315 research outputs found

    Spectral-spatial classification of hyperspectral images: three tricks and a new supervised learning setting

    Get PDF
    Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. In the presence of only very few labeled pixels, this task becomes challenging. In this paper we address the following two research questions: 1) Can a simple neural network with just a single hidden layer achieve state of the art performance in the presence of few labeled pixels? 2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets? We give a positive answer to the first question by using three tricks within a very basic shallow Convolutional Neural Network (CNN) architecture: a tailored loss function, and smooth- and label-based data augmentation. The tailored loss function enforces that neighborhood wavelengths have similar contributions to the features generated during training. A new label-based technique here proposed favors selection of pixels in smaller classes, which is beneficial in the presence of very few labeled pixels and skewed class distributions. To address the second question, we introduce a new sampling procedure to generate disjoint train and test set. Then the train set is used to obtain the CNN model, which is then applied to pixels in the test set to estimate their labels. We assess the efficacy of the simple neural network method on five publicly available hyperspectral images. On these images our method significantly outperforms considered baselines. Notably, with just 1% of labeled pixels per class, on these datasets our method achieves an accuracy that goes from 86.42% (challenging dataset) to 99.52% (easy dataset). Furthermore we show that the simple neural network method improves over other baselines in the new challenging supervised setting. Our analysis substantiates the highly beneficial effect of using the entire image (so train and test data) for constructing a model.Comment: Remote Sensing 201

    An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements

    Full text link
    Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A novel spectral-spatial singular spectrum analysis technique for near real-time in-situ feature extraction in hyperspectral imaging.

    Get PDF
    As a cutting-edge technique for denoising and feature extraction, singular spectrum analysis (SSA) has been applied successfully for feature mining in hyperspectral images (HSI). However, when applying SSA for in situ feature extraction in HSI, conventional pixel-based 1-D SSA fails to produce satisfactory results, while the band-image-based 2D-SSA is also infeasible especially for the popularly used line-scan mode. To tackle these challenges, in this article, a novel 1.5D-SSA approach is proposed for in situ spectral-spatial feature extraction in HSI, where pixels from a small window are used as spatial information. For each sequentially acquired pixel, similar pixels are located from a window centered at the pixel to form an extended trajectory matrix for feature extraction. Classification results on two well-known benchmark HSI datasets and an actual urban scene dataset have demonstrated that the proposed 1.5D-SSA achieves the superior performance compared with several state-of-the-art spectral and spatial methods. In addition, the near real-time implementation in aligning to the HSI acquisition process can meet the requirement of online image analysis for more efficient feature extraction than the conventional offline workflow

    Bayesian gravitation based classification for hyperspectral images.

    Get PDF
    Integration of spectral and spatial information is extremely important for the classification of high-resolution hyperspectral images (HSIs). Gravitation describes interaction among celestial bodies which can be applied to measure similarity between data for image classification. However, gravitation is hard to combine with spatial information and rarely been applied in HSI classification. This paper proposes a Bayesian Gravitation based Classification (BGC) to integrate the spectral and spatial information of local neighbors and training samples. In the BGC method, each testing pixel is first assumed as a massive object with unit volume and a particular density, where the density is taken as the data mass in BGC. Specifically, the data mass is formulated as an exponential function of the spectral distribution of its neighbors and the spatial prior distribution of its surrounding training samples based on the Bayesian theorem. Then, a joint data gravitation model is developed as the classification measure, in which the data mass is taken to weigh the contribution of different neighbors in a local region. Four benchmark HSI datasets, i.e. the Indian Pines, Pavia University, Salinas, and Grss_dfc_2014, are tested to verify the BGC method. The experimental results are compared with that of several well-known HSI classification methods, including the support vector machines, sparse representation, and other eight state-of-the-art HSI classification methods. The BGC shows apparent superiority in the classification of high-resolution HSIs and also flexibility for HSIs with limited samples

    Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

    Get PDF
    Recent research has shown that using spectral–spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral–spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral–spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods—namely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods—on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    • …
    corecore