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Two-dimensional (2D) Direction-of-Arrivals (DOA) estimation for elevation and azimuth angles assuming noncoherent, mixture
of coherent and noncoherent, and coherent sources using extended three parallel uniform linear arrays (ULAs) is proposed. Most
of the existing schemes have drawbacks in estimating 2D DOA for multiple narrowband incident sources as follows: use of large
number of snapshots, estimation failure problem for elevation and azimuth angles in the range of typical mobile communication,
and estimation of coherent sources. Moreover, the DOA estimation for multiple sources requires complex pair-matching methods.
The algorithm proposed in this paper is based on first-order datamatrix to overcome these problems.Themain contributions of the
proposed method are as follows: (1) it avoids estimation failure problem using a new antenna configuration and estimates elevation
and azimuth angles for coherent sources; (2) it reduces the estimation complexity by constructing Toeplitz data matrices, which
are based on a single or few snapshots; (3) it derives parallel factor (PARAFAC) model to avoid pair-matching problems between
multiple sources. Simulation results demonstrate the effectiveness of the proposed algorithm.

1. Introduction

Antenna arrays have long been in use in the field of wireless
communications in both civilian and military applications.
A fundamental problem in array signal processing is the
Direction of Arrival (DOA) estimation in two dimensions
(i.e., elevation and azimuth) [1–4] for source localization of
multiple sources impinging on this array of antennas. Several
methods were proposed in the literature for DOA estimation.
Thesemethods vary based on estimation accuracy, the geom-
etry of the antenna array, the complexity of the underlying
algorithm, computational cost, and so forth.

In the conventional methods of DOA estimation, the
observation space is decomposed into a signal subspace and
a noise subspace. Two classic subspace techniques, multiple
signal classification (MUSIC [5]) and estimation of signal
parameters via rotational invariance technique (ESPRIT [6]),
are widely used. These and other similar techniques are
computationally complex as they employ either eigenvalue
decomposition (EVD) or the singular-value decomposition
(SVD) of the data matrix. These techniques also suffer
from estimation accuracy and fail in the presence of highly
correlated and coherent signals. A spatial smoothing (SS)

technique was introduced in [7, 8] as a preprocessing step
to improve the system performance and estimation accuracy.
However, this results in the increase in computational com-
plexity of the algorithm.

Improved techniques which are simpler and less complex
were reported in the literature [9–13]. These techniques
do not rely on either EVD or SVD. However, some of
these methods [10–12] require several identical subarrays
configuration (and consequently suffer heavy losses of the
array aperture) and encounter estimation failure problem
when elevation angles are between 70∘ and 90∘ (typicalmobile
communications elevation angle range). Some cumulant-
basedmethods [14, 15] avoid aperture loss problem. But these
methods are computationally intensive, require parameter
pairing, and also do not solve the estimation failure problem.
A trilinear decomposition-based [16] blind 2D DOA estima-
tion algorithm for an L-shaped array is described in [17]. One
drawback of this method is that it requires large number of
snapshots. The method in [18] works only for noncoherent
sources and also requires large number of snapshots.

The algorithm in [19] uses a fourth-order cumulants-
based method and performs EVD of the Toeplitz matrices
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constructed from cumulant elements of received signals to
obtain 2D angle parameters without the need for parame-
ter pairing. This method, however, suffers from estimation
accuracy at low SNR and smaller number of snapshots. A
recent work reported in [20] proposes an oblique projection
based approach [21, 22], which is an extended orthogonal
projection of the measurement onto a low-rank subspace
along a nonorthogonal subspace, by applying some cross-
correlation between the received array data. The oblique
projection is used to estimate the elevation and azimuth
angles by isolating the coherent signals from the noncoherent
ones, thereby alleviating the effect of additive noise, while
avoiding the computationally intensive EVD and parameter
pairing problem. Another recent work reported in [23]
investigates the problem of tracking the 2D DOA of multiple
moving targets by associating the estimated azimuth and
elevation angles of different targets at two successive time
instants. This method does not require pair-matching of
the estimated azimuth and elevation angles and avoids the
computationally expensive EVD. However, it works only
for noncoherent signals. Another 2-destination algorithm of
interest was proposed in [24]. In this algorithm, the elevation
angle is first estimated based on the polynomial rootmethods
(such as fast Root-MUSIC or ESPRIT) using a 1D uniform
linear subarray along the 𝑧-axis. Next, it obtains the azimuth
angle estimate using the elevation angle estimated earlier
and a 2D uniform linear subarray along the 𝑥-axis based
on a subspace method (such as 2D MUSIC). While this
algorithm does not require pair-matching, it has relatively
high estimation errors at low SNR and requires a large
number of snapshots.

Array geometries also have a significant impact on 2D
DOA estimation accuracy. Several array geometries exist in
the literature, such as uniform linear array (ULA), uniform
circular array (UCA), rectangular array, parallel array [25],
and L-shaped array [26, 27]. The L-shaped array [26, 27]
is reported to have higher accuracy compared with other
geometries. However, since the L-shaped array consists of
two orthogonal linear subarrays, two electric angles are
separately estimated from each subarray. Failure to perform
pair-matching of these angles will result in incorrect 2DDOA
estimation of elevation and azimuth angles, and hence severe
performance degradation occurs. The work reported in [28]
solves the problem of pair-matching in 2D DOA estimation
using L-shaped arrays. Another type of array geometry called
cylindrical conformal array is proposed in [29, 30]. This
type of array, however, suffers from polarization diversity of
element patterns which results in DOA estimation difficulty.
This is due to the coupling between the angle information
and the polarization parameter which are incorporated in the
snapshot data model.

The problem of parameter pairing (or pair-matching) for
the L-shaped array in [18] and for the conformal array in [31]
is successfully alleviated using a parallel factor (PARAFAC)
model [32]. PARAFAC, first introduced in psychometrics, is
a method of multiple data analysis and is used in many fields
such as statistics, arithmetic complexity, and chemometrics.
The PARAFAC model [32] is widely used for low-rank
decomposition of three-way (TWA) and higher order arrays.

The method in [33] employs cross-correlation informa-
tion of the received signals for constructing a data matrix
and uses linear operations which reduce the computational
complexity significantly. However, it has several drawbacks
compared with the 2D DOA estimation method proposed in
this paper. The work in [33] does not solve the pair-matching
problemnor does it work for coherent sources. It also requires
a large number of snapshots for estimation accuracy.

In this paper, we propose a novel 2D DOA estimation
algorithm that employs a new three parallel uniform antenna
arrays.The proposed method uses PARAFACmodel to avoid
pair-matching problem. Compared with existing methods
[15, 17], the proposed method works for both coherent
and noncoherent sources, has lower computational com-
plexity, requires very few snapshots (as low as 1), and has
no estimation failure problem especially in typical mobile
communication range. The main contributions of the pro-
posed method are as follows: (1) to avoid estimation failure
problem using a new antenna configuration and estimate
elevation and azimuth angles for coherent sources; (2) to
reduce the estimation complexity by constructing Toeplitz
data matrices, which are based on a single or few snapshots;
and (3) to derive parallel factor (PARAFAC) model to avoid
pair-matching problems between multiple sources. Simula-
tion results demonstrate the effectiveness of the proposed
algorithm. These advantages make the proposed algorithm
a realistic candidate for real-time hardware implementation
for high speed wireless communications applications. Simu-
lation results are shown against the Cramer-Rao Bound as the
reference.

The remaining portion of the paper is organized as
follows: The system model and proposed algorithm are
presented in Section 2. Simulation results and complexity
analysis of the proposed method are described in Section 3.
Finally, conclusions are drawn in Section 4.

2. System Model and Proposed Algorithm

The proposed methodology considers three extended
parallel-shaped arrays, where Toeplitz matrices are con-
structed from the received signals on these arrays to estimate
the elevation and azimuth angles. The proposed algorithm
assumes noncoherent, coherent, or a mixture of noncoherent
and coherent sources to estimate the angles. The following
notations are used to represent variables throughout the
paper. The operations (⋅)�퐻, (⋅)�푇, (⋅)†, ‖ ⋅ ‖�퐹, R(⋅), ⊙, ⊗, and⊚ represent conjugate transpose, transpose, pseudoinverse,
Frobenius norm, real part of a complex number, Khatri-
Rao product, Kronecker product, and Hadamard product,
respectively. The scalar is denoted by 𝜐, constant by V, vector
by v, matrix by V, and 𝑖𝑗th member of a matrix V by 𝜐�푖,�푗. A
three-way array (TWA) is denoted byV and its 𝑖𝑗𝑘thmember
is given by 𝜐�푖,�푗,�푘.The operations diag(v) and diag−1(V) denote
conversion of the vector v into a diagonal matrix and the
diagonal matrix V into a vector, respectively. The following
subsections describe the proposed extended parallel-shaped
array model and formulation of the problem to estimate the
elevation and azimuth angles in the presence of noncoherent
and/or coherent sources.
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Figure 1: Geometry of the proposed extended parallel-shaped array.

2.1. Proposed Extended Array Geometry and Signal Model.
The proposed extended parallel-shaped array geometry is
shown in Figure 1. The figure shows three parallel arrays
placed on 𝑦-axis, 𝑦-𝑧 plane, and 𝑥-𝑦 plane. The middle
array contains one extra element as compared to the other
arrays. There are 2𝑁 antenna elements in the middle array.
The arrays above and below the middle array contain 2𝑁 −1 elements each. These arrays are partitioned into four
subarrays such that each subarray contains 2𝑁 − 1 elements.
These are denoted as 𝑋, 𝑌, 𝑍, and𝑊 as shown in the figure.
The distance between adjacent elements on a single array is 𝑑
meters.The array on the 𝑥-axis is separated by 𝑑meters from
the arrays in the 𝑥-𝑧 and 𝑥-𝑦 planes.

Consider 𝐾 narrowband noncoherent and/or coherent
sources in far field of the extended parallel-shaped array.
Let 𝜃�푘 and 𝜙�푘 denote the elevation and azimuth angles,
respectively, for the 𝑘th source.The (2𝑁−1)×1 signal vectors
received at the 𝑋, 𝑌, 𝑍, and𝑊 subarrays at the 𝑡th snapshot
are given, respectively, as

𝑥 (𝑡) = [𝑥−(�푁−1) (𝑡) ⋅ ⋅ ⋅ 𝑥0 (𝑡) ⋅ ⋅ ⋅ 𝑥(�푁−1) (𝑡)]�푇 ,
𝑦 (𝑡) = [𝑦−(�푁−2) (𝑡) ⋅ ⋅ ⋅ 𝑦0 (𝑡) ⋅ ⋅ ⋅ 𝑦�푁 (𝑡)]�푇 ,
𝑧 (𝑡) = [𝑧−(�푁−1) (𝑡) ⋅ ⋅ ⋅ 𝑧0 (𝑡) ⋅ ⋅ ⋅ 𝑧(�푁−1) (𝑡)]�푇,
𝑤 (𝑡) = [𝑤−(�푁−1) (𝑡) ⋅ ⋅ ⋅ 𝑤0 (𝑡) ⋅ ⋅ ⋅ 𝑤(�푁−1) (𝑡)]�푇,

(1)

where 𝑡 = 1, 2, . . . , 𝐿 and superscript𝑇 denotes the transpose.
The (2𝑁 − 1) × 1-dimensional signal vectors received at the
antenna arrays can be represented as

𝑥 (𝑡) = A (𝜃, 𝜙) 𝑠 (𝑡) + n�푥 (𝑡) , (2)

𝑦 (𝑡) = A (𝜃, 𝜙)Φ�푦 (𝜃, 𝜙) 𝑠 (𝑡) + n�푦 (𝑡) , (3)

𝑧 (𝑡) = A (𝜃, 𝜙)Φ�푧 (𝜃) 𝑠 (𝑡) + n�푧 (𝑡) , (4)

𝑤 (𝑡) = A (𝜃, 𝜙)Φ�푤 (𝜃, 𝜙) 𝑠 (𝑡) + n�푤 (𝑡) , (5)

where the matrix A(𝜃, 𝜙) is defined as

A (𝜃, 𝜙) =

[[[[[[[[[[[[[[[[[
[

𝑢−(�푁−1)1 𝑢−(�푁−1)2 ⋅ ⋅ ⋅ 𝑢−(�푁−1)�퐾... ... d
...

𝑢−11 𝑢−12 ⋅ ⋅ ⋅ 𝑢−1�퐾1 1 ⋅ ⋅ ⋅ 1
𝑢11 𝑢12 ⋅ ⋅ ⋅ 𝑢1�퐾... ... d

...
𝑢(�푁−1)1 𝑢(�푁−1)2 ⋅ ⋅ ⋅ 𝑢(�푁−1)�퐾

]]]]]]]]]]]]]]]]]
]

. (6)

The dimensions of A(𝜃, 𝜙) are (2𝑁 − 1) × 𝐾. The entry 𝑢�푘 in
(6) is defined as

𝑢�푘 = exp(−𝑗2𝜋𝑑 sin 𝜃�푘 sin𝜙�푘𝜆 ) , (7)

where 𝜃�푘 and 𝜙�푘 are the elevation and azimuth angles,
respectively, defined earlier for the 𝑘th source. The signal
vector 𝑠(𝑡) in (2) to (5) is defined as

𝑠 (𝑡) = [𝑠1 (𝑡) 𝑠2 ⋅ ⋅ ⋅ 𝑠�퐾 (𝑡)]�푇 . (8)

The matrix Φ�푦 in (3) is diagonal and contains information
about the elevation and azimuth angles. Its dimensions are𝐾 × 𝐾 and is defined as

Φ�푦 = diag (𝑞1, 𝑞2, . . . , 𝑞�퐾) , (9)
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where 𝑞�퐾 is given as

𝑞�퐾 = exp(−𝑗2𝜋𝑑 sin 𝜃�푘 sin𝜙�푘𝜆 ) . (10)

Similarly, Φ�푧 and Φ�푤 in (4) and (5), respectively, are defined
as

Φ�푧 = diag (𝑟1, 𝑟2, . . . , 𝑟�퐾) , (11)

where 𝑟�퐾 is given as

𝑟�퐾 = exp(−𝑗2𝜋𝑑 cos 𝜃�푘𝜆 ) ,
Φ�푤 = diag (V1, V2, . . . , V�퐾) ,

(12)

where V�퐾 is given as

V�퐾 = exp(−𝑗2𝜋𝑑 sin 𝜃�푘 cos𝜙�푘𝜆 ) . (13)

The (2𝑁 − 1) × 1-dimensional vectors n�푥(𝑡), n�푦(𝑡),
n�푧(𝑡), and n�푤(𝑡) appearing in (2), (3), (4), and (5), respec-
tively, are noise vectors. These vectors are assumed inde-
pendent of each other and each element of the noise vector
(n�푥(𝑡),n�푦(𝑡),n�푧(𝑡), or n�푤(𝑡)) is also independent of other
elements in that vector. The noise is assumed to be Additive
White Gaussian (AWG) with mean 0 and variance 𝜎2. The
noise vectors are also independent of the source signals.
The goal now is to estimate the diagonal matrices Φ�푦, Φ�푧,
and Φ�푤, which contain information about the elevation
and azimuth angles. The PARAFAC model is employed to
estimate elevation and azimuth angles for multiple sources
and solve the pair-matching problem, which occurs in the
presence of two or more sources. The following subsection
introduces the basics of the PARAFAC model [32].

2.2. PARAFAC Model. Consider a TWA D with loading
matrices A, B, and C. The arrayD is defined as

D = (A ⊗ B)C�푇. (14)

The 𝑃-component trilinear decomposition of the array D is
defined as

𝑑�푖,�푗,�푘 = �푃∑
�푝=1

𝑎�푖, 𝑝𝑏�푗, 𝑝𝑐�푘, 𝑝, (15)

where 𝑖 = 1, 2, . . . , 𝐼�푑, 𝑗 = 1, 2, . . . , 𝐽�푑, 𝑘 = 1, 2, . . . , 𝐾�푑, and𝑑�푖,�푗,�푘 is the (𝑖, 𝑗, 𝑘)th element of the array D. The element 𝑎�푖,�푃
is the (𝑖, 𝑃)th element of the (𝐼�푑 × 𝑃)-dimensional matrix A.
Similarly, 𝑏�푖,�푃 and 𝑐�푘,�푃 are (𝑗, 𝑃)th and (𝑘, 𝑃)th elements of
the (𝐽�푑 ×𝑃)-dimensional and (𝐾�푑 ×𝑃)-dimensional matrices
B and C, respectively. The matrices A = [a1 a2 ⋅ ⋅ ⋅ a�푃],
B = [b1 b2 ⋅ ⋅ ⋅ b�푃], and C = [c1 c2 ⋅ ⋅ ⋅ c�푃] are called the
mode or loading matrices for a given PARAFAC model. The
PARAFAC analysis ofD in (14) is represented by (15).

In the proposed method, PARAFAC model is used to
estimate the elevation and azimuth angles correctly for each
signal source without the problem of pair-matching.

2.3. Problem Formulation. In the proposed method, the
Toeplitz matrices from multiple signals received by the
extended parallel-shaped antenna array are first constructed.
The advantage of constructing Toeplitz matrix is its capa-
bility to estimate the angles regardless of the signals being
noncoherent and/or coherent.The Toeplitz matrices are con-
structed using the signals received at the subarrays 𝑋,𝑌, 𝑍,
and 𝑊 from a single snapshot. As inferred from the array
geometry in Figure 1, the array elements are indexed from−(𝑁 − 1) to 𝑁 for the array in the middle and −(𝑁 − 1) to(𝑁−1) for the other two arrays. Using the index 0 element as a
reference, we define the ToeplitzmatrixR�푥(𝑡) for the subarray𝑋 as

R�푥 (𝑡) =
[[[[[[
[

𝑥0 (𝑡) 𝑥−1 (𝑡) ⋅ ⋅ ⋅ 𝑥−(�푁−1) (𝑡)𝑥1 (𝑡) 𝑥0 (𝑡) ⋅ ⋅ ⋅ 𝑥−(�푁−2) (𝑡)... ... d
...

𝑥(�푁−1) (𝑡) 𝑥(�푁−2) (𝑡) ⋅ ⋅ ⋅ 𝑥0 (𝑡)

]]]]]]
]
. (16)

The reference element for subarray 𝑌 is at index 1 since it is
defined as subarray𝑋 shifted right by one element. Similarly,
for subarray 𝑌, the Toeplitz matrix is defined as

R�푦 (𝑡) =
[[[[[[
[

𝑦1 (𝑡) 𝑦0 (𝑡) ⋅ ⋅ ⋅ 𝑦−(�푁−2) (𝑡)𝑦2 (𝑡) 𝑦1 (𝑡) ⋅ ⋅ ⋅ 𝑦−(�푁−3) (𝑡)... ... d
...

𝑦�푁 (𝑡) 𝑦(�푁−1) (𝑡) ⋅ ⋅ ⋅ 𝑦1 (𝑡)

]]]]]]
]
. (17)

The reference antenna elements for 𝑍 and𝑊 subarrays both
are at index 0 and the Toeplitz matrices for subarrays 𝑍 and𝑊 are defined, respectively, as

R�푧 (𝑡) =
[[[[[[
[

𝑧0 (𝑡) 𝑧−1 (𝑡) ⋅ ⋅ ⋅ 𝑧−(�푁−1) (𝑡)𝑧1 (𝑡) 𝑧0 (𝑡) ⋅ ⋅ ⋅ 𝑧−(�푁−2) (𝑡)... ... d
...

𝑧(�푁−1) (𝑡) 𝑧(�푁−2) (𝑡) ⋅ ⋅ ⋅ 𝑧0 (𝑡)

]]]]]]
]
, (18)

R�푤 (𝑡) =
[[[[[[
[

𝑤0 (𝑡) 𝑤−1 (𝑡) ⋅ ⋅ ⋅ 𝑤−(�푁−1) (𝑡)𝑤1 (𝑡) 𝑤0 (𝑡) ⋅ ⋅ ⋅ 𝑤−(�푁−2) (𝑡)... ... d
...

𝑤(�푁−1) (𝑡) 𝑤(�푁−2) (𝑡) ⋅ ⋅ ⋅ 𝑤0 (𝑡)

]]]]]]
]
. (19)

The dimensions of the matricesR�푥(𝑡),R�푦(𝑡),R�푧(𝑡), andR�푤(𝑡)
are 𝑁 × 𝑁 each. These matrices are obtained at the 𝑡th
snapshot of the received signals.

The Toeplitz matrix R�푥(𝑡) in (16) can be decomposed as
follows:

R�푥 (𝑡) = E (𝜃, 𝜙) S (𝑡)E�퐻 (𝜃, 𝜙) + N�푥 (𝑡) , (20)



International Journal of Antennas and Propagation 5

where N�푥(𝑡) is a noise matrix with dimensions 𝑁 × 𝑁 and
E(𝜃, 𝜙) and S(𝑡) are defined as

E (𝜃, 𝜙) =
[[[[[[[[[[
[

1 1 ⋅ ⋅ ⋅ 1
𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢�퐾
𝑢21 𝑢22 ⋅ ⋅ ⋅ 𝑢2�퐾... ... d

...
𝑢�푁−11 𝑢�푁−12 ⋅ ⋅ ⋅ 𝑢�푁−1�퐾

]]]]]]]]]]
]

, (21)

S (𝑡) =
[[[[[[
[

𝑠1 (𝑡) 0 ⋅ ⋅ ⋅ 0
0 𝑠2 (𝑡) ⋅ ⋅ ⋅ 0
... ... d

...
0 0 ⋅ ⋅ ⋅ 𝑠�퐾 (𝑡)

]]]]]]
]
, (22)

where 𝑢�푘 is defined in (7) and S(𝑡) is a diagonal matrix
containing the signals from 𝐾 sources. The dimensions of
E(𝜃, 𝜙) and S(𝑡) are 𝑁 × 𝐾 and 𝐾 × 𝐾, respectively. Since
the number of antenna elements 𝑁 is usually greater than
the number of sources 𝐾 so the rank of E(𝜃, 𝜙) is 𝐾, which
is full column rank. The diagonal matrix S(𝑡) is of full rank
whether the𝐾 sources are coherent or not. Consider the case
of noncoherent sources with diagonal signal matrix as shown
in (22). The dot product of any two columns is zero; that
is, ⟨[𝑠1(𝑡) 0 ⋅ ⋅ ⋅ 0]�푇 , [0 𝑠2(𝑡) ⋅ ⋅ ⋅ 0]�푇⟩ = 0. Now, consider
two coherent sources such that 𝑠2(𝑡) = 𝛼𝑠1(𝑡). The dot
product corresponding to these two columns is again zero;
that is, ⟨[𝑠1(𝑡) 0 ⋅ ⋅ ⋅ 0]�푇 , [0 𝛼𝑠1(𝑡) ⋅ ⋅ ⋅ 0]�푇⟩ = 0. This
indicates that the matrix S(𝑡) is of full rank, which is equal
to 𝐾, the number of sources. So the rank is actually the
minimum of𝑁 and𝐾, which indicates that the rank is equal
to the number of sources 𝐾. As inferred from (20), the rank
of Toeplitz matrix R�푥(𝑡) is 𝐾 also. Consider the matrices U
andVwith dimensions𝑁×𝐾 and𝐾×𝐾, respectively, where
the matrix U is of full column rank. The theorem states that𝑟(UVU�퐻) = 𝑟(V), where 𝑟(V) denotes the rank of the matrix
V, where N�푦(𝑡), N�푧(𝑡), and N�푤(𝑡) are the noise matrices
for the subarrays 𝑌, 𝑍, and 𝑊, respectively. Therefore, the
proposed method can estimate elevation and azimuth angles
for noncoherent and/or coherent sources.

Similarly, the Toeplitz matrices R�푦(𝑡), R�푧(𝑡), and R�푤(𝑡)
can be decomposed, respectively, as

R�푦 (𝑡) = E (𝜃, 𝜙)Φ�푦S (𝑡)E�퐻 (𝜃, 𝜙) + N�푦 (𝑡) ,
R�푧 (𝑡) = E (𝜃, 𝜙)Φ�푧S (𝑡)E�퐻 (𝜃, 𝜙) + N�푧 (𝑡) ,
R�푤 (𝑡) = E (𝜃, 𝜙)Φ�푤S (𝑡)E�퐻 (𝜃, 𝜙) +N�푤 (𝑡) .

(23)

The Toeplitz matrices defined above are rearranged to
form an𝑁 ×𝑁 × 4 TWA F(𝑡). This is represented as

F (𝑡) = [[[[[
[

F (:, :, 1; 𝑡)
F (:, :, 2; 𝑡)
F (:, :, 3; 𝑡)
F (:, :, 4; 𝑡)

]]]]]
]
= [[[[[
[

R�푥 (𝑡)
R�푦 (𝑡)
R�푧 (𝑡)
R�푤 (𝑡)

]]]]]
]
+ [[[[[
[

N�푥 (𝑡)
N�푦 (𝑡)
N�푧 (𝑡)
N�푤 (𝑡)

]]]]]
]

=
[[[[[[
[

E (𝜃, 𝜙) S (𝑡)E�퐻 (𝜃, 𝜙)
E (𝜃, 𝜙)Φ�푦S (𝑡)E�퐻 (𝜃, 𝜙)
E (𝜃, 𝜙)Φ�푧S (𝑡)E�퐻 (𝜃, 𝜙)
E (𝜃, 𝜙)Φ�푤S (𝑡)E�퐻 (𝜃, 𝜙)

]]]]]]
]
+ [[[[[
[

N�푥 (𝑡)
N�푦 (𝑡)
N�푧 (𝑡)
N�푤 (𝑡)

]]]]]
]
,

(24)

where this TWA is in the same form as defined in (14) and the
noise matrices N�푥(𝑡), N�푦(𝑡), N�푧(𝑡), and N�푤(𝑡) are as defined
earlier.

The TWA F is rearranged into three slices of 2D matrices
F1, F2, and F3 as follows:

F1 = (A ⊙ B)C�푇 + 𝑁1,
F2 = (A ⊙ B)C�푇 + 𝑁2,
F3 = (A ⊙ B)C�푇 + 𝑁3,

(25)

where the matrices 𝑁1, 𝑁2, and 𝑁3 are the rearranged noise
matrices, A = E(𝜃, 𝜙), and B = E�퐻(𝜃, 𝜙). The matrix C
contains information about the elevation and azimuth angles.
The structure of C is shown in the following:

C =
[[[[[[
[

𝑐�푇1
𝑐�푇2
𝑐�푇3
𝑐�푇4

]]]]]]
]
=
[[[[[[
[

diag−1 (S)
diag−1 (Φ�푦S)
diag−1 (Φ�푧S)
diag−1 (Φ�푤S)

]]]]]]
]
. (26)

The cost functions for the matrices A, B, and C to be
minimized are defined as follows:

∫
1
(A,B,C;F1) = 󵄩󵄩󵄩󵄩󵄩F1 = (A ⊙ B)C�푇󵄩󵄩󵄩󵄩󵄩2�퐹 ,

∫
2
(A,B,C;F2) = 󵄩󵄩󵄩󵄩󵄩F2 = (B ⊙ C)A�푇󵄩󵄩󵄩󵄩󵄩2�퐹 ,

∫
3
(A,B,C;F3) = 󵄩󵄩󵄩󵄩󵄩F3 = (C ⊙ A)B�푇󵄩󵄩󵄩󵄩󵄩2�퐹 .

(27)

The alternating least squaresmethod is applied to the cost
function ∫

1
(A,B,C;F1) to find the matrix C, which contains

the information about elevation and azimuth angles. This
solution is given as follows:

Ĉ = argmin
�퐶

󵄩󵄩󵄩󵄩󵄩F1 − (Â ⊙ B̂) Ĉ�푇󵄩󵄩󵄩󵄩󵄩2�퐹 = ((Â ⊙ B̂)† F1)�푇 , (28)

where Â and B̂ are obtained, similarly, as follows:

Â = ((B̂ ⊙ Ĉ)† F2)�푇 ,
B̂ = ((Ĉ ⊙ Â)† F3)�푇 .

(29)

The matrices Â, B̂, and Ĉ contain the result of one
iteration. Note that only a few iterations are required for the
algorithm to converge.
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The COMFAC [34] algorithm is used to fit PARAFAC
model defined in (15) to the TWA F(𝑡). The COMFAC
MATLAB function has the following form: [A,B,C, ∙, 𝑖] =
comfac(F, 𝑃, ∙, ∙, ∙, ∙), where F (index 𝑡 is removed for simpli-
fication) and𝑃 are the decomposingTWAand corresponding
factor number, respectively. The factor number 𝑃 represents
the number of sources, which are 𝐾. The outputs A, B,
and C represent the identification results (matrices), while𝑖 represents the iteration number required for the low-rank
decomposition. The “∙” represents other options.

After obtaining the identification matrices Â, B̂, and Ĉ by
performing PARAFAC analysis on F, the diagonal matrix Φ̂�푦
is estimated from the identification matrix Ĉ as shown below

𝜑�푦 (𝑘) = 𝑐2 (𝑘)𝑐1 (𝑘) , (30)

where 𝜑�푦(𝑘) is the estimated 𝑘th entry of the diagonal matrix
Φ̂�푦 and 𝑐1(𝑘) and 𝑐2(𝑘) represent the 𝑘th entries of the row
vectors 𝑐�푇1 and 𝑐�푇2 , respectively. Similarly, the 𝑘th diagonal
entries of Φ̂�푧 and Φ̂�푤 are estimated as shown in the following:

𝜑�푧 (𝑘) = 𝑐3 (𝑘)𝑐1 (𝑘) , (31)

𝜑�푤 (𝑘) = 𝑐4 (𝑘)𝑐1 (𝑘) , (32)

where 𝑐3(𝑘) and 𝑐4(𝑘) denote the 𝑘th entries of the row vectors𝑐�푇3 and 𝑐�푇4 , respectively.
The azimuth angle 𝜙�푘 is then estimated for the 𝑘th source

using the following:

𝜙�푘 = tan−1 (∠𝜑�푦 (𝑘)∠𝜑�푤 (𝑘)) (33)

and elevation angle 𝜃�푘 for the 𝑘th source using the following:

𝜃�푘 = tan−1( ∠𝜑�푤 (𝑘)∠𝜑�푧 (𝑘) × cos (𝜙�푘)) . (34)

The estimated azimuth and elevation angles in (33) and
(34), respectively, are for the 𝑘th source. So, for𝐾 sources, the
following pairs are obtained: (𝜃1, 𝜙1), (𝜃2, 𝜙2), . . . , (𝜃�퐾, 𝜙�퐾).
The estimated identification matrices Ĉ, Â, and B̂ obtained
earlier have the same column permutation matrix [31]. The
pair-matching problem is automatically avoided since the 𝑘th
column of Â corresponds to the 𝑘th column of B̂. Moreover,
the elevation and azimuth angles estimated in (34) and
(33), respectively, do not result in failure in practical mobile
elevation angle range (70∘ to 90∘).

The estimation performance is improved by using more
than one snapshot of the received signals. For this purpose,
consider a TWA G, which contains 𝐿 snapshots of the
received signals. The TWA G is constructed such that the

𝐿 snapshots of the Toeplitz matrices defined earlier are
concatenated together as shown in the following:

G = [F (1) F (2) ⋅ ⋅ ⋅ F (𝐿)]

= [[[[[
[

R�푥 (1) R�푥 (2) ⋅ ⋅ ⋅ R�푥 (𝐿)
R�푦 (1) R�푦 (2) ⋅ ⋅ ⋅ R�푦 (𝐿)
R�푧 (1) R�푧 (2) ⋅ ⋅ ⋅ R�푧 (𝐿)
R�푤 (1) R�푤 (2) ⋅ ⋅ ⋅ R�푤 (𝐿)

]]]]]
]
. (35)

The PARAFAC analysis is then performed on TWA 𝐺
followed by the estimation of azimuth and elevation angles
in (33) and (34), respectively. The performance comparison
using one and multiple snapshots (up to 25) is investigated in
the simulation results section.

2.4. Summary of the Proposed Algorithm. As described ear-
lier, the proposed algorithm considers the extended parallel-
shaped array shown in Figure 1. The problem of noncoherent
and/or coherent sources is resolved by constructing the
Toeplitz matrices and the problem of pair-matching between
two or more sources is avoided using the PARAFAC model.
The following steps summarize the proposed algorithm to
estimate DOA for noncoherent and/or coherent sources
without the problem of pair-matching.

Step 1. Construct the Toeplitz matrices R�푥(𝑡), R�푦(𝑡), R�푧(𝑡),
andR�푤(𝑡) shown in (16), (17), (18), and (19), respectively, from
single snapshot of the received signals.

Step 2. The Toeplitz matrices used to form the 𝑁 × 𝑁 × 4
TWA F(𝑡) given in (24) for one snapshot or G in (35) for 𝐿
snapshots are rearranged according to the PARAFAC model
shown in (14).

Step 3. Apply alternating least squares (ALS) given in (28)
and (29) to the TWA F(𝑡) to obtain the output matrix C,
which has the same structure as shown in (26).

Step 4. Estimate the diagonal matrices Φ̂�푦, Φ̂�푧, and Φ̂�푤 using
(30), (31), and (32), respectively. These matrices contain the
elevation and azimuth angle information of the 𝐾 sources.

Step 5. Estimate the azimuth angle 𝜙�푘 and elevation angle 𝜃�푘
using (33) and (34), respectively.

2.5. Complexity and Cramer-Rao Bound Analysis of the
Proposed Method. The computational complexity of the pro-
posed method is compared with those of 2D DOA using
cumulant-based method [15], novel 2D DOA estimation
algorithm with L-shaped array [17], universal 2D DOA
estimation [24], and joint elevation azimuth and elevation
angle estimation [28]. For𝑁 antenna elements and𝐾 sources
and considering only the major processing operations, the
computational complexity of the proposed method is in the
order of 𝑂(4(𝑁 + 1)𝐿�푝 + 𝑛(3𝐾3 + 12(𝑁 + 1)2𝐾)), where𝐿�푝 denotes the number of snapshots of the received signals
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used in the proposed method.The complexity of the novel L-
shaped method in [17] is 𝑂(4(𝑁 − 1)2𝐿�푛 + 𝑛(3𝐾3 + 12(𝑁 −1)2𝐾)), where 𝐿�푛 denotes the number of snapshots of the
received signals. The cumulant-based method in [15] has
complexity in the order of𝑂(21(2𝑁+1)2𝐿�푐+𝑛(3𝐾3+12(2𝑁+1)2𝐾)), where 𝐿�푐 denotes the number of snapshots of the
received signals. The complexity of the universal 2D DOA
estimation in [24] is 𝑂(𝐿�푢𝑁2 + 2𝑁3 + 𝑁2(𝑁 − 𝐾) + 𝑁 +8𝑁2𝐿�푢) + 𝑂(𝐿�푢𝑁2 + 2𝑁3 + (𝑉/Δ)(𝑁 − 𝐾)𝑁𝐿3�푢), where 𝐿�푢
denotes the number of snapshots of the received signals, 𝑉
is 180 grid number, and Δ is a number between 0 and 1. The
first part represents the complexity to estimate elevation angle
using Root-MUSIC algorithm and second part to estimate
azimuth angle using MUSIC algorithm. The joint L-shaped
method in [28] has complexity in the order of 𝑂((2𝑁 +1)2𝐿2�푗 + (4/3)(2𝑁+1)3 +20001 × 10𝑁3 +20001(𝑁−1)(𝑁+1)) (extracted from [28]), where 𝐿�푗 denotes the number
of snapshots of the received signals. This implies that the
methods in [15, 17, 24, 28] require a lot more computations
compared to the proposed method. Moreover, the received
signals’ snapshots used in the proposed method are far less
than those used in the above methods; that is, 𝐿�푝 ≪𝐿�푛, 𝐿�푐, 𝐿�푢, and 𝐿�푗. This is described in Simulation Results.

Cramer-Rao Bound (CRB) for 2-dimensional DOA esti-
mation is derived in a similar manner as shown in [19, 35–
37]. The received signals in (2), (3), (4), and (5) can be
concatenated as shown in the following:

[[[[[
[

𝑥 (𝑡)
𝑦 (𝑡)
𝑧 (𝑡)
𝑤 (𝑡)

]]]]]
]
= [[[[[
[

A (𝜃, 𝜙)
A (𝜃, 𝜙)Φ�푦 (𝜃, 𝜙)
A (𝜃, 𝜙)Φ�푧 (𝜃)

A (𝜃, 𝜙)Φ�푤 (𝜃, 𝜙)

]]]]]
]
𝑠 (𝑡) + [[[[[

[

n�푥 (𝑡)
n�푦 (𝑡)
n�푧 (𝑡)
n�푤 (𝑡)

]]]]]
]

= 𝑀𝑠 (𝑡) + 𝑁 (𝑡) .
(36)

Using the signal model above, CRB can be expressed as

CRB = 𝜎22𝐿 {R [𝑉�퐻Π⊥�푀𝑉 ⊙ 𝑃̂�푇]}−1 , (37)

where𝑉 = [𝜕𝑚1/𝜕𝜃1, 𝜕𝑚1/𝜕𝜃1, . . ., 𝜕𝑚�퐾/𝜕𝜃�퐾, 𝜕𝑚1/𝜕𝜃1, 𝜕𝑚2/𝜕𝜃2, . . ., 𝜕𝑚�퐾/𝜕𝜃�퐾],𝑚�푖 is the 𝑖th column of𝑀, and

Π⊥�푀 = 𝐼8�푁−4 −𝑀(𝑀�퐻𝑀)−1𝑀�퐻. (38)

The matrix 𝑃̂ in (37) is given as

𝑃̂ = [𝑃̂�푠 𝑃̂�푠𝑃̂�푠 𝑃̂�푠] , (39)

where 𝑃̂�푠 is as follows:
𝑃̂�푠 = 1𝐿

�퐿∑
�푙=1

𝑠 (𝑡) 𝑠�퐻 (𝑡) . (40)

The matrix 𝑃̂�푠 is not a diagonal matrix in the presence of
coherent sources.
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Figure 2: Standard deviation versus SNR for source 1 located at (𝜃1 =70∘, 𝜙1 = 50∘) and source 2 at (𝜃2 = 80∘, 𝜙2 = 60∘).

3. Simulation Results

The performance of the proposed method is evaluated in
this section using simulations.The performance is compared
with the novel L-shaped method in [17], cumulant-based
method in [15], universal 2D DOA estimation in [24], and
joint elevation and azimuth angles estimation using L-shaped
array in [28]. The performance of the proposed method is
also evaluated by considering noncoherent and/or coherent
sources. Furthermore, the improvement in performance is
also investigated by using more than one snapshot of the
received signals. The number of snapshots considered in the
proposed method is much less than the ones considered in
[15, 17, 24, 28] as mentioned earlier. The extended parallel-
shaped arraymodel proposed in Figure 1 assumes the spacing
between adjacent antenna elements as 𝑑 = 𝜆/2. The curves
shown in the following subsections are obtained by averaging
over several runs of the proposed algorithm.

3.1. Effect on Standard Deviation (STD) by Increasing SNR.
Two noncoherent sources (𝐾 = 2) are considered here, which
are located at (𝜃1 = 70∘, 𝜙1 = 50∘) and (𝜃2 = 80∘, 𝜙2 =60∘). The number of antenna elements on the positive 𝑦-axis
is 𝑁 = 20. For the purpose of simulation, the number of
snapshots considered for the proposed algorithm is 𝐿 = 25,
and for the method in [15, 17, 24, 28] they are 𝐿 = 100,𝐿 = 400, 𝐿 = 200, and 𝐿 = 200, respectively. Figure 2
shows the effect of standard deviation (STD) of the estimated
elevation and azimuth angles against increasing SNR for
sources 1 and 2. The comparison of the curves shows that the
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Figure 3: Standard deviation versus SNR for source 1 (noncoherent)
located at (𝜃1 = 70∘, 𝜙1 = 50∘) for the proposed method.

proposed method outperforms the methods [15, 17, 24, 28],
at low SNR.The proposed method shows approximately 57%
and 16% performance improvement at 5 dB as compared to
the methods in [17] and [15], respectively. The performance
is also better than the methods in [24, 28]. Moreover, the
proposed method performs well even at much lower number
of snapshots. The performance of the proposed method and
the method in [28] is comparable with CRB. However, the
method in [28] requires high number of snapshots.

3.2. Effect on Standard Deviation (STD) by Increasing the
Number of Snapshots. The effect of increasing the number
of snapshots for the proposed method is investigated in the
presence of two noncoherent sources. The same effect is
also investigated by considering two coherent sources. The
sources are located at (𝜃1 = 70∘, 𝜙1 = 50∘) and (𝜃2 = 80∘, 𝜙2 =60∘). The number of antenna elements on the positive 𝑦-
axis is 𝑁 = 20. The curves are plotted for the following
number of snapshots: 𝐿 = 1, 𝐿 = 2, 𝐿 = 4, 𝐿 = 8, and𝐿 = 16. Figures 3 and 4 show the effect of increasing snapshots
for noncoherent sources. Similarly, Figures 5 and 6 show
the effect of increasing snapshots for coherent sources. The
analysis of Figures 3, 4, 5, and 6 shows that the performance
is improved by increasing the number of snapshots for both
the noncoherent and coherent sources. However, the number
of snapshots used here is far less than those used in the
aforementioned methods.

3.3. Effect on StandardDeviation (STD) in the Presence of Non-
coherent and Coherent Sources Together. The performance
of the proposed method is evaluated here by considering
a mixture of one noncoherent and two coherent sources.
The number of antenna elements on the positive 𝑦-axis
considered here is 𝑁 = 20. The number of snapshots is 𝐿 =20. The two coherent sources are located at (𝜃1 = 55∘, 𝜙1 =40∘) and (𝜃2 = 70∘, 𝜙2 = 50∘) and a noncoherent source
is located at (𝜃3 = 80∘, 𝜙3 = 60∘). Figure 7 shows that the
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Figure 4: Standard deviation versus SNR for source 2 (noncoherent)
located at (𝜃2 = 80∘, 𝜙2 = 60∘) for the proposed method.

0

0.5

1

1.5

2

2.5
ST

D
 (d

eg
re

es
)

10 15 20 25 305
SNR (dB)

1 snapshot
2 snapshots
4 snapshots

8 snapshots
16 snapshots
CRB

Figure 5: Standard deviation versus SNR for source 1 (coherent)
located at (𝜃1 = 70∘, 𝜙1 = 50∘) for the proposed method.

estimation performances are almost same for the mixture of
coherent and noncoherent sources.

3.4. Performance Comparison Using Scatter Plot. The scatter
plot is obtained to make comparison between the proposed
technique and the method in [17]. The number of antenna
elements on the positive 𝑦-axis is 𝑁 = 18. The number of
snapshots used is 𝐿 = 5. Figures 8 and 9 show the scatter plot
for three noncoherent sources located at (𝜃1 = 50∘, 𝜙1 = 40∘),(𝜃2 = 60∘, 𝜙2 = 55∘), and (𝜃3 = 70∘, 𝜙3 = 65∘) with SNR =
15 dB and 25 dB, respectively.The scatter plot is also obtained
for the proposed method in the presence of noncoherent and
coherent sources separately.The number of antenna elements
on the positive 𝑦-axis is 𝑁 = 18. The number of snapshots
used is 𝐿 = 5. Figure 10 shows the scatter plot for three non-
coherent sources located at (𝜃1 = 50∘, 𝜙1 = 40∘), (𝜃2 = 60∘,
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Figure 6: Standard deviation versus SNR for source 2 (coherent)
located at (𝜃2 = 80∘, 𝜙2 = 60∘) for the proposed method.
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Figure 7: Standard deviation versus SNR for the proposed method
in the presence of two coherent sources located at (𝜃1 = 55∘, 𝜙1 =40∘) and (𝜃2 = 70∘, 𝜙2 = 50∘) and a noncoherent source located at(𝜃3 = 80∘, 𝜙3 = 60∘).
𝜙2 = 55∘), and (𝜃3 = 70∘, 𝜙3 = 65∘) with SNR = 20 dB.
Similarly, Figure 11 shows the scatter plot for three coherent
sources located at (𝜃1 = 50∘, 𝜙1 = 40∘), (𝜃2 = 60∘, 𝜙2 = 55∘),
and (𝜃3 = 70∘, 𝜙3 = 65∘) with SNR = 20 dB. Again, Figures
10 and 11 show that the performance is still better than the
method in [17] regardless of the noncoherent or coherent
sources.

In Figures 12 and 13, the performance of the proposed
method at low SNR is presented. The number of antenna
elements on the positive 𝑦-axis is 𝑁 = 18. The numbers of
snapshots used are 𝐿 = 1 and 𝐿 = 5. Two coherent sources
are located at (𝜃1 = 40∘, 𝜙1 = 50∘) and (𝜃2 = 60∘, 𝜙2 =70∘), and SNR = 0 dB. From the scatter plot in Figures 12
and 13, we observe that the performance of the proposed
method degrades in estimating the azimuth and elevation
angle at low SNR and at fewer snapshots. This concludes that
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Figure 8: Scatter plot for three noncoherent sources located at (𝜃1 =55∘, 𝜙1 = 40∘), (𝜃2 = 60∘, 𝜙2 = 55∘), and (𝜃3 = 70∘, 𝜙3 = 65∘) with
SNR = 15 dB.
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Figure 9: Scatter plot for three noncoherent sources located at (𝜃1 =50∘, 𝜙1 = 40∘), (𝜃2 = 60∘, 𝜙2 = 55∘), and (𝜃3 = 70∘, 𝜙3 = 65∘) with
SNR = 25 dB.

in practical applications at low SNR several snapshots should
be considered to get a reasonably accurate estimation.

3.5. Effect of Varying Elevation Angle 𝜃. The comparison is
made between the method in [15] and the proposed method
by varying the elevation angle 𝜃 from 70∘ to 88∘ in steps
of 3∘. The azimuth angle 𝜙 is fixed at 20∘. The number of
antenna elements on the positive 𝑦-axis is fixed at 𝑁 = 20.
The number of signal snapshots is 𝐿 = 25. The STD is
obtained for both the methods at three different values of
SNR, which are 5 dB, 15 dB, and 25 dB. The algorithm is run
for 500 trials. Table 1 shows the comparison between two
methods at different SNR values by varying the elevation
angle 𝜃. The comparison of STD shows that the proposed
method outperforms the method in [15] by approximately
50%.
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Table 1: Comparison between the cumulant-based method in [15] and the proposed method.

Azimuth and
elevation angles

Cumulant-based method in [15]
standard deviation (degrees)

Proposed method standard
deviation (degree)

(𝜃, 𝜙) SNR = 5 dB SNR = 15 dB SNR = 25 dB SNR = 5 dB SNR = 15 dB SNR = 25 dB
(70∘, 20∘) 0.405 0.121 0.035 0.338 0.117 0.023
(73∘, 20∘) 0.732 0.245 0.073 0.420 0.132 0.045
(76∘, 20∘) 0.794 0.237 0.078 0.447 0.135 0.044
(79∘, 20∘) 0.705 0.226 0.074 0.413 0.138 0.045
(82∘, 20∘) 0.743 0.248 0.077 0.486 0.142 0.047
(85∘, 20∘) 0.734 0.227 0.068 0.470 0.143 0.046
(88∘, 20∘) 0.729 0.232 0.076 0.459 0.145 0.047
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Figure 10: Scatter plot for the proposed method in the presence of
three noncoherent sources located at (𝜃1 = 50∘, 𝜙1 = 40∘), (𝜃2 =60∘, 𝜙2 = 55∘), and (𝜃3 = 70∘, 𝜙3 = 65∘) with SNR = 20 dB.
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Figure 11: Scatter plot for the proposed method in the presence of
three coherent sources located at (𝜃1 = 50∘, 𝜙1 = 40∘), (𝜃2 = 60∘, 𝜙2 =55∘), and (𝜃3 = 70∘, 𝜙3 = 65∘) with SNR = 20 dB.

Source 1 with single snapshot for proposed method
Source 2 with single snapshot for proposed method
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Figure 12: Scatter plot for the proposed method in the presence of
two coherent sources located at (𝜃1 = 40∘, 𝜙1 = 50∘) and (𝜃2 =60∘, 𝜙2 = 70∘) with SNR = 0 dB and single snapshot.

Source 1 with five snapshots for proposed method
Source 2 with five snapshots for proposed method
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Figure 13: Scatter plot for the proposed method in the presence of
two coherent sources located at (𝜃1 = 40∘, 𝜙1 = 50∘) and (𝜃2 =60∘, 𝜙2 = 70∘) with SNR = 0 dB and five snapshots.
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4. Conclusion

In this paper, 2D-DOA estimation method for estimating
the elevation and azimuth angles is proposed. The proposed
method estimates the 2D DOA for noncoherent and/or
coherent sources employing a new antenna array configura-
tion. It has lower computational complexity compared to the
existing schemes since it requires only single or few snapshots
and is based on first-order data matrices. In addition, it has
no failure estimation especially in typical mobile commu-
nication. Furthermore, a parallel factor (PARAFAC) model
has been derived to avoid pair-matching problems. These
advantagesmake the proposed algorithm a realistic candidate
for high speed wireless communications applications.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] T. Lv, F. Tan, H. Gao, and S. Yang, “A beamspace approach for
2-D localization of incoherently distributed sources in massive
MIMO systems,” Signal Processing, vol. 121, pp. 30–45, 2016.

[2] K.-J. Xu, W.-K. Nie, D.-Z. Feng, X.-J. Chen, and D.-Y. Fang, “A
multi-direction virtual array transformation algorithm for 2D
DOA estimation,” Signal Processing, vol. 125, pp. 122–133, 2016.

[3] M. F. Khan and M. Tufail, “Computationally efficient 2D
beamspace matrix pencil method for direction of arrival esti-
mation,”Digital Signal Processing: A Review Journal, vol. 20, no.
6, pp. 1526–1534, 2010.
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