14 research outputs found

    Energy efficiency of 2- Step power-clocks for adiabatic logic

    Get PDF
    The generation of power-clocks in adiabatic integrated circuits is investigated. Specifically, we consider the energy efficiency of a 2-step charging strategy based on a single tank-capacitor circuit. We have investigated the impact of various parameters such as tank-capacitance to load capacitance ratio, ramping time, transistors sizing and power supply voltage scaling on energy recovery achievable in the 2-step charging circuit. We show that energy recovery achievable in the 2-step charging circuit depends on the tank-capacitor and load capacitor size concluding that tank-capacitance (CT) versus load capacitance (CL) is the significant parameter. We also show that the energy performance depends on the ramping time and improves for higher ramping times (lower frequencies). Energy recovery also improves if the transistors sizes in the step charging circuit are sized at their minimum dimensions. Lastly, we show that energy recovery decreases as the power supply voltage is scaled down. Specifically, the decrease in the energy recovery with decreasing power supply is significant for lower ramping times (higher frequencies). We propose that a Ct/Cl ratio of 10, keeping the width of the transistors in the step charging circuit minimum, can be chosen as a convenient `rule-of-thumb' in practical designs

    Off-line Deduplication Method for Solid-State Disk Based on Hot and Cold Data

    Get PDF
    Solid-state disk (SSD) deduplication refers to the identification and deletion of duplicate data stored in an SSD. The reliability of SSDs is improved by deduplication. At present, the common data deduplication of SSDs is based on online data deduplication with Field Programmable Gate Array (FPGA) acceleration. The disadvantage is that FPGA, which has a complex structure. An off-line deduplication method for the SSD based on hot and cold data was proposed in this study to simplify the structure of an SSD deduplication, reduce the cost, and improve the efficiency of deduplication and access performance of SSDs. First, the wear-leveling algorithm was employed in the SSD to divide the data into cold and hot. Then, the corresponding fingerprint was generated for the cold data. Second, the fingerprint was compared, and the cold data with the same fingerprint were deleted. Finally, the cold and hot data were exchanged after deduplication. Results demonstrate that the duplicate recognition rate of the proposed method is 5% - 38%, which is close to that of the online deduplication method. In terms of access performance, the performance of SSDs using the proposed method is improved by 20% compared with that of traditional SSDs and is near the access performance of SSDs using online deduplication. This study provides certain reference for improving the reliability of existing SSDs

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Systematic Design Space Exploration of Dynamic Dataflow Programs for Multi-core Platforms

    Get PDF
    The limitations of clock frequency and power dissipation of deep sub-micron CMOS technology have led to the development of massively parallel computing platforms. They consist of dozens or hundreds of processing units and offer a high degree of parallelism. Taking advantage of that parallelism and transforming it into high program performances requires the usage of appropriate parallel programming models and paradigms. Currently, a common practice is to develop parallel applications using methods evolving directly from sequential programming models. However, they lack the abstractions to properly express the concurrency of the processes. An alternative approach is to implement dataflow applications, where the algorithms are described in terms of streams and operators thus their parallelism is directly exposed. Since algorithms are described in an abstract way, they can be easily ported to different types of platforms. Several dataflow models of computation (MoCs) have been formalized so far. They differ in terms of their expressiveness (ability to handle dynamic behavior) and complexity of analysis. So far, most of the research efforts have focused on the simpler cases of static dataflow MoCs, where many analyses are possible at compile-time and several optimization problems are greatly simplified. At the same time, for the most expressive and the most difficult to analyze dynamic dataflow (DDF), there is still a dearth of tools supporting a systematic and automated analysis minimizing the programming efforts of the designer. The objective of this Thesis is to provide a complete framework to analyze, evaluate and refactor DDF applications expressed using the RVC-CAL language. The methodology relies on a systematic design space exploration (DSE) examining different design alternatives in order to optimize the chosen objective function while satisfying the constraints. The research contributions start from a rigorous DSE problem formulation. This provides a basis for the definition of a complete and novel analysis methodology enabling systematic performance improvements of DDF applications. Different stages of the methodology include exploration heuristics, performance estimation and identification of refactoring directions. All of the stages are implemented as appropriate software tools. The contributions are substantiated by several experiments performed with complex dynamic applications on different types of physical platforms

    Forschungsbericht Universität Mannheim, 2004 / 2005

    Full text link
    Die Universität Mannheim gibt in dem vorliegenden Forschungsbericht 2004/2005 Rechenschaft über ihre Leistungen auf dem Gebiet der Forschung. Erstmals folgt diese Dokumentation einer neuen Gliederung, die auf einen Beschluss des Forschungsrates der Universität Mannheim zurückgeht. Wie gewohnt erhalten Sie einen Überblick über die Publikationen und Forschungsprojekte der Lehrstühle, Professuren und zentralen Forschungseinrichtungen. Diese werden ergänzt um Angaben zur Organisation von Forschungsveranstaltungen, der Mitwirkung in Forschungsausschüssen, einer Übersicht zu den für Forschungszwecke eingeworbenen Drittmitteln, zu den Promotionen und Habilitationen, zu Preisen und Ehrungen und zu Förderern der Universität Mannheim. Abgerundet werden diese Daten durch zusammenfassende Darstellungen der Forschungsschwerpunkte und des Forschungsprofils der Fakultäten
    corecore