494 research outputs found

    Parallel Factor-Based Model for Two-Dimensional Direction Estimation

    Get PDF
    Two-dimensional (2D) Direction-of-Arrivals (DOA) estimation for elevation and azimuth angles assuming noncoherent, mixture of coherent and noncoherent, and coherent sources using extended three parallel uniform linear arrays (ULAs) is proposed. Most of the existing schemes have drawbacks in estimating 2D DOA for multiple narrowband incident sources as follows: use of large number of snapshots, estimation failure problem for elevation and azimuth angles in the range of typical mobile communication, and estimation of coherent sources. Moreover, the DOA estimation for multiple sources requires complex pair-matching methods. The algorithm proposed in this paper is based on first-order data matrix to overcome these problems. The main contributions of the proposed method are as follows: (1) it avoids estimation failure problem using a new antenna configuration and estimates elevation and azimuth angles for coherent sources; (2) it reduces the estimation complexity by constructing Toeplitz data matrices, which are based on a single or few snapshots; (3) it derives parallel factor (PARAFAC) model to avoid pair-matching problems between multiple sources. Simulation results demonstrate the effectiveness of the proposed algorithm

    Target DoA estimation in passive radar using non-uniform linear arrays and multiple frequency channels

    Get PDF
    In this paper we present a robust approach for target direction of arrival (DoA) estimation in passive radar that jointly exploits spatial and frequency diversity. Specifically we refer to a DVB-T based passive radar receiver equipped with a linear array of few antenna elements non-uniformly spaced in the horizontal dimension, able to collect multiple DVB-T channels simultaneously. We resort to a maximum likelihood (ML) approach to jointly exploit the target echoes collected across the antenna elements at multiple carrier frequencies. Along with an expected improvement in terms of DoA estimation accuracy, we show that the available spatial and frequency diversity can be fruitfully exploited to extend the unambiguous angular sector useful for DoA estimation, which represent an invaluable tool in many applications. To this purpose, a performance analysis is reported against experimental data collected by a multi-channel DVB-T based passive radar developed by Leonardo S.p.A

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    Disertační práce je zaměřena na metody a systémy pro měření vzdálenosti a lokalizaci RFID tagů pracujících v pásmu UHF. Úvod je věnován popisu současného stavu vědeckého poznání v oblasti RFID prostorové identifikace a stručnému shrnutí problematiky modelování a návrhu prototypů těchto systémů. Po specifikaci cílů disertace pokračuje práce popisem teorie modelování degenerovaného kanálu pro RFID komunikaci. Detailně jsou rozebrány metody měření vzdálenosti a odhadu směru příchodu signálu založené na zpracování fázové informace. Pro účely lokalizace je navrženo několik scénářů rozmístění antén. Modely degenerovaného kanálu jsou simulovány v systému MATLAB. Významná část této práce je věnována konceptu softwarově definovaného rádia (SDR) a specifikům jeho adaptace na UHF RFID, která využití běžných SDR systémů značně omezují. Diskutována je zejména problematika průniku nosné vysílače do přijímací cesty a požadavky na signál lokálního oscilátoru používaný pro směšování. Prezentovány jsou tři vyvinuté prototypy: experimentální dotazovač EXIN-1, měřicí systém založený na platformě Ettus USRP a anténní přepínací matice pro emulaci SIMO systému. Závěrečná část je zaměřena na testování a zhodnocení popisovaných lokalizačních technik, založených na měření komplexní přenosové funkce RFID kanálu. Popisuje úzkopásmové/širokopásmové měření vzdálenosti a metody odhadu směru signálu. Oba navržené scénáře rozmístění antén jsou v závěru ověřeny lokalizačním měřením v reálných podmínkách.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.

    Localization and tracking of electronic devices with their unintended emissions

    Get PDF
    The precise localization and tracking of electronic devices via their unintended emissions has a broad range of commercial and security applications. Active stimulation of the receivers of such devices with a known signal generates very low power unintended emissions. This dissertation presents localization and tracking of multiple devices using both simulation and experimental data in the form of five papers. First the localization of multiple emitting devices through active stimulation under multipath fading with a Smooth MUSIC based scheme in the near field region is presented. Spatial smoothing helps to separate the correlated sources and the multipath fading and results confirm improved accuracy. A cost effective near-field localization method is proposed next to locate multiple correlated unintended emitting devices under colored noise conditions using two well separated antenna arrays since colored noise in the environment degrades the subspace-based localization techniques. Subsequently, in order to track moving sources, a near-field scheme by using array output is introduced to monitor direction of arrival (DOA) and the distance between the antenna array and the moving source. The array output, which is a nonlinear function of DOA and distance information, is employed in the Extended Kalman Filter (EKF). In order to show the near- and far-field effect on estimation accuracy, computer simulation results are included for localization and tracking techniques. Finally, an L-shaped array is constructed and a suite of schemes are introduced for localization and tracking of such devices in the three-dimensional environment. Experimental results for localization and tracking of unintended emissions from single and multiple devices in the near-field environment of an antenna array are demonstrated --Abstract, page iv

    Matrix and Tensor-based ESPRIT Algorithm for Joint Angle and Delay Estimation in 2D Active Broadband Massive MIMO Systems and Analysis of Direction of Arrival Estimation Algorithms for Basal Ice Sheet Tomography

    Get PDF
    In this thesis, we apply and analyze three direction of arrival algorithms (DoA) to tackle two distinct problems: one belongs to wireless communication, the other to radar signal processing. Though the essence of these two problems is DoA estimation, their formulation, underlying assumptions, application scenario, etc. are totally different. Hence, we write them separately, with ESPRIT algorithm the focus of Part I and MUSIC and MLE detailed in Part II. For wireless communication scenario, mobile data traffic is expected to have an exponential growth in the future. In order to meet the challenge as well as the form factor limitation on the base station, 2D "massive MIMO" has been proposed as one of the enabling technologies to significantly increase the spectral efficiency of a wireless system. In "massive MIMO" systems, a base station will rely on the uplink sounding signals from mobile stations to figure out the spatial information to perform MIMO beamforming. Accordingly, multi-dimensional parameter estimation of a ray-based multi-path wireless channel becomes crucial for such systems to realize the predicted capacity gains. In the first Part, we study joint angle and delay estimation for 2D "massive MIMO" systems in mobile wireless communications. To be specific, we first introduce a low complexity time delay and 2D DoA estimation algorithm based on unitary transformation. Some closed-form results and capacity analysis are involved. Furthermore, the matrix and tensor-based 3D ESPRIT-like algorithms are applied to jointly estimate angles and delay. Significant improvements of the performance can be observed in our communication scheme. Finally, we found that azimuth estimation is more vulnerable compared to elevation estimation. Results suggest that the dimension of the antenna array at the base station plays an important role in determining the estimation performance. These insights will be useful for designing practical "massive MIMO" systems in future mobile wireless communications. For the problem of radar remote sensing of ice sheet topography, one of the key requirements for deriving more realistic ice sheet models is to obtain a good set of basal measurements that enables accurate estimation of bed roughness and conditions. For this purpose, 3D tomography of the ice bed has been successfully implemented with the help of DoA algorithms such as MUSIC and MLE techniques. These methods have enabled fine resolution in the cross-track dimension using synthetic aperture radar (SAR) images obtained from single pass multichannel data. In Part II, we analyze and compare the results obtained from the spectral MUSIC algorithm and an alternating projection (AP) based MLE technique. While the MUSIC algorithm is more attractive computationally compared to MLE, the performance of the latter is known to be superior in most situations. The SAR focused datasets provide a good case study to explore the performance of these two techniques to the application of ice sheet bed elevation estimation. For the antenna array geometry and sample support used in our tomographic application, MUSIC performs better originally using a cross-over analysis where the estimated topography from crossing flightlines are compared for consistency. However, after several improvements applied to MLE, i.e., replacing ideal steering vector generation with measured steering vectors, automatic determination of the number of scatter sources, smoothing the 3D tomography in order to get a more accurate height estimation and introducing a quality metric for the estimated signals, etc., MLE outperforms MUSIC. It confirms that MLE is indeed the optimal estimator for our particular ice bed tomographic application. We observe that, the spatial bottom smoothing, aiming to remove the artifacts made by MLE algorithm, is the most essential step in the post-processing procedure. The 3D tomography we obtained lays a good foundation for further analysis and modeling of ice sheets

    Sparse Automotive MIMO Radar for Super-Resolution Single Snapshot DOA Estimation With Mutual Coupling

    Get PDF
    A novel sparse automotive multiple-input multiple-output (MIMO) radar configuration is proposed for low-complexity super-resolution single snapshot direction-of-arrival (DOA) estimation. The physical antenna effects are incorporated in the signal model via open-circuited embedded-element patterns (EEPs) and coupling matrices. The transmit (TX) and receive (RX) array are each divided into two uniform sparse sub-arrays with different inter-element spacings to generate two MIMO sets. Since the corresponding virtual arrays (VAs) of both MIMO sets are uniform, the well-known spatial smoothing (SS) algorithm is applied to suppress the temporal correlation among sources. Afterwards, the co-prime array principle between two spatially smoothed VAs is deployed to avoid DOA ambiguities. A performance comparison between the sparse and conventional MIMO radars with the same number of TX and RX channels confirms a spatial resolution enhancement. Meanwhile, the DOA estimation error due to the mutual coupling (MC) is less pronounced in the proposed sparse architecture since antennas in both TX and RX arrays are spaced larger than half wavelength apart

    Direction of Arrival Estimation for Radio Positioning: a Hardware Implementation Perspective

    Get PDF
    Nowadays multiple antenna wireless systems have gained considerable attention due to their capability to increase performance. Advances in theory have introduced several new schemes that rely on multiple antennas and aim to increase data rate, diversity gain, or to provide multiuser capabilities, beamforming and direction finding (DF) features. In this respect, it has been shown that a multiple antenna receiver can be potentially used to perform radio localization by using the direction of arrival (DoA) estimation technique. In this field, the literature is extensive and gathers the results of almost four decades of research activities. Among the most cited techniques that have been developed, we find the so called high-resolution algorithms, such as multiple signal classification (MUSIC), or estimation of signal parameters via rotational invariance (ESPRIT). Theoretical analysis as well as simulation results have demonstrated their excellent performance to the point that they are usually considered as reference for the comparison with other algorithms. However, such a performance is not necessarily obtained in a real system due to the presence of non idealities. These can be divided into two categories: the impairments due to the antenna array, and the impairments due to the multiple radio frequency (RF) and acquisition front-ends (FEs). The former are strongly influenced by the manufacturing accuracy and, depending on the required DoA resolution, have to be taken into account. Several works address these issues in the literature. The multiple FE non idealities, instead, are usually not considered in the DoA estimation literature, even if they can have a detrimental effect on the performance. This has motivated the research work in this thesis that addresses the problem of DoA estimation from a practical implementation perspective, emphasizing the impact of the hardware impairments on the final performance. This work is substantiated by measurements done on a state-of-the-art hardware platform that have pointed out the presence of non idealities such as DC offsets, phase noise (PN), carrier frequency offsets (CFOs), and phase offsets (POs) among receivers. Particularly, the hardware platform will be herein described and examined to understand what non idealities can affect the DoA estimation performance. This analysis will bring to identify which features a DF system should have to reach certain performance. Another important issue is the number of antenna elements. In fact, it is usually limited by practical considerations, such as size, costs, and also complexity. However, the most cited DoA estimation algorithms need a high number of antenna elements, and this does not yield them suitable to be implemented in a real system. Motivated by this consideration, the final part of this work will describe a novel DoA estimation algorithm that can be used when multipath propagation occurs. This algorithm does not need a high number of antenna elements to be implemented, and it shows good performance despite its low implementation/computational complexity

    A flexible design strategy for three-element non-uniform linear arrays

    Get PDF
    This paper illustrates a flexible design strategy for a three-element non-uniform linear array (NULA) aimed at estimating the direction of arrival (DoA) of a source of interest. Thanks to the spatial diversity resulting from non-uniform sensor spacings, satisfactory DoA estimation accuracies can be achieved by employing a very limited number of receiving elements. This makes NULA configurations particularly attractive for low-cost passive location applications. To estimate the DoA of the source of interest, we resort to the maximum likelihood estimator, and the proposed design strategy is obtained by constraining the maximum pairwise error probability to control the errors occurring due to outliers. In fact, it is well known that the accuracy of the maximum likelihood estimator is often degraded by outliers, especially when the signal-to-noise power ratio does not belong to the so-called asymptotic region. The imposed constraint allows for the defining of an admissible region in which the array should be selected. This region can be further modified to incorporate practical design constraints concerning the antenna element size and the positioning accuracy. The best admissible array is then compared to the one obtained with a conventional NULA design approach, where only antenna spacings multiple of λ/2 are considered, showing improved performance, which is also confirmed by the experimental results
    • …
    corecore