �(ts− , θk−1)
(33)

To compute the geodesics {�(tu,θ k)}k,u, we will
therefore minimize the discretized version of Eq. 29

Ẽ(�̃0, �̃1)
.=

M
∑

s=1

N−2
∑

n=2

|an(ts)|2(n3 − n), (34)
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Figure 13. A geodesic: rotating the ellipse by π /3, clockwise.

Figure 14. A geodesic from the ellipse with eccentricity 2 to a square.

where ∀ s = 1,2, . . . , M and k = 0, 1, . . . , N − 1 we
have the discrete Fourier transform

�t (ts, θk)

�θ (ts, θk)
= 1

N

N/2
∑

n=0

an(ts)e2π ink/N , aN−n(ts) = an(ts).

(35)

(cf. Eq. 30, but now with maximum frequency N/2).

We denote Ẽ0,1
.= Ẽ(�̃0, �̃1), �k,u

.= �(tu, θk), and
�s±,u

.= �(ts± , θk).

6.1. Direct Computation of the Energy Gradient
∂ Ẽ0,1/∂�k,u

For introducing numerical, iterative minimization of
the energy Ẽ0,1 it is useful to develop an efficient
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Figure 15. A geodesic from a square with a left bulge to the same square with a right bulge.

Figure 16. A geodesic from a Mickey-Mouse-like shape to a Donald-Duck-like shape.

formula for directly computing its gradient ∂ Ẽ0,1/

∂�k,u . To obtain this we define

ŵk
.= k̃3 − k̃, where k̃ = min(k, N − k). (36)

We then define {w1}N−1
1=0 to be the discrete Fourier

transform of {ŵl}N−1
l=0 . That is

wl =
N−1
∑

k=0

ŵke−2π ikl/N . (37)
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Denoting

fk,s(�)
.= �t (ts, θk)

�θ (ts, θk)
, (38)

we can rewrite Ẽ0,1, up to a multiplicative constant in
the following way

Ẽ0,1 =
∑

i, j,s

wi− j fi,s(�) f j,s(�). (39)

(by simply substituting Eq. 37 and Eq. 38 in Eq. 39 to
satisfy Eq. 34 and Eq. 35.)

Hence

∂ Ẽ0,1

∂�k,u
= 2

∑

i, j,s

wi− j fi,s(�)
∂ f j,s(�)

∂�k,u
. (40)

Note that ∂ f j,s (�)
∂�k,u

for every entry (k, u) is only dif-
ferent from 0 in 6 of its (j, s) entries. That is, when
s− = u or s+ = u, and j = k − 1, k, k + 1. Denoting
u± = u ± 1

2M , we can break Eq. 40 into six sums,
each of which is efficiently computed through a multi-
plication of a full N × N matrix of the form wi−j with
a sparse N × M matrix of the form fi,s.

6.2. Choosing a Representative Fingerprint in Each
Shape Coset

Recall that every shape is represented by an equiv-
alence class of diffeomorphisms, namely a coset in
Diff(S1)/PSL2(R). This creates ambiguities in the
choise of fingerprint � of each shape that need to
be resolved before making a numerical computation
of the geodesic between two shapes. The most natural
way to obtain a canonical representative of each coset
is to choose the unique diffeomorphism in that coset
which fixes three prescribed values (angles).

Specifically, suppose the coset corresponding to a
shape is given by the subset

{� ◦ A|� ∈ Diff(S1), A ∈ PSL2(R)} ⊂ Diff(S1).

For any � we can find a unique A so that � ◦ A fixes
three prescribed angles, thus obtaining a unique finger-
print representation � ◦ A for the coset � · PSL2(R).

Using Driscoll’s Schwarz-Christoffel software
package we compute a fingerprint � for each shape,
such that �(−π ) = −π . We then compose � with
A ∈ PSL2(R), denoting �̂

.= � ◦ A such that

�̂(−π ) = −π , �̂(α) = α and �̂(β) = β, where
α = −π/4 and β = +π/2. We obtain this by taking

A(θ ) = 2 · arctan(a + b tan(θ/2)), (41)

which satisfies A(−π ) = −π for every a, b ∈ R, and
fix a and b so that A(α) = �−1(α) and A(β) = �−1(β).
That is, by Eq. 41 we solve for a and b such that

a + b tan
α

2
= tan

(
�−1α

2

)

a + b tan
β

2
= tan

(
�−1β

2

)

.

(42)

6.3. Minimizing the Energy Ẽ0,1

As we have seen in the previous section, we may
assume that the fingerprints �̃0 and �̃1 of the end-
point shapes satisfy �̃0(−π ) = �̃1(−π ) = −π ,
�̃0(α) = �̃1(α) = α and �̃0(β) = �̃1(β) = β. We
then minimize Ẽ0,1 (see Eq. 39) with all the interme-
diate diffeomorphisms along the geodesic keeping the
three angles −π , α and β fixed. That is, we minimize
Ẽ0,1 with respect to the scalar variables �(tu,θ k), for
u = 1, 2, . . . , M − 1 and k ∈ {0, 1, . . . , N − 1},
k �= 0, 3N/8, 3N/4. For these remaining three val-
ues of k corresponding to θ = −π , α, β we keep the
values the diffeomorphisms fixed through the mini-
mization, i.e. �(tu, θk) = �̃0(tu, θk) = �̃1(tu, θk) =
−π,−π/4 or + π/2, ∀u = 1, 2, . . . , M − 1.

We start with M = 8 and N = 64, and set as the initial
approximation for all intermediate diffemorphisms a
fingerprint of the circle shape. Specifically we set

�(tu, θk) = θk, (43)

for u = 1, 2, . . . , M−1 and k = 0, 1, . . . , N−1.
We then minimize Ẽ0,1 by gradient descent, starting

at the current approximation to the solution (the initial
approximation from Eq. 43), and minimizing the en-
ergy along the direction of the gradient (using the ‘line
search’ method). In practice, we use the Matlab opti-
mization function fminnuc. We then take this mini-
mizing solution for (N = 64, M = 8), and interpolate it
in the variables {θk}N−1

k=0 to be an initial approximation
for the higher resolution case, (N = 128, M = 8), and
minimize again the same way using fminunc . We
interpolate into even higher resolution one more time
to solve for (N = 256, M = 8).
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7. Examples of Geodesics

We present 4 geodesics computed by the algorithm
above (Figs. 13-16). Each of these figures should be
read from left to right and top to bottom, starting at the
top-left and ending at the bottom-right. Note the strong
tendency to revert to shapes nearly equal to circles in
the middle: this is a reflection of the fact the space of
shapes is negatively curved in this metric.

8. Summary and Conclusions

We introduce a metric space-of-shapes that arises from
conformal mappings, through the mathematical the-
ory of complex analysis. In this space, the shortest
path between each two shapes is unique, and is given
by a geodesic connecting them, providing a path for
morphing between them. Every shape is represented
in this space by an equivalence class of “fingerprints”
each of which is a diffeomorphism of the unit cir-
cle to itself. We solved the welding problem to al-
low moving back and forth between shapes and this
space-of-shapes, thus allowing the continuation of the
research of shapes within this space. Indeed, our next
step will be to compute the geodesics between *many
different* shapes. We expect these to reflect the ap-
pealing structure-preserving properties of conformal
mappings, and to be very relevant to the comparison
and classification of shapes.

Notes

1. To be clear, by a shape we usually mean a smooth simple closed
curve in the plane, although sometimes we mean the curve plus
its interior.

2. For example, we have ‘Minkowski addition’ of shapes but this
addition cannot have inverses because it always makes a shape
bigger.

3. The reason for the notation PSL2(R) is that conjugating by A =
(

1 −i
1 i

)

takes 2 × 2 real matrices to the 2 × 2 complex matrics
( a b

b̄ ā

)

, so the same notation is used for both groups of matrices.

4. Smoothness of � is not required for Riemann’s result.
5. Recall that an element in a coset space G/H is a subset gH

.=
{g ◦ h | h ∈ H} of G.

6. In fact, it is a homeomorphism and is nearly unique: if F is one
solution, then aF + b are all the other solutions.

7. For the modifications used in the expression for the exterior, see
(Driscoll and Trefethen, 2002), p. 52.

8. In fact, if b = a. tan(θ0/2), c = 1 + a. tan2(θ0/2), then C1 =√
log c.c/b and C2 = (log(c/e).c + 1)/b.

9. Because the space is infinite dimensional, this requires proof and
this aspect of the metric does seem to have been discussed in the
literature.
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