28 research outputs found

    Internet of Things for Sustainable Community Development: Introduction and Overview

    Get PDF
    The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development

    OptSample: A Resilient Buffer Management Policy for Robotic Systems based on Optimal Message Sampling

    Full text link
    Modern robotic systems have become an alternative to humans to perform risky or exhausting tasks. In such application scenarios, communications between robots and the control center have become one of the major problems. Buffering is a commonly used solution to relieve temporary network disruption. But the assumption that newer messages are more valuable than older ones is not true for many application scenarios such as explorations, rescue operations, and surveillance. In this paper, we proposed a novel resilient buffer management policy named OptSample. It can uniformly sampling messages and dynamically adjust the sample rate based on run-time network situation. We define an evaluation function to estimate the profit of a message sequence. Based on the function, our analysis and simulation shows that the OptSample policy can effectively prevent losing long segment of continuous messages and improve the overall profit of the received messages. We implement the proposed policy in ROS. The implementation is transparent to user and no user code need to be changed. Experimental results on several application scenarios show that the OptSample policy can help robotic systems be more resilient against network disruption

    Lightweight KPABE Architecture Enabled in Mesh Networked Resource-Constrained IoT Devices

    Get PDF
    Internet of Things (IoT) environments are widely employed in industrial applications including intelligent transportation systems, healthcare systems, and building energy management systems. For such environments of highly sensitive data, adapting scalable and flexible communication with efficient security is vital. Research investigated wireless Ad-hoc/mesh networking, while Attribute Based Encryption (ABE) schemes have been highly recommended for IoT. However, a combined implementation of both mesh networking and Key-Policy Attribute Based Encryption (KPABE) on resource-constrained devices has been rarely addressed. Hence, in this work, an integrated system that deploys a lightweight KPABE security built on wireless mesh networking is proposed. Implementation results show that the proposed system ensures flexibility and scalability of self-forming and cooperative mesh networking in addition to a fine-grained security access structure for IoT nodes. Moreover, the work introduces a case study of an enabled scenario at a school building for optimizing energy efficiency, in which the proposed integrated system architecture is deployed on IoT sensing and actuating devices. Therefore, the encryption attributes and access policy are well-defined, and can be adopted in relevant IoT applications. 2013 IEEE.This publication was made possible by the National Priority Research Program (NPRP) grant [NPRP10-1203-160008] from the Qatar National Research Fund (a member of Qatar Foundation) and the co-funding by the IBERDROLA QSTP LLC. The publication of this article was funded by the Qatar National Library. The findings achieved herein are solely the responsibility of the authors.Scopus2-s2.0-8509909047

    Healthcare Security Incident Response Strategy - A Proactive Incident Response (IR) Procedure

    Get PDF
    The healthcare information system (HIS) has become a victim of cyberattacks. Traditional ways to handle cyber incidents in healthcare organizations follow a predefined incident response (IR) procedure. However, this procedure is usually reactive, missing the opportunities to foresee danger on the horizon. Cyber threat intelligence (CTI) contains information on emerging attacks and should be ideally utilized to inform the IR procedure. However, current research shows that the IR has not been effectively informed by CTI, especially in healthcare organizations. This paper fills in this gap by proposing a proactive IR response procedure based on the National Institute of Standards and Technology (NIST) IR methodology. This paper then presents the NHS WannaCry case study to demonstrate the use of the proposed IR methodology. We collate cyber security advisories from different CTI sources such as US/UK CERT to protect interconnected systems and devices from Ransomware attacks. This research provides novel insights into the IR in healthcare through embedding CTI advisories into IR processes and concludes that our proposed IR procedure can be used to counteract WannaCry Ransomware using CTI advisories. It has the significance of transforming the way of IR from reactive to proactive using the CTI in healthcare

    Zenneck Waves in Decision Agriculture: An Empirical Verification and Application in EM-Based Underground Wireless Power Transfer

    Get PDF
    In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power transfer application using Zenneck surface waves in electromagnetic (EM) based wireless underground communications is developed

    A Survey on Subsurface Signal Propagation

    Get PDF
    Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs

    Exergy as a measure of sustainable retrofitting of buildings

    Get PDF
    This study presents a novel optimization methodology for choosing optimal building retrofitting strategies based on the concept of exergy analysis. The study demonstrates that the building exergy analysis may open new opportunities in the design of an optimal retrofit solution despite being a theoretical approach based on the high performance of a Carnot reverse cycle. This exergy-based solution is different from the one selected through traditional efficient retrofits where minimizing energy consumption is the primary selection criteria. The new solution connects the building with the reference environment, which acts as “an unlimited sink or unlimited sources of energy”, and it adapts the building to maximize the intake of energy resources from the reference environment. The building hosting the School of Architecture at the University of Navarra has been chosen as the case study building. The unique architectural appearance and bespoke architectural characteristics of the building limit the choices of retrofitting solutions; therefore, retrofitting solutions on the façade, roof, roof skylight and windows are considered in multi-objective optimization using the jEPlus package. It is remarkable that different retrofitting solutions have been obtained for energy-driven and exergy-driven optimization, respectively. Considering the local contexts and all possible reference environments for the building, three “unlimited sinks or unlimited sources of energy” are selected for the case study building to explore exergy-driven optimization: the external air, the ground in the surrounding area and the nearby river. The evidence shows that no matter which reference environment is chosen, an identical envelope retrofitting solution has been obtaine

    Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles

    Get PDF
    The coverage path planning (CPP) algorithms aim to cover the total area of interest with minimum overlapping. The goal of the CPP algorithms is to minimize the total covering path and execution time. Significant research has been done in robotics, particularly for multi-unmanned unmanned aerial vehicles (UAVs) cooperation and energy efficiency in CPP problems. This paper presents a review of the early-stage CPP methods in the robotics field. Furthermore, we discuss multi-UAV CPP strategies and focus on energy-saving CPP algorithms. Likewise, we aim to present a comparison between energy efficient CPP algorithms and directions for future research
    corecore