50 research outputs found

    Isomorphism test for digraphs with weighted edges

    Get PDF
    Colour refinement is at the heart of all the most efficient graph isomorphism software packages. In this paper we present a method for extending the applicability of refinement algorithms to directed graphs with weighted edges. We use Traces as a reference software, but the proposed solution is easily transferrable to any other refinement-based graph isomorphism tool in the literature. We substantiate the claim that the performances of the original algorithm remain substantially unchanged by showing experiments for some classes of benchmark graphs

    The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration

    Get PDF
    In this article, the Program Committee of the Second Parameterized Algorithms and Computational Experiments challenge (PACE 2017) reports on the second iteration of the PACE challenge. Track A featured the Treewidth problem and Track B the Minimum Fill-In problem. Over 44 participants on 17 teams from 11 countries submitted their implementations to the competition

    Total Completion Time Minimization for Scheduling with Incompatibility Cliques

    Full text link
    This paper considers parallel machine scheduling with incompatibilities between jobs. The jobs form a graph and no two jobs connected by an edge are allowed to be assigned to the same machine. In particular, we study the case where the graph is a collection of disjoint cliques. Scheduling with incompatibilities between jobs represents a well-established line of research in scheduling theory and the case of disjoint cliques has received increasing attention in recent years. While the research up to this point has been focused on the makespan objective, we broaden the scope and study the classical total completion time criterion. In the setting without incompatibilities, this objective is well known to admit polynomial time algorithms even for unrelated machines via matching techniques. We show that the introduction of incompatibility cliques results in a richer, more interesting picture. Scheduling on identical machines remains solvable in polynomial time, while scheduling on unrelated machines becomes APX-hard. Furthermore, we study the problem under the paradigm of fixed-parameter tractable algorithms (FPT). In particular, we consider a problem variant with assignment restrictions for the cliques rather than the jobs. We prove that it is NP-hard and can be solved in FPT time with respect to the number of cliques. Moreover, we show that the problem on unrelated machines can be solved in FPT time for reasonable parameters, e.g., the parameter pair: number of machines and maximum processing time. The latter result is a natural extension of known results for the case without incompatibilities and can even be extended to the case of total weighted completion time. All of the FPT results make use of n-fold Integer Programs that recently have received great attention by proving their usefulness for scheduling problems

    Computing Treewidth on the GPU

    Get PDF
    We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O*(2^n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions. GPU programming presents unique challenges and constraints, such as constraints on the use of memory and the need to limit branch divergence. We experiment with various optimizations to see if it is possible to work around these issues. We achieve a very large speed up (up to 77x) compared to running the same algorithm on the CPU

    Optimal LZ-End Parsing Is Hard

    Get PDF
    LZ-End is a variant of the well-known Lempel-Ziv parsing family such that each phrase of the parsing has a previous occurrence, with the additional constraint that the previous occurrence must end at the end of a previous phrase. LZ-End was initially proposed as a greedy parsing, where each phrase is determined greedily from left to right, as the longest factor that satisfies the above constraint [Kreft & Navarro, 2010]. In this work, we consider an optimal LZ-End parsing that has the minimum number of phrases in such parsings. We show that a decision version of computing the optimal LZ-End parsing is NP-complete by showing a reduction from the vertex cover problem. Moreover, we give a MAX-SAT formulation for the optimal LZ-End parsing adapting an approach for computing various NP-hard repetitiveness measures recently presented by [Bannai et al., 2022]. We also consider the approximation ratio of the size of greedy LZ-End parsing to the size of the optimal LZ-End parsing, and give a lower bound of the ratio which asymptotically approaches 2

    Online Non-Preemptive Scheduling to Minimize Maximum Weighted Flow-Time on Related Machines

    Get PDF
    We consider the problem of scheduling jobs to minimize the maximum weighted flow-time on a set of related machines. When jobs can be preempted this problem is well-understood; for example, there exists a constant competitive algorithm using speed augmentation. When jobs must be scheduled non-preemptively, only hardness results are known. In this paper, we present the first online guarantees for the non-preemptive variant. We present the first constant competitive algorithm for minimizing the maximum weighted flow-time on related machines by relaxing the problem and assuming that the online algorithm can reject a small fraction of the total weight of jobs. This is essentially the best result possible given the strong lower bounds on the non-preemptive problem without rejection
    corecore